
RSA BSAFE®

Crypto-C
Cryptographic Components for C
Library Reference Manual
Version 4.2

Copyright Notice

Copyright © 1994, 1996-1999 RSA Data Security, Inc. All rights reserved. This work
contains proprietary information of RSA Data Security, Inc. Distribution is limited to
authorized licensees of RSA Data Security, Inc. Any unauthorized reproduction or
distribution of this document is strictly prohibited.

RSA is a trademark and BSAFE is a registered trademark of RSA Data Security, Inc.

The RSA Public Key Cryptosystem is protected by U.S. Patent #4,405,829.
The RC5 algorithm is protected by U.S. Patent #5,724,428 and #5,835,600.

The DES implementation in this product contains code based on the “libdes” package
written by Eric A. Young (eay@mincom.oz.au) and is included with his permission.

COPYRIGHT © 1994, 1996-1999 RSA DATA SECURITY, INC. 001-019002-420-001-000

Contents
Chapter 1 Introduction 1
Organization . 2

The Crypto-C Environment . 3

Memory Management . 4

Code Example. 5

The Algorithm Object . 8

The Key Object . 9

The Algorithm Chooser . 10
The BDEMO Algorithm Chooser . 10
Defining an Algorithm Chooser . 10

The Surrender Function . 12
Surrender . 13

The ITEM Structure . 14

Chapter 2 Algorithm Info Types 15
AI_BSSecretSharing . 17
AI_CBC_IV8 . 19
AI_DES_CBC_BSAFE1. 20
AI_DES_CBC_IV8 . 22
AI_DES_CBCPadBER . 24
AI_DES_CBCPadIV8. 26
AI_DES_CBCPadPEM . 28
AI_DES_EDE3_CBC_IV8 . 30
AI_DES_EDE3_CBCPadBER. 32
AI_DES_EDE3_CBCPadIV8 . 34
AI_DESX_CBC_BSAFE1. 36
AI_DESX_CBC_IV8 . 38
AI_DESX_CBCPadBER . 40
AI_DESX_CBCPadIV8 . 42
AI_DHKeyAgree. 44
C o n t e n t s i

AI_DHKeyAgreeBER . 46
AI_DHParamGen. 48
AI_DSA . 49
AI_DSAKeyGen. 51
AI_DSAParamGen. 53
AI_DSAWithSHA1 . 54
AI_DSAWithSHA1_BER . 56
AI_ECAcceleratorTable . 58
AI_ECBuildAcceleratorTable. 59
AI_ECBuildPubKeyAccelTable . 61
AI_EC_DHKeyAgree . 63
AI_EC_DSA. 65
AI_EC_DSAWithDigest . 67
AI_EC_ES . 69
AI_ECKeyGen . 70
AI_ECParameters . 72
AI_ECParamGen . 73
AI_ECPubKey . 76
AI_FeedbackCipher . 77
AI_HMAC . 82
AI_HW_Random. 84
AI_KeypairTokenGen . 85
AI_MAC . 87
AI_MD. 88
AI_MD2. 89
AI_MD2_BER . 90
AI_MD2_PEM. 92
AI_MD2Random . 94
AI_MD2WithDES_CBCPad. 95
AI_MD2WithDES_CBCPadBER . 97
AI_MD2WithRC2_CBCPad . 99
AI_MD2WithRC2_CBCPadBER. 101
AI_MD2WithRSAEncryption. 103
AI_MD2WithRSAEncryptionBER . 105
AI_MD5. 107
AI_MD5_BER . 108
AI_MD5_PEM. 110
AI_MD5Random . 112
AI_MD5WithDES_CBCPad. 113
AI_MD5WithDES_CBCPadBER . 115
AI_MD5WithRC2_CBCPad . 117
i i R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5WithRC2_CBCPadBER . 119
AI_MD5WithRSAEncryption . 121
AI_MD5WithRSAEncryptionBER . 123
AI_MD5WithXOR. 125
AI_MD5WithXOR_BER . 127
AI_PKCS_OAEP_RSAPrivate . 129
AI_PKCS_OAEP_RSAPrivateBER. 133
AI_PKCS_OAEP_RSAPublic. 137
AI_PKCS_OAEP_RSAPublicBER . 141
AI_PKCS_OAEPRecode . 146
AI_PKCS_OAEPRecodeBER . 150
AI_PKCS_RSAPrivate . 155
AI_PKCS_RSAPrivateBER . 157
AI_PKCS_RSAPrivatePEM. 159
AI_PKCS_RSAPublic . 161
AI_PKCS_RSAPublicBER . 163
AI_PKCS_RSAPublicPEM . 165
AI_RC2_CBC . 167
AI_RC2_CBC_BSAFE1 . 169
AI_RC2_CBCPad . 171
AI_RC2_CBCPadBER . 173
AI_RC2_CBCPadPEM. 175
AI_RC4 . 177
AI_RC4_BER . 179
AI_RC4WithMAC. 181
AI_RC4WithMAC_BER . 183
AI_RC5_CBC . 185
AI_RC5_CBCPad . 187
AI_RC5_CBCPadBER . 189
AI_RESET_IV . 191
AI_RFC1113Recode . 192
AI_RSAKeyGen . 193
AI_RSAPrivate . 195
AI_RSAPrivateBSAFE1. 197
AI_RSAPublic . 199
AI_RSAPublicBSAFE1 . 201
AI_RSAStrongKeyGen . 203
AI_SET_OAEP_RSAPrivate . 205
AI_SET_OAEP_RSAPublic . 207
AI_SHA1 . 209
AI_SHA1_BER . 210
C o n t e n t s i i i

AI_SHA1Random . 212
AI_SHA1WithDES_CBCPad . 213
AI_SHA1WithDES_CBCPadBER . 215
AI_SHA1WithRSAEncryption . 217
AI_SHA1WithRSAEncryptionBER. 219
AI_SignVerify . 221
AI_SymKeyTokenGen . 223
AI_X931Random . 225
AI_X962Random_V0. 227

Chapter 3 Key Info Types 229
KI_8Byte . 231
KI_24Byte . 232
KI_DES8 . 233
KI_DES8Strong . 234
KI_DES24Strong . 235
KI_DES_BSAFE1 . 236
KI_DESX . 237
KI_DESX_BSAFE1. 238
KI_DSAPrivate . 239
KI_DSAPrivateBER . 241
KI_DSAPrivateX957BER . 242
KI_DSAPublic . 243
KI_DSAPublicBER . 245
KI_DSAPublicX957BER . 246
KI_ECPrivate . 247
KI_ECPrivateComponent. 248
KI_ECPublic . 249
KI_ECPublicComponent . 250
KI_ExtendedToken . 251
KI_Item . 253
KI_KeypairToken . 254
KI_PKCS_RSAPrivate . 256
KI_PKCS_RSAPrivateBER . 257
KI_RC2_BSAFE1 . 258
KI_RC2WithBSAFE1Params . 259
KI_RSA_CRT . 260
KI_RSAPrivate. 261
KI_RSAPrivateBSAFE1 . 263
KI_RSAPublic . 264
i v R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_RSAPublicBER. 265
KI_RSAPublicBSAFE1 . 266
KI_Token . 267

Chapter 4 Details of Crypto-C Functions 269
B_BuildTableFinal . 270
B_BuildTableGetBufSize . 271
B_BuildTableInit. 272
B_CreateAlgorithmObject . 273
B_CreateKeyObject . 274
B_CreateSessionChooser . 275
B_DecodeDigestInfo . 276
B_DecodeFinal. 277
B_DecodeInit . 278
B_DecodeUpdate. 279
B_DecryptFinal. 280
B_DecryptInit . 281
B_DecryptUpdate. 282
B_DestroyAlgorithmObject . 283
B_DestroyKeyObject . 284
B_DigestFinal. 285
B_DigestInit . 286
B_DigestUpdate. 287
B_EncodeDigestInfo . 288
B_EncodeFinal . 289
B_EncodeInit . 290
B_EncodeUpdate . 291
B_EncryptFinal . 292
B_EncryptInit . 293
B_EncryptUpdate . 294
B_FreeSessionChooser . 295
B_GenerateInit. 296
B_GenerateKeypair . 297
B_GenerateParameters . 298
B_GenerateRandomBytes . 299
B_GetAlgorithmInfo. 300
B_GetExtendedErrorInfo . 301
B_GetKeyExtendedErrorInfo . 302
B_GetKeyInfo . 303
B_IntegerBits . 304
C o n t e n t s v

B_KeyAgreeInit. 305
B_KeyAgreePhase1 . 306
B_KeyAgreePhase2 . 307
B_RandomInit . 308
B_RandomUpdate. 309
B_SetAlgorithmInfo . 310
B_SetKeyInfo . 311
B_SignFinal. 312
B_SignInit . 313
B_SignUpdate. 314
B_SymmetricKeyGenerate . 315
B_SymmetricKeyGenerateInit . 316
B_VerifyFinal. 317
B_VerifyInit . 318
B_VerifyUpdate. 319
T_free . 320
T_malloc . 321
T_memcmp . 322
T_memcpy. 323
T_memmove . 324
T_memset . 325
T_realloc . 326
T_strcmp . 327
T_strcpy . 328
T_strlen . 329

Appendix A Crypto-C Error Types 331

Appendix B Platform-Specific Types and Constants 335
Types. 335

POINTER . 335
UINT2 . 335
UINT4 . 336

Constants . 337

Appendix C References 339
v i R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Figures and Tables
Figures and Tables

Figures
 Figure 1-1 The Crypto-C environment . 3

 Figure 2-1 Sample Algorithm Type . 16

 Figure 3-1 Sample Key Info Type . 230

Tables
Table 2-1 Algorithm methods for block ciphers. 78

Table 2-2 Algorithm methods for feedback modes . 79

Table A-1 Crypto-C Error Types . 329
v i i R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Figures and Tables
v i i i R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Chapter 1

Introduction
This manual is a reference guide for developers who use RSA BSAFE® Crypto-C
(Crypto-C), a core-cryptography SDK.

To familiarize yourself with Crypto-C, you may wish to read the Crypto-C User’s
Manual before referencing this manual. In particular, you may be interested in the
“Introductory Example” in Chapter 1. The User’s Manual also describes cryptographic
concepts and shows how to successfully add Crypto-C to your application.

After you have read the User’s Manual and understand the steps involved in creating a
Crypto-C application, you can turn to this reference manual. The algorithm
information types (AIs) carry the underlying cryptography, so we put this essential
information up front (Chapter 2). Next, the key information types (KIs) provide the
values for those AIs that require keys (Chapter 3). The last chapter (Chapter 4)
contains the application programming interface (API) itself. Make sure to read this
chapter, as it provides a review of the Crypto-C components.
C h a p t e r 1 I n t r o d u c t i o n 1

Organization
Chapter 1 introduces the components of the Crypto-C environment using a code
example.

Chapters 2 and 3 are alphabetical listings of Crypto-C algorithm info types and key
info types that specify the exact format of information supplied to and returned by
Crypto-C.

Chapter 4 lists Crypto-C’s functions alphabetically, giving full details of calling
format and error return codes.

Appendix A lists Crypto-C error types.

Appendix B lists platform-specific types and constants.

Appendix C lists reference documents.
2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

The Crypto-C Environment
The typical Crypto-C environment consists of five components:

• an application

• an algorithm chooser

• a surrender function

• the Crypto-C SDK

• memory management routines

A Crypto-C component is specific to either an application or a platform, or it is part of
the Crypto-C SDK (see Figure 1-1).

Figure 1-1 The Crypto-C environment

The application can be an encryption application, a key-generation application, or
another similar application. The application calls Crypto-C and supplies the
algorithm chooser and a callback to the surrender function. The algorithm chooser
tells Crypto-C which method to use for a given algorithm. The surrender function
allows processing or canceling during lengthy operations.

The Crypto-C SDK performs the cryptographic functions, such as encryption and key
generation. The SDK is reentrant and suitable for shared or dynamic-link libraries.

Memory Management
Routines

Application

Algorithm Chooser

Surrender Function

Crypto-C SDK
Calls Calls

Callbacks

Toolkit
Procedures

Application-Specific
Procedures

Platform-Specfic
Procedures
C h a p t e r 1 I n t r o d u c t i o n 3

Memory Management
Crypto-C provides memory management routines that perform memory allocation
(T_malloc, T_realloc and T_free) and memory operations (T_memcmp, T_memcpy,
T_memmove, and T_memset). These functions are modeled after conventional C library
functions such as malloc, memset, etc. If you want to use the Crypt-C
memory-management functions, you must link in the tstdlib.c file when you build
your application.

You can also supply your own versions of these functions if, for example, you need
platform-specific routines. In this case, you link to your application both your
memory-management functions and the Crypto-C library. Crypto-C will use these
statically-linked functions in place of its memory management routines.

The BDEMO demonstration application provides a sample implementation of these
functions. See “Details of Crypto-C Functions” on page 269 for descriptions and
prototypes of these functions.
4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Code Example
The following code example summarizes the six-step model used in Crypto-C. This
model is described in depth in Chapter 1 of the User’s Manual. The example encrypts
data within a DES key, using a function named EncryptData. The inputs to EncryptData
are: a pointer to the buffer, the data’s length, a pointer to the 8-byte DES key value,
and a pointer to the 8-byte initialization vector used by the DES-CBC algorithm.
EncryptData writes the encrypted data to the buffer supplied by the caller and returns
the length of the encrypted data.

#include "aglobal.h"
#include "bsafe.h"
#include "demochos.h"
#define NULL_SURRENDER_PTR ((A_SURRENDER_CTX *)NULL_PTR)

int EncryptData
 (output, outputLen, maxOutputLen, input, inputLen, keyValue, iv)
unsigned char *output; /* pointer to output data */
unsigned int outputLen; /* pointer to length of encrytped data */
unsigned int maxOutputLen; /* size of output buffer */
unsigned char *input; /* pointer to input data buffer */
unsigned int inputLen; /* length of input data */
unsigned char *keyValue; /* pointer to 8-byte DES key */
unsigned char *iv; /* pointer to 8-byte initialization vector */

{
 B_ALGORITHM_OBJ desAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
 B_KEY_OBJ desKey = (B_KEY_OBJ)NULL_PTR;
 B_BLK_CIPHER_W_FEEDBACK_PARAMS feedbackParams;
 ITEM initVector;
 unsigned int partOutLen;
 int status;

 /* break commands jump to the end of the do while (0) block */
 do {
 if ((status = B_CreateKeyObject (&desKey)) != 0)
 break;
 if ((status = B_SetKeyInfo
 (desKey, KI_DES8Strong, (POINTER)keyValue)) != 0)
 break;
C h a p t e r 1 I n t r o d u c t i o n 5

The main work in EncryptData is done by the functions B_EncryptInit,
B_EncryptUpdate, and B_EncryptFinal. The calling format for these and other
functions is shown in Chapter 4, “Details of Crypto-C Functions.” Most Crypto-C
procedures return either a zero for success or one of the error types listed in Appendix
A.

 if ((status = B_CreateAlgorithmObject (&desAlgorithm)) != 0)
 break;
 initVector.data = iv;
 initVector.len = 8;
 feedbackParams.encryptionMethodName = "des";
 feedbackParams.encryptionParams = NULL_PTR;
 feedbackParams.feedbackMethodName = "cbc";
 feedbackParams.feedbackParams = initVector;
 feedbackParams.paddingMethodName = "pad";
 feedbackParams.paddingParams = NULL_PTR;
 if ((status = B_SetAlgorithmInfo
 (desAlgorithm, (POINTER)&AI_FeedbackCipher,

 (POINTER)&feedbackParams)) != 0)
 break;

 if ((status = B_EncryptInit
 (desAlgorithm, desKey, DEMO_ALGORITHM_CHOOSER,
 NULL_SURRENDER_PTR)) != 0)
 break;
 if ((status = B_EncryptUpdate
 (desAlgorithm, output, outputLen, maxOutputLen, input,

 inputLen, (B_ALGORITHM_OBJ)NULL_PTR,
 NULL_SURRENDER_PTR)) != 0)

 break;

 if ((status = B_EncryptFinal
 (desAlgorithm, output + *outputLen, &partOutLen,

 maxOutputLen - *outputLen, (B_ALGORITHM_OBJ)NULL_PTR,
 NULL_SURRENDER_PTR)) != 0)
 break;
 *outputLen += partOutLen;
 } while (0);

 B_KEY_OBJ desKey = (B_KEY_OBJ)NULL_PTR;
 B_ALGORITHM_OBJ desAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
 return (status);
}

6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

EncryptData uses DEMO_ALGORITHM_CHOOSER as the algorithmChooser argument to
B_EncryptInit. The algorithm chooser is described on page 10. EncryptData also uses
(A_SURRENDER_CTX *)NULL_PTR as the surrenderContext argument to B_EncryptInit,
B_EncryptUpdate, and B_EncryptFinal. As explained in Chapter 4, this tells Crypto-C
to not call the surrender function. See the “The Surrender Function” on page 12 for an
explanation of Crypto-C’s surrender routine.
C h a p t e r 1 I n t r o d u c t i o n 7

The Algorithm Object
In the above code example, B_EncryptInit, B_EncryptUpdate, and B_EncryptFinal
use an algorithm object called desAlgorithm. An algorithm object holds information
about an algorithm’s parameters (for example, the DES initialization vector), and
keeps a context during a cryptographic operation (for example, DES encryption).

Before Crypto-C can use an algorithm object, you must create and set it with
B_CreateAlgorithmObject and B_SetAlgorithmInfo.

Every algorithm object that is created by B_CreateAlgorithmObject must be
destroyed by B_DestroyAlgorithmObject. For security reasons, when Crypto-C
destroys an algorithm object, it zeroizes (in other words “zeros out” or sets to zero)
and freezes any sensitive memory that the object allocated. Note that you can use an
algorithm object for either encryption or decryption, but not for both. You must create
separate algorithm objects to handle each case. Once you set an algorithm, do not
reset it. In other words, once you call B_SetAlgorithmInfo for a particular algorithm
object, do not call it again for the same object until that object has been destroyed and
recreated.

As shown in Chapter 4, page 310, B_SetAlgorithmInfo has three input arguments,
algorithmObject, infoType, and info.algorithmObject is the name of the algorithm
object you are setting. infoType is one of the algorithm info types (AIs) listed in
Chapter 2. The AI specifies which algorithm to use, such as DES-CBC, as well as the
format of the actual algorithm information supplied by info.

As shown in Chapter 2, page 77, the format of info supplied to B_SetAlgorithmInfo
for AI_FeedbackCipher is a pointer to a B_BLK_CIPHER_W_FEEDBACK_PARAMS structure
that holds the necessary information for the encryption object. This data includes the
encryption method name ("des"), the feedback method name ("cbc"), and a pointer
to an ITEM structure that contains the 8 bytes of the initialization vector (iv), which
seeds the process. In the example above, the data in the ITEM structure is the iv input
argument to EncryptData.
8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

The Key Object
In the above code example, B_EncryptInit uses a key object called desKey. A key object
holds a key’s value, such as the DES key, and supplies this value to a function such as
B_EncryptInit, that needs a key. A key object also receives the output of key
generation such as B_GenerateKeypair.

Before Crypto-C can use a key object, you must create and set it with
B_CreateKeyObject and B_SetKeyInfo. Every key object created by
B_CreateKeyObject must be destroyed by B_DestroyKeyObject. For security reasons,
when Crypto-C destroys a key object, it zeroizes (in other words, “zeros out” or sets
to zero) and freezes any sensitive memory that the object allocated. Once you call
B_SetKeyInfo for a particular key object, do not call it again for the same object until it
has been destroyed and recreated.

As shown in Chapter 4, page 311, B_SetKeyInfo has two input arguments, infoType
and info. infoType is one of the KI key info types listed in Chapter 3. The key info type
specifies the format of the actual key information supplied by info.

As shown in Chapter 3, the format of info supplied to B_SetKeyInfo for
KI_DES8Strong is a pointer to an unsigned char array that holds the 8-byte DES key. In
the example, this is the keyValue input argument to EncryptData.
C h a p t e r 1 I n t r o d u c t i o n 9

The BDEMO Algorithm Chooser
The Algorithm Chooser
The algorithm chooser lists all the algorithm methods that Crypto-C will use in the
application. In this way, you only link in the code you need, and thereby reduce the
executable size.

The BDEMO Algorithm Chooser
The BDEMO demonstration application supplied with Crypto-C defines an algorithm
chooser called DEMO_ALGORITHM_CHOOSER. To use the BDEMO algorithm chooser,
compile and link the module that defines DEMO_ALGORITHM_CHOOSER (as it is done for
BDEMO) and specify DEMO_ALGORITHM_CHOOSER as the algorithmChooser argument.

Defining an Algorithm Chooser
The main reason for an application to define its own algorithm chooser is to make the
executable image smaller. The linker links in the object code for all algorithm methods
listed in the algorithm chooser. To illustrate, an application that only uses MD5 and
DES-CBC may define an algorithm chooser with only the MD5 and DES-CBC
methods. In this way, the linker will only link in the object code related to MD5 and
DES-CBC.

An algorithm chooser is an array of pointers to B_ALGORITHM_METHOD values. The last
element of the array must be (B_ALGORITHM_METHOD *)NULL_PTR. The following is an
example that defines an algorithm chooser called MD5_DES_CBC_CHOOSER for the MD5
and DES-CBC algorithm methods needed when using the AI_MD5WithDES_CBCPad AI
algorithm info type:

For additional examples of algorithm choosers, see “Algorithm Choosers” on
page 118 of the User’s Manual.

Notice that encryption/decryption algorithm methods (AMs) such as DES-CBC, have
separate entries for encryption and decryption. This separation of methods enables a

B_ALGORITHM_METHOD *MD5_DES_CBC_CHOOSER[] = {
 &AM_MD5,
 &AM_DES_CBC_ENCRYPT,
 &AM_DES_CBC_DECRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
1 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Defining an Algorithm Chooser
minimal footprint. If an application only performs encryption, it may use an
algorithm chooser with only the encrypt method to prevent the linker from linking in
the object code for decryption.

Note: Early versions of Crypto-C offered optimized AMs for some algorithms on
selected platforms. For instance, when employing RSA public encryption,
there were: AM_RSA_ENCRYPT, AM_RSA_ENCRYPT_68 for the MPW compiler on
68K machines, and AM_RSA_ENCRYPT_86 for the Microsoft compiler on x86
platforms. In versions 3.0 and higher, the optimized code for a particular
algorithm, when available, is automatically linked in with the standard AM.
So while it is no longer necessary to specify an optimized AM to link in
optimized code, the old AM-specific optimized code is still valid.
C h a p t e r 1 I n t r o d u c t i o n 1 1

Defining an Algorithm Chooser
The Surrender Function
During lengthy operations, such as public-key computations and key generation,
Crypto-C surrenders control to the application’s surrender function. The surrender
function may notify users of the operation being performed, indicate that it is still
performing, process operating system tasks, or execute other operations before
returning to Crypto-C. The surrender function may also cause Crypto-C to cancel the
operation by returning a non-zero value.

Your application specifies its surrender function through an A_SURRENDER_CTX value.
A_SURRENDER_CTX is supplied as the surrenderContext argument to Crypto-C functions
such as B_EncryptInit. A_SURRENDER_CTX is defined as follows:

An A_SURRENDER_CTX value consists of a pointer to your application-specific callback
function (that constitutes Crypto-C’s surrender function) and a pointer to
application-specific information. The pointer to application-specific information is
supplied directly to your callback and is not otherwise manipulated by Crypto-C. The
reserved value should be set to NULL_PTR for future compatibility.

A typical application initializes the A_SURRENDER_CTX value before calling a Crypto-C
procedure. Each A_SURRENDER_CTX value may specify a different surrender function
callback and a different handle.

For a sample surrender function, see “A Sample Surrender Function” on page 121 of
the User’s Manual.

typedef struct {
 int (*Surrender) (); /* surrender function callback */
 POINTER handle; /* application-specific information */
 POINTER reserved; /* reserved for future use */
} A_SURRENDER_CTX;
1 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Surrender
Surrender
The surrender function callback must have the following form:

Surrender is a developer-supplied function that actually performs the tasks required
by the application. handle is the application-specific handle from the surrender
context.

Surrender should return 0 for Crypto-C to continue its operation, or a non-zero value
for Crypto-C to cancel its operation.

Return value
0 continue with operation

non-zero cancel operation

int (*Surrender) (
 POINTER handle /* application-specific information */
);
C h a p t e r 1 I n t r o d u c t i o n 1 3

Surrender
The ITEM Structure
Often, Crypto-C requires that input be in the form of an ITEM structure, defined as
follows:

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;
1 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Chapter 2

Algorithm Info Types
This chapter lists the standard algorithm info types (AIs) offered in RSA BSAFE
Crypto-C (Crypto-C). A typical application supplies an algorithm info type as the
infoType argument to B_SetAlgorithmInfo. For examples of how to use algorithm
info types with certain algorithms, see the User’s Manual.

An AI not only specifies which algorithm to use, but also specifies the format of the
algorithm parameters. You supply the algorithm parameters as the info argument to
B_SetAlgorithmInfo.

The entry for each AI occupies one or two pages. See the next page for a description of
the entry format.

Some algorithm info types, such as encryption and signature algorithms, need a key
object. If an algorithm calls for a key object, the AI entry will describe which KI to use
to set the key object. For a complete list of KIs, see Chapter 3.

The algorithm info types pass information from and to various B_ functions. See
Chapter 4 for the descriptions and prototypes of these functions.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 5

or

o

Cry
wi
Des
pro
alg
and
AI_
alg
B_D
B_D

Alg
inc
alg
Des
me
alg

n:
le

e

Ke
ke
For
key
and
des
typ
key

 a

o

Figure 2-1 Sample Algorithm Type

AI_PKCS_RSAPrivate
Purpose:
This AI allows you to decrypt data using the RSA public-key algorithm with
the OAEP padding scheme defined in PKCS #1 v2.0.
Type of information this allows you to use:
the RSA algorithm for performing private key encryption as defined in
PKCS #1. When encrypting, this algorithm encodes the data according to
block type 01. When decrypting, this algorithm decodes the data from a
block type 02.
Format of info supplied to B_SetAlgorithmInfo:
NULL_PTR.
Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.
Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, and B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal . You may pass
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.
Algorithm methods to include in application’s algorithm chooser:
AM_RSA_CRT_ENCRYPT or AM_RSA_CRT_ENCRYPT_BLIND for encrypting, or
AM_RSA_CRT_DECRYPT or AM_RSA_CRT_DECRYPT_BLIND for decrypting.
AM_RSA_CRT_ENCRYPT_BLIND and AM_RSA_CRT_DECRYPT_BLIND will perform
blinding to protect against timing attacks and AM_RSA_CRT_ENCRYPT and
AM_RSA_CRT_DECRYPT will not.
Key info types for keyObject in B_EncryptInit or B_DecryptInit:
KI_RSA_CRT, KI_PKCS_RSAPrivate , KI_PKCS_RSAPrivateBER or
KI_RSAPrivateBSAFE1.
Compatible representation:
AI_PKCS_RSAPrivateBER, AI_PKCS_RSAPrivatePEM.
Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is
the key’s modulus size in bytes.
Output considerations:
The output of encryption will be the same size as the key’s modulus.

Type of information this
allows you to use:
Describes the type of
algorithm and parameters
you can use with the
algorithm info type

Format of info supplied to
B_SetAlgorithmInfo:
Describes the exact format f
supplying the algorithm
parameters to
B_SetAlgorithmInfo. Some
algorithms, such as AI_RC4, d
not have parameters; in this
case, this entry will specify
NULL_PTR.

pto-C procedures to use
th algorithm object:
cribes which Crypto-C
cedures to use. Most
orithms employ Init, Update,
 Final steps. For example,
MD5, an MD5 message
orithm, uses B_DigestInit,

igestUpdate, and
igestFinal.

orithm methods to
lude in application’s
orithm chooser:
cribes which algorithm

thods can be used in your
orithm chooser.

Compatible representatio
Some algorithms have multip
representations for the
algorithm parameters: for
example, Crypto-C’s own
format and BER-encoded
format. In this case, the
underlying algorithm is the
same, but the parameter
representation is different.
These are called “compatibl
representations”.

Input constraints:
Describes any constraints on
the total number of input bytes
passed to the update
procedure.

y info types for
yObject:
 algorithms which need a
 object, such as encryption
 signature algorithms,
cribes which KI key info
e to use when setting the
 object.

Output considerations:
Describes how much space
will be required for output
buffers. For those AIs without
this category, the output buffer
should be the same size as the
input buffer.

Format of info returned by
B_GetAlgorithmInfo:
Describes the exact format
that B_GetAlgorithmInfo
returns for the algorithm
parameters. This is generally
“cleaned up” version of the
format supplied to
B_SetAlgorithmInfo. For
example, B_GetAlgorithmInf
with AI_RSAKeyGen returns
the public exponent with the
leading zeros stripped off.

Purpose:
Describes the AI, what it is
for, what it does, and how it
relates to similar AIs.
1 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_BSSecretSharing
AI_BSSecretSharing

Purpose:
This AI allows you to split a highly sensitive secret, such as a private key, into several
"shares", which can be reassembled to recreate the original secret. The secret can only
be recreated if there are at least a "threshold" number of shares present. For example,
the secret can be divided into five shares. If the threshold is three, any three of them
can be used to reconstruct the secret.

Type of information this allows you to use:
the Bloom-Shamir secret sharing algorithm as defined in “Generalized Linear
Threshold Scheme” by S.C. Kothari, Proceedings of CRYPTO 84.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_SECRET_SHARING_PARAMS structure:

The threshold is the minimum number of shares required to recover the secret key; it
has a minimum value of 2 and maximum of 255.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_SECRET_SHARING_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal.

B_EncryptUpdate must be called a minimum of threshold times. Each time, the secret
being split must be supplied as the input and one new share is returned as the output.
B_EncryptFinal returns a status of BE_OUTPUT_COUNT if the number of calls to
B_EncryptUpdate calls is less than the threshold. B_EncryptFinal supplies no output.

You must supply an initialized random algorithm to B_EncryptUpdate. (The random

typedef struct {
 unsigned int threshold; /* share threshold */
} B_SECRET_SHARING_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 7

AI_BSSecretSharing
algorithm is used only on the first call to B_EncryptUpdate). Supply
(B_ALGORITHM_OBJ)NULL_PTR as the randomAlgorithm for B_EncryptFinal.

B_DecryptUpdate must be called threshold times to supply enough shares to recover
the secret key. B_DecryptFinal returns a status of BE_INPUT_COUNT if the number of
calls to B_DecryptUpdate is less than the threshold; otherwise, it returns a success
status and outputs the secret key.

Supply (B_ALGORITHM_OBJ)NULL_PTR as the randomAlgorithm for B_DecryptUpdate and
B_DecryptFinal. Supply (B_KEY_OBJ)NULL_PTR as the keyObject for B_EncryptInit
and B_DecryptInit.

Output considerations:
The size of the output from each call to B_EncryptUpdate will be one byte more than
the size of the secret. That byte represents the share.
1 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_CBC_IV8
AI_CBC_IV8

Purpose:
This AI allows you to change the initialization vector (IV) for a CBC-mode cipher
without the need to create a new algorithm object or bind in a new key. This increases
the performance of applications that have a long-lived symmetric key (e.g., DES key)
used to encrypt many blocks or messages, each with a unique IV.

Type of information this allows you to use:
a new 8-byte initialization vector for an existing CBC algorithm object previously
initialized with one of the following AIs:

AI_DES_CBC_IV8, AI_DES_CBCPadIV8, AI_DES_CBCPadBER, AI_DES_CBCPadPEM,
AI_DES_EDE3_CBC_IV8, AI_DES_EDE3_CBCPadIV8, AI_DES_EDE3_CBCPadBER,
AI_DESX_CBC_IV8, AI_DESX_CBCPadIV8, AI_DESX_CBCPadBER, AI_RC2_CBC,
AI_RC2_CBCPad, AI_RC2_CBCPadBER, AI_RC2_CBCPadPEM, AI_RC5_CBC, and
AI_RC5_CBCPad.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an 8-byte unsigned char array containing the new initialization vector.

This new initialization vector will not affect the current algorithm object until the next
call to B_EncryptInit, B_EncryptFinal, B_DecryptInit, or B_DecryptFinal.

After the new IV takes effect on the algorithm object, any results from a previous call
to B_GetAlgorithmInfo on the algorithm object are undefined.

Format of info returned by B_GetAlgorithmInfo:
B_GetAlgorithmInfo is not supported for AI_CBC_IV8.

Crypto-C procedures to use with algorithm object:

B_SetAlgorithmInfo.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 9

AI_DES_CBC_BSAFE1
AI_DES_CBC_BSAFE1

Purpose:
Deprecated. This AI is included only for backward compatibility.

Type of information this allows you to use:
the encryption type parameter (pad, pad with checksum, or raw) for the DES
encryption algorithm as defined by BSAFE 1.x.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_BSAFE1_ENCRYPTION_PARAMS structure:

encryptionType should be set to B_BSAFE1_PAD for pad mode, B_BSAFE1_PAD_CHECKSUM
for pad with checksum mode, or B_BSAFE1_RAW for raw mode.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_BSAFE1_ENCRYPTION_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DES_CBC_ENCRYPT for encryption and AM_DES_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES8Strong, KI_DES8, KI_8Byte, or KI_Item (if the length of the ITEM is 8).

typedef struct {
 int encryptionType; /* encryption type */
} B_BSAFE1_ENCRYPTION_PARAMS;
2 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DES_CBC_BSAFE1
Input constraints:
During encryption, this algorithm does not pad the output. Thus, you must provide
input that is a mulitple of 8 bytes.

Output considerations:
In pad mode, the total number of output bytes from encryption can be as many as 8
bytes more than the total input. In pad with checksum mode, the total number of
output encryption bytes can be as many as 16 bytes more than the total input.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 1

AI_DES_CBC_IV8
AI_DES_CBC_IV8

Purpose:
This AI allows you to perform DES encryption or decryption in CBC mode with an 8-
byte initialization vector on data that is a multiple of 8 bytes long. No padding will be
performed. See AI_DES_CBCPadIV8 for the same algorithm type with padding.

Type of information this allows you to use:
an 8-byte initialization vector for the DES-CBC encryption algorithm as defined in
FIPS PUB 46-1 and FIPS PUB 81.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Format of info returned by B_GetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DES_CBC_ENCRYPT for encryption and AM_DES_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES8Strong, KI_DES8, KI_8Byte, KI_Item (if the length of the ITEM is 8), or
KI_DES_BSAFE1.

Input constraints:
During encryption, this algorithm does not pad the output. Thus, you must provide
input that is a mulitple of 8 bytes.
2 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DES_CBC_IV8
Token-based algorithm methods:

AI_DES_CBC_IV8 can be used to access the hardware-related algorithm
methods AM_TOKEN_DES_CBC_ENCRYPT and AM_TOKEN_DES_CBC_DECRYPT, for use in
conjunction with BHAPI.

Token-based key info types:
When used with one of the hardware algorithm methods described, AI_DES_CBC_IV8
should be used with KI_Token or KI_ExtendedToken.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 3

AI_DES_CBCPadBER
AI_DES_CBCPadBER

Purpose:
This AI is similar to AI_DES_CBCPadIV8 except that it uses the ASN.1 BER format. This
AI allows you to parse and create ASN.1 algorithm identifiers such as those used in
PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm
object from the encoded algorithm identifier, which includes the initialization vector.
Alternatively, you call B_GetAlgorithmInfo with this AI to create an encoded
algorithm identifier from an algorithm object created with AI_DES_CBCPadBER,
AI_DES_CBCPadIV8, or AI_DES_CBCPadPEM. The OID for this algorithm—excluding the
tag and length bytes—in decimal, is "43, 14, 3, 2, 7". Also see AI_DES_CBCPadIV8.

Type of information this allows you to use:
the encoded algorithm identifier that specifies the DES-CBC With Padding encryption
algorithm as defined in FIPS PUB 46-1 and FIPS PUB 81, with padding scheme
defined in PKCS #5 and desCBC algorithm identifier defined in [NIST91].

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than DES-CBC With Padding.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DES_CBC_ENCRYPT for encryption and AM_DES_CBC_DECRYPT for decryption.
2 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DES_CBCPadBER
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES8Strong, KI_DES8, KI_8Byte, KI_Item (if the length of the ITEM is 8), or
KI_DES_BSAFE1.

Compatible representation:

AI_DES_CBCPadIV8, AI_DES_CBCPadPEM.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 5

AI_DES_CBCPadIV8
AI_DES_CBCPadIV8

Purpose:
This AI allows you to perform DES encryption or decryption in CBC mode with an 8-
byte initialization vector on data that is of any byte length. The padding mode is
PKCS #5, which makes the ciphertext 1 to 8 bytes longer than the plaintext. See
AI_DES_CBC_IV8 for the same algorithm type with no padding. See AI_DES_CBCPadBER
for the same algorithm type with BER encoding.

Type of information this allows you to use:
an 8-byte initialization vector for the DES-CBC With Padding encryption algorithm as
defined in FIPS PUB 46-1 and FIPS PUB 81, with padding scheme defined in PKCS #5.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Format of info returned by B_GetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DES_CBC_ENCRYPT for encryption and AM_DES_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES8Strong, KI_DES8, KI_8Byte, KI_Item (if the length of the ITEM is 8), or
KI_DES_BSAFE1.

Compatible representation:

AI_DES_CBCPadBER, AI_DES_CBCPadPEM.
2 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DES_CBCPadIV8
Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 7

AI_DES_CBCPadPEM
AI_DES_CBCPadPEM

Purpose:
This AI is similar to AI_DES_CBCPadIV8 except that it uses the format defined in the
Privacy Enhanced Mail protocol (PEM). This AI allows you to parse and create PEM
algorithm identifiers. First, you call B_SetAlgorithmInfo to initialize an algorithm
object from the encoded algorithm identifier that includes the initialization vector.
Alternatively, you call B_GetAlgorithmInfo with this AI to create an encoded
algorithm identifier from an algorithm object created using AI_DES_CBCPadPEM,
AI_DES_CBCPadIV8 or AI_DES_CBCPadBER. Also see AI_DES_CBCPadIV8.

Type of information this allows you to use:
an RFC 1423 identifier that specifies the DES-CBC With Padding encryption
algorithm as defined in FIPS PUB 46-1 and FIPS PUB 81, with padding scheme
defined in RFC 1423. This algorithm info type is intended to process the value of a
DEK-Info field in a PEM encapsulated header.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a null-terminated string (char *) that gives the DES-CBC identifier and 8-
byte initialization vector, for example, “DES-CBC, 0123456789ABCDEF”. Space and tab
characters are removed from the string before it is copied to the algorithm object.
B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the algorithm identifier
specifies an identifier other than DES-CBC.

Format of info returned by B_GetAlgorithmInfo:
pointer to a null-terminated string that gives the DES-CBC identifier and 8-byte
initialization vector.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DES_CBC_ENCRYPT for encryption and AM_DES_CBC_DECRYPT for decryption.
2 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DES_CBCPadPEM
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES8Strong, KI_DES8, KI_8Byte, KI_Item (if the length of the ITEM is 8) or
KI_DES_BSAFE1.

Compatible representation:

AI_DES_CBCPadIV8, AI_DES_CBCPadBER.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 9

AI_DES_EDE3_CBC_IV8
AI_DES_EDE3_CBC_IV8

Purpose:
This AI allows you to perform three-key DES in encrypt-decrypt-encrypt mode as
defined in ANSI X9.17 using the outer-CBC mode. This AI is initialized with an 8-byte
IV and operates on data that is an exact multiple of 8 bytes long. No padding will be
performed. See AI_DES_EDE3_CBCPadIV8 for the same algorithm type with padding.

Type of information this allows you to use:
an 8-byte initialization vector for the DES-EDE3-CBC encryption algorithm.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Format of info returned by B_GetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DES_EDE3_CBC_ENCRYPT for encryption and AM_DES_EDE3_CBC_DECRYPT for
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES24Strong, KI_24Byte, or KI_Item (if the length of the ITEM is 24).

Input constraints:
During encryption, this algorithm does not pad the output. Thus, you must provide
input that is a mulitple of 8 bytes.
3 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DES_EDE3_CBC_IV8
Token-based algorithm methods:

AI_DES_EDE3_CBC_IV8 may be used to access the hardware-related
algorithm methods AM_TOKEN_DES_EDE3_CBC_ENCRYPT and
AM_TOKEN_DES_EDE3_CBC_DECRYPT, for use with BHAPI.

Token-based key info types:
When used with one of the hardware algorithm methods listed above,
AI_DES_EDE3_CBC_IV8 should be used with KI_Token or KI_ExtendedToken.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 3 1

AI_DES_EDE3_CBCPadBER
AI_DES_EDE3_CBCPadBER

Purpose:

This AI is similar to AI_DES_EDE3_CBCPadIV8 except that it uses the ASN.1 BER
format. This AI allows you to parse and create ASN.1 algorithm identifiers such as
used in PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an
algorithm object from the encoded algorithm identifier that includes the initialization
vector. You call B_GetAlgorithmInfo with this AI to create an encoded algorithm
identifier from an algorithm object that was created using AI_DES_EDE3_CBC_PadIV8
or AI_DES_EDE3_CBCPadBER. The OID for this algorithm, excluding the tag and length
bytes, in decimal, is "42, 134, 72, 134, 247, 13, 3, 7". Also see
AI_DES_EDE3_CBCPadIV8.

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the DES-EDE3-CBC encryption
algorithm, with padding scheme defined in PKCS #5.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than DES-EDE3-CBC With Padding.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.
3 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DES_EDE3_CBCPadBER
Algorithm methods to include in application’s algorithm chooser:

AM_DES_EDE3_CBC_ENCRYPT for encryption and AM_DES_EDE3_CBC_DECRYPT for
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES24Strong, KI_24Byte, or KI_Item (if the length of the ITEM is 24).

Compatible representation:

AI_DES_EDE3_CBCPadIV8.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 3 3

AI_DES_EDE3_CBCPadIV8
AI_DES_EDE3_CBCPadIV8

Purpose:

This AI allows you to perform three-key DES in encrypt-decrypt-encrypt mode as
defined in ANSI X9.17 using the outer-CBC mode. This AI is initialized with an 8-byte
IV and operates on data that is of any byte length. The padding mode is PKCS #5,
which makes the ciphertext 1 to 8 bytes longer than the plaintext. See
AI_DES_EDE3_CBC_IV8 for the same algorithm type with no padding. See
AI_DES_EDE3_CBCPadBER for the same algorithm type with BER encoding.

Type of information this allows you to use:
an 8-byte initialization vector for the DES-EDE3-CBC encryption algorithm, with
padding scheme defined in PKCS #5.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Format of info returned by B_GetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DES_EDE3_CBC_ENCRYPT for encryption and AM_DES_EDE3_CBC_DECRYPT for
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES24Strong, KI_24Byte, or KI_Item (if the length of the ITEM is 24).
3 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DES_EDE3_CBCPadIV8
Compatible representation:

AI_DES_EDE3_CBCPadBER.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 3 5

AI_DESX_CBC_BSAFE1
AI_DESX_CBC_BSAFE1

Purpose:
Deprecated. This AI is included only for backward compatibility.

Type of information this allows you to use:
the encryption type parameter (pad, pad with checksum, or raw) for the DESX
encryption algorithm as defined by BSAFE 1.x.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_BSAFE1_ENCRYPTION_PARAMS structure:

encryptionType should be set to B_BSAFE1_PAD for pad mode, B_BSAFE1_PAD_CHECKSUM
for pad with checksum mode, or B_BSAFE1_RAW for raw mode.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_BSAFE1_ENCRYPTION_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DESX_CBC_ENCRYPT for encryption and AM_DESX_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES24Strong, KI_24Byte, KI_Item (if the length of the ITEM is 24), KI_DESX or
KI_DESX_BSAFE1.

typedef struct {
 int encryptionType; /* encryption type */
} B_BSAFE1_ENCRYPTION_PARAMS;
3 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DESX_CBC_BSAFE1
Input constraints:
During encryption, this algorithm does not pad the output. Thus, you must provide
input that is a mulitple of 8 bytes.

Output considerations:
In pad mode, the total number of output bytes from encryption can be as many as
eight more than the total input. In pad with checksum mode, the total number of
output bytes from encryption can be as many as 16 more than the total input.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 3 7

AI_DESX_CBC_IV8
AI_DESX_CBC_IV8

Purpose:
This AI allows you to perform DESX encryption or decryption in CBC mode with an
8-byte initialization vector on data that is a multiple of 8 bytes long. This algorithm
takes 24 bytes of keying material. The first 8 bytes of the key form a standard 56-bit
DES key, the second 8 bytes become the input whitening, and the last 8 bytes become
the output whitening. The DESX algorithm has 64-bit input and output blocks like
DES and it is used in all the same modes. Internally, the plaintext is exclusive-or'ed
with the input whitening before running it through a DES encryption; and the output
of DES is exclusive-or'ed with the output whitening to produce the output block of
DESX. Decryption reverses those steps. See AI_DESX_CBCPadIV8 for the same
algorithm type with padding.

Type of information this allows you to use:
an 8-byte initialization vector for the DESX-CBC encryption algorithm, as defined by
RSA Data Security, Inc.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Format of info returned by B_GetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DESX_CBC_ENCRYPT for encryption and AM_DESX_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES24Strong, KI_24Byte, KI_Item (if the length of the ITEM is 24), KI_DESX, or
3 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DESX_CBC_IV8
KI_DESX_BSAFE1.

Input constraints:
During encryption, this algorithm does not pad the output. Thus, you must provide
input that is a mulitple of 8 bytes.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 3 9

AI_DESX_CBCPadBER
AI_DESX_CBCPadBER

Purpose:
This AI is similar to AI_DESX_CBCPadIV8 except that it uses the ASN.1 BER format.
This AI allows you to parse and create ASN.1 algorithm identifiers, such as used in
PKCS #7, and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm
object from the encoded algorithm identifier that includes the initialization vector.
Alternatively, you call B_GetAlgorithmInfo with this AI to create an encoded
algorithm identifier from an algorithm object that was created using
AI_DESX_CBCPadIV8 or AI_DESX_CBCPadBER. The OID for this algorithm—excluding the
tag and length bytes—in decimal, is "42, 134, 72, 134, 247, 13, 3, 6". Also see
AI_DESX_CBCPadIV8.

Type of information this allows you to use:
the encoded algorithm identifier that specifies the DESX-CBC encryption algorithm,
as defined by RSA Data Security, Inc., with padding scheme defined in PKCS #5.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than DESX-CBC With Padding.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DESX_CBC_ENCRYPT for encryption and AM_DESX_CBC_DECRYPT for decryption.
4 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DESX_CBCPadBER
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES24Strong, KI_24Byte, KI_Item (if the length of the ITEM is 24), KI_DESX, or
KI_DESX_BSAFE1.

Compatible representation:

AI_DESX_CBCPadIV8.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 4 1

AI_DESX_CBCPadIV8
AI_DESX_CBCPadIV8

Purpose:
This AI allows you to perform DESX encryption or decryption in CBC mode. It is
initialized with an 8-byte IV and operates on data that is any byte length. The padding
mode is PKCS #5, which makes the ciphertext 1 to 8 bytes longer than the plaintext.
See AI_DESX_CBC_IV8 for the same algorithm type with no padding. See
AI_DESX_CBCPadBER for the same algorithm type with BER encoding.

Type of information this allows you to use:
an 8-byte initialization vector for the DESX-CBC encryption algorithm, as defined by
RSA Data Security, Inc., with padding scheme defined in PKCS #5.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Format of info returned by B_GetAlgorithmInfo:
pointer to an unsigned char array that holds the 8 bytes of the initialization vector.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DESX_CBC_ENCRYPT for encryption and AM_DESX_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_DES24Strong, KI_24Byte, KI_Item (if the length of the ITEM is 24), KI_DESX, or
KI_DESX_BSAFE1.

Compatible representation:

AI_DESX_CBCPadBER.
4 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DESX_CBCPadIV8
Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 4 3

AI_DHKeyAgree
AI_DHKeyAgree

Purpose:
This AI allows you to perform Diffie-Hellman key agreement. You may have
generated system parameters (for example, through AI_DHParamGen), or you may
have retrieved them from another source. These system parameters are passed to
B_SetAlgorithmInfo. The function B_KeyAgreePhase1 creates the public value that is
sent to the other party, and B_KeyAgreePhase2 processes the value from the other
party to produce the shared secret value. See AI_DHKeyAgreeBER for the same
algorithm type with BER encoding.

Type of information this allows you to use:
Diffie-Hellman system parameters, where the prime and base integers, and the
exponent size, are specified for performing Diffie-Hellman key agreement as defined
in PKCS #3.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_DH_KEY_AGREE_PARAMS structure:

Each ITEM supplies an integer in canonical format, where the ITEM’s data points to an
unsigned byte array -- most significant byte first -- and the ITEM’s len gives its length.
All leading zeros are stripped from each integer before it is copied to the algorithm
object.

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_DH_KEY_AGREE_PARAMS structure (see above). All leading zeros have
been stripped from each integer in the structure.

Crypto-C procedures to use with algorithm object:

B_KeyAgreeInit, B_KeyAgreePhase1, and B_KeyAgreePhase2. You must pass an

typedef struct {
 ITEM prime; /* prime modulus */
 ITEM base; /* base generator */
 unsigned int exponentBits; /* size of random exponent in bits */
} A_DH_KEY_AGREE_PARAMS;
4 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DHKeyAgree
initialized random algorithm to B_KeyAgreePhase1.

Algorithm methods to include in application’s algorithm chooser:

AM_DH_KEY_AGREE.

Compatible representation:

AI_DHKeyAgreeBER.

Output considerations:
The size of the output of B_KeyAgreePhase1 (the public value) will be the same size as
the prime. The size of the output of B_KeyAgreePhase2 (the agreed-upon secret) will
also be the same size as the prime.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 4 5

AI_DHKeyAgreeBER
AI_DHKeyAgreeBER

Purpose:
This AI is similar to AI_DHKeyAgree except that it uses the ASN.1 BER format. This AI
allows you to parse and create ASN.1 algorithm identifiers such as used in PKCS #7
and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm object
from the encoded algorithm identifier that includes the prime modulus, base, and
private value length. Alternatively, you call B_GetAlgorithmInfo with this AI to
create an encoded algorithm identifier from an algorithm object that was created
using AI_DHKeyAgree or AI_DHKeyAgreeBER. The OID for this algorithm, excluding the
tag and length bytes, in decimal, is "42, 134, 72, 134, 247, 13, 1, 3, 1". Also see
AI_DHKeyAgree.

Type of information this allows you to use:
the encoded algorithm identifier that specifies Diffie-Hellman key agreement as
defined in PKCS #3.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than Diffie-Hellman.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_KeyAgreeInit, B_KeyAgreePhase1, and B_KeyAgreePhase2. You must pass an
initialized random algorithm to B_KeyAgreePhase1.

Algorithm methods to include in application’s algorithm chooser:

AM_DH_KEY_AGREE.
4 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DHKeyAgreeBER
Compatible representation:

AI_DHKeyAgree.

Output considerations:
The size of the output of B_KeyAgreePhase1 (the public value) will be the same size as
the prime. The size of the output of B_KeyAgreePhase2 (the agreed-upon secret) will
also be the same size as the prime.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 4 7

AI_DHParamGen
AI_DHParamGen

Purpose:
This AI allows you to generate Diffie-Hellman system parameters, which are the
prime modulus, base, and private value length.

Type of information this allows you to use:
the parameters for generating Diffie-Hellman system parameters as defined in PKCS
#3, where the size of the prime modulus and random exponent are specified. The
optimized generating algorithm is proprietary, as defined by RSA Data Security, Inc.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_DH_PARAM_GEN_PARAMS structure:

The exponentBits must be less than primeBits.

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_DH_PARAM_GEN_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_GenerateInit and B_GenerateParameters. B_GenerateParameters sets the
resultAlgorithmObject with the AI_DHKeyAgree information. You must pass an
initialized random algorithm to B_GenerateParameters.

Algorithm methods to include in application’s algorithm chooser:

AM_DH_PARAM_GEN.

typedef struct {
 unsigned int primeBits; /* size of prime modulus in bits */
 unsigned int exponentBits; /* size of random exponent in bits */
} A_DH_PARAM_GEN_PARAMS;
4 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DSA
AI_DSA

Purpose:
This AI allows you to create or verify raw DSA signatures when the 20-byte input is
already known. It does not compute a message digest before applying the signature
operation. See AI_DSAWithSHA1 for the DSA algorithm type that involves the SHA1
digest operation.

Type of information this allows you to use:
the DSA signature algorithm for performing raw DSA signing and verifying as
defined in FIPS PUB 186.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You must pass a random algorithm in B_SignFinal, but may pass
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_DSA_SIGN for signature creation and AM_DSA_VERIFY for signature verification.

Key info types for keyObject in B_SignInit:

KI_DSAPrivate, KI_DSAPrivateBER, or KI_DSAPrivateX957BER.

Key info types for keyObject in B_VerifyInit:

KI_DSAPublic, KI_DSAPublicBER, or KI_DSAPublicX957BER.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 4 9

AI_DSA
Input constraints:
The DSA algorithm requires that the input data (the data to sign) be exactly 20 bytes
long. Normally, this 20-byte input is the result of SHA1 output.

Output considerations:
The signature result of B_SignFinal will be 40 bytes long; these bytes appear in the
order (r, s).

Token-based algorithm methods:

AI_DSA may be used to access the hardware-related algorithm methods
AM_TOKEN_DSA_SIGN and AM_TOKEN_DSA_VERIFY for use with BHAPI.

Token-based key info types:
When used with one of the hardware algorithm methods listed above, AI_DSA should
be used with KI_Token or KI_KeypairToken.
5 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DSAKeyGen
AI_DSAKeyGen

Purpose:
This AI allows you to generate a DSA key pair. First, you pass the system parameters
to B_SetAlgorithmInfo. Then you generate the keys by calling B_GenerateInit and
B_GenerateKeypair. Alternatively, you may use the AI_DSAParamGen algorithm type
to generate the system parameters needed in DSA key generation. Also see
AI_DSAParamGen.

Type of information this allows you to use:
the parameters for generating a compatible DSA key pair as defined in FIPS PUB 186.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_DSA_PARAMS structure:

An ITEM supplies an integer in canonical format, where the ITEM’s data points to an
unsigned byte array -- most significant byte first -- and the ITEM’s len gives its length.
All leading zeros are stripped from the integer before it is copied to the algorithm
object.

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_DSA_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_GenerateInit and B_GenerateKeypair. B_GenerateKeypair sets the publicKey key
object with the KI_DSAPublic information and the privateKey key object with the
KI_DSAPrivate information. You must pass an initialized random algorithm to
B_GenerateKeypair.

typedef struct {
 ITEM prime; /* the prime p */
 ITEM subPrime; /* the subprime q */
 ITEM base; /* the base g */
} A_DSA_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 5 1

AI_DSAKeyGen
Algorithm methods to include in application’s algorithm chooser:

AM_DSA_KEY_GEN.
5 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DSAParamGen
AI_DSAParamGen

Purpose:
This AI allows you to generate DSA system parameters. The sizes of the parameters
are passed to B_SetAlgorithmInfo and the parameters are made by calling
B_GenerateInit and B_GenerateParameters. You use DSA parameters generated by
this AI to generate a DSA key pair. Also see AI_DSAKeyGen.

Type of information this allows you to use:
the number of prime bits for generating a prime, a subprime, and a base (p, q, and g)
compatible with FIPS PUB 186.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_DSA_PARAM_GEN_PARAMS structure:

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_DSA_PARAM_GEN_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_GenerateInit and B_GenerateParameters. B_GenerateParameters sets the
resultAlgorithmObject algorithm object with the AI_DSAKeyGen information. You must
pass an initialized random algorithm to B_GenerateParameters.

Algorithm methods to include in application’s algorithm chooser:

AM_DSA_PARAM_GEN.

Notes:
The size of the subprime is always 160 bits.

typedef struct {
 unsigned int primeBits; /* size of prime in bits */
} B_DSA_PARAM_GEN_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 5 3

AI_DSAWithSHA1
AI_DSAWithSHA1

Purpose:
This AI allows you to create or verify SHA1 DSA signatures. It is passed the plaintext
and computes the SHA1 digest as well as the DSA signature of that digest. See AI_DSA
for the DSA algorithm type without the SHA1 digest operation. See
AI_DSAWithSHA1_BER for the same algorithm type with BER encoding.

Type of information this allows you to use:
the DSA With SHA1 signature algorithm that uses the SHA1 digest algorithm and
DSA to create and verify DSA digital signatures as defined in X9.57 Draft Section 5.3.1
and FIPS PUB 186.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You must pass a random algorithm in B_SignFinal, but may pass
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_SHA and AM_DSA_SIGN for signature creation, and AM_DSA_VERIFY for signature
verification.

Key info types for keyObject in B_SignInit:

KI_DSAPrivate, KI_DSAPrivateBER, or KI_DSAPrivateX957BER.

Key info types for keyObject in B_VerifyInit:

KI_DSAPublic, KI_DSAPublicBER, or KI_DSAPublicX957BER.
5 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DSAWithSHA1
Compatible representation:

AI_DSAWithSHA1_BER.

Output considerations:
The signature result of B_SignFinal is a BER-encoded value of type SEQUENCE
(INTEGER, INTEGER), where the first field is the value r and the second field is the
value s as defined in section 5.3.1 of X9.57 Draft. The size of signature may be as many
as 48 bytes.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 5 5

AI_DSAWithSHA1_BER
AI_DSAWithSHA1_BER

Purpose:
This AI is similar to AI_DSAWithSHA1 except that it uses the ASN.1 BER format. This AI
allows you to parse and create ASN.1 algorithm identifiers such as used in PKCS #7
and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm object
from the encoded algorithm identifier. You call B_GetAlgorithmInfo with this AI to
create an encoded algorithm identifier from an algorithm object that was created
using AI_DSAWithSHA1 or AI_DSAWithSHA1_BER. The OID for this algorithm, excluding
the tag and length bytes, in decimal, is "43, 14, 3, 2, 27". Also see AI_DSAWithSHA1.

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the DSA With SHA1 signature
algorithm that uses the SHA1 digest algorithm and DSA to create and verify DSA
digital signatures as defined in X9.57 Draft Section 5.3.1 and FIPS PUB 186.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than DSA With SHA1.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You must pass a random algorithm in B_SignFinal, but may pass
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_SHA1 and AM_DSA_SIGN for signature creation, and AM_DSA_VERIFY for signature
verification.
5 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_DSAWithSHA1_BER
Key info types for keyObject in B_SignInit:

KI_DSAPrivate, KI_DSAPrivateBER, or KI_DSAPrivateX957BER.

Key info types for keyObject in B_VerifyInit:

KI_DSAPublic, KI_DSAPublicBER, or KI_DSAPublicX957BER.

Compatible representation:

AI_DSAWithSHA1.

Output considerations:
The signature result of B_SignFinal is a BER-encoded value of type SEQUENCE
(INTEGER, INTEGER) where the first field is the value r and the second field is the
value s as defined in section 5.3.1 of X9.57 Draft. The size of signature may be as many
as 48 bytes.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 5 7

AI_ECAcceleratorTable
AI_ECAcceleratorTable

Purpose:
This AI allows you to use the acceleration table for various elliptic curve (EC)
operations that include encryption, signature creation and verification, key pair
generation, and key agreement operations.

Type of information this allows you to use:
the acceleration table produced by the operation of AI_ECBuildAcceleratorTable on
EC parameters or the table produced by the operation of
AI_ECBuildPubKeyAccelTable on EC parameters.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM holding the accelerator table.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM holding the accelerator table.

Crypto-C procedures to use with algorithm object:
you use the table generated by AI_ECBuildAcceleratorTable with
B_SetAlgorithmInfo to accelerate EC encryption in AI_EC_ES, signature creation and
verification in AI_EC_DSA and AI_EC_DSAWithDigest, key pair generation in
AI_ECKeyGen, and phase 1 of key agreement operations in AI_EC_DHKeyAgree. Use the
table generated by AI_ECBuildPubKeyAccelTable with B_SetAlgorithmInfo to
accelerate verification in AI_EC_DSA and AI_EC_DSAWithDigest.

Algorithm methods to include in application’s algorithm chooser:
None.
5 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_ECBuildAcceleratorTable
AI_ECBuildAcceleratorTable

Purpose:
This AI allows you to build an acceleration table for the retrieval of a base point in
various elliptic curve (EC) operations. To build a table that includes public key values
as well as base point values, see AI_ECBuildPubKeyAccelTable.

Type of information this allows you to use:
elliptic curve parameters as defined in X9.62 Draft to generate auxiliary data for the
acceleration of EC operations with base point. Elliptic curve parameters can be
generated through the execution of AI_ECParamGen.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_EC_PARAMS structure:

where parameterInfoType must be AI_ECParameters and parameterInfoValue must be
an A_EC_PARAMS structure:

typedef struct {
 B_INFO_TYPE parameterInfoType; /* used to interpret EC parameters */
 POINTER parameterInfoValue /* describes elliptic curve */
} B_EC_PARAMS;

typedef struct {
 unsigned int version; /* implementation version */
 unsigned int fieldType; /* indicates type of base field */
 ITEM fieldInfo; /* It is the prime number */
 /* if fieldType = FT_FP; */
 /* the basis polynomial if fieldType = FT_F2_POLYNOMIAL; */
 /* and the degree of the field if fieldType = FT_F2_ONB */
 ITEM coeffA; /* elliptic curve coefficient */
 ITEM coeffB; /* elliptic curve coefficient */
 ITEM base; /* elliptic curve group generator */
 ITEM order; /* order of subgroup’s generating element */
 ITEM cofactor; /* the cofactor of the subgroup */
 unsigned int compressIndicator; /* controls field element representation */
 unsigned int fieldElementBits; /* field element size in bits */
} A_EC_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 5 9

AI_ECBuildAcceleratorTable
Format of info returned by B_GetAlgorithmInfo:

B_GetAlgorithmInfo is not supported with this AI. If called, it will return an error.

Crypto-C procedures to use with algorithm object:

B_BuildTableInit and B_BuildTableFinal.

Algorithm methods to include in application’s algorithm chooser:

AM_ECFP_BLD_ACCEL_TABLE for odd prime fields and AM_ECF2POLY_BLD_ACCEL_TABLE
for even characteristic.

Output Considerations:
The size of the accelerator table may be found through a call to
B_BuildTableGetBufSize after a call to B_BuildTableInit.
6 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_ECBuildPubKeyAccelTable
AI_ECBuildPubKeyAccelTable

Purpose:
This AI allows you to build an acceleration table for a public key and the base point to
be used in various elliptic curve (EC) operations. The acceleration values come from a
table that includes values built for the base point, which are the same as those from
AI_ECBuildAcceleratorTable, and additional values built for the public key. This AI
performs at greater speeds than AI_ECBuildAcceleratorTable for both ECDSA verify
and ECDH Phase 2 operations.

Type of information this allows you to use:
elliptic curve parameters as defined in X9.62 Draft to generate auxiliary data for the
acceleration of elliptic curve operations with base point and public key. Elliptic curve
parameters can be generated through the execution of AI_ECParamGen.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_EC_PARAMS structure:

where parameterInfoType must be AI_ECPubKey and parameterInfoValue must be an
A_EC_PUBLIC_KEY structure:

Format of info returned by B_GetAlgorithmInfo:

B_GetAlgorithmInfo is not supported with this AI. If called, it will return an error.

typedef struct {
 B_INFO_TYPE parameterInfoType; /* used to interpret EC parameters */
 POINTER parameterInfoValue /* describes elliptic curve */
} B_EC_PARAMS;

typedef struct {
 ITEM publicKey; /* public component */
 A_EC_PARAMS curveParams; /* the underlying elliptic curve parameters */
} A_EC_PUBLIC_KEY;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 6 1

AI_ECBuildPubKeyAccelTable
Crypto-C procedures to use with algorithm object:

B_BuildTableInit and B_BuildTableFinal.

Algorithm methods to include in application’s algorithm chooser:

AM_ECFP_BLD_PUB_KEY_ACCEL_TABLE for odd prime fields and
AM_ECF2POLY_BLD_PUB_KEY_ACCEL_TABLE for even characteristic.

Output Considerations:
The size of the accelerator table may be found through a call to
B_BuildTableGetBufSize after a call to B_BuildTableInit.
6 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_EC_DHKeyAgree
AI_EC_DHKeyAgree

Purpose:
This AI allows you to perform elliptic curve Diffie-Hellman key agreement for given
EC parameters. You may have generated system parameters (for example, through
AI_ECParamGen), or you may have retrieved them from another source. These system
parameters are passed to B_SetAlgorithmInfo. The function B_KeyAgreePhase1
creates the public value that is sent to the other party, and B_KeyAgreePhase2
processes the value from the other party to produce the shared secret value.

Type of information this allows you to use:
elliptic curve system parameters used in the elliptic curve, Diffie-Hellman key
agreement operation, as defined in X9.63 Draft.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_EC_PARAMS structure:

where parameterInfoType must be AI_ECParameters and parameterInfoValue must be
an A_EC_PARAMS structure:

typedef struct {
 B_INFO_TYPE *parameterInfoType; /* used to interpret EC parameters */
 POINTER parameterInfoValue; /* describes elliptic curve */
} B_EC_PARAMS;

typedef struct {
 unsigned int version; /* implementation version */
 unsigned int fieldType; /* indicates type of base field */
 ITEM fieldInfo; /* The prime number if fieldType = FT_FP; */
 /* the basis polynomial if fieldType = FT_F2_POLYNOMIAL; */
 /* and the degree of the field if fieldType = FT_F2_ONB */
 ITEM coeffA; /* elliptic curve coefficient */
 ITEM coeffB; /* elliptic curve coefficient */
 ITEM base; /* elliptic curve group generator */
 ITEM order; /* order of subgroup’s generating element */
 ITEM cofactor; /* the cofactor of the subgroup */
 unsigned int compressIndicator; /* controls field element representation */
 unsigned int fieldElementBits; /* field element size in bits */
} A_EC_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 6 3

AI_EC_DHKeyAgree
Format of info returned by B_GetAlgorithmInfo:

B_GetAlgorithmInfo is not supported with this AI. If called, it will return an error.

Crypto-C procedures to use with algorithm object:

B_KeyAgreeInit, B_KeyAgreePhase1, and B_KeyAgreePhase2. You must pass an
initialized random algorithm to B_KeyAgreePhase1.

Algorithm methods to include in application's algorithm chooser:

AM_ECFP_DH_KEY_AGREE for odd prime fields and AM_ECF2POLY_DH_KEY_AGREE for even
characteristic.

Output considerations:
The size of Phase 1 output is 1 + 2 · (size of field element) bytes; the size of Phase 2
output is the (size of field element) bytes
6 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_EC_DSA
AI_EC_DSA

Purpose:
This AI allows you to perform raw ECDSA signature creation or verification
operations. It does not compute a message digest before applying the signature
operation. To compute a SHA1 message digest and create a signature of that digest,
see AI_EC_DSAWithDigest.

Type of information this allows you to use:
the ECDSA signature algorithm used in raw ECDSA signature generation and
verification, as defined in X9.62 Draft. Alternatively, to use an acceleration table in the
generation or verification of a signature, use AI_ECBuildAcceleratorTable or
AI_ECBuildPubKeyAccelTable. The public key-specific acceleration table accelerates
verification only; for this operation, it provides greater acceleration than the
AI_ECBuildAcceleratorTable at the cost of greater memory usage.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You must pass a random algorithm in B_SignFinal, but may pass
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.

Algorithm methods to include in application's algorithm chooser:
For signature creation, AM_ECFP_DSA_SIGN for odd prime fields and
AM_ECF2POLY_DSA_SIGN for even characteristic. For signature verification,
AM_ECFP_DSA_VERIFY for odd prime fields and AM_ECF2POLY_DSA_VERIFY for even
characteristic.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 6 5

AI_EC_DSA
Key info types for keyObject in B_SignInit:

KI_ECPrivate.

Key info types for keyObject in B_VerifyInit:

KI_ECPublic.

Input constraints:
In practice, the input to the ECDSA algorithm — that is, the data to sign — is
generally the result of a digest operation. In Crypto-C’s implementation, however, the
only restrictions on the input are that it must be at least 16 bytes and no more than 32
bytes long.

Output considerations:
The signature result of B_SignFinal is a value of type SEQUENCE (INTEGER,
INTEGER) where the first field is the value r and the second field is the value s, as
defined in section 5.3.1 of X9.57 Draft. The size of signature is 2*(length of order)
bytes. For instance, if the order is 160 bits (20 bytes), the signature will be 40 bytes
long.
6 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_EC_DSAWithDigest
AI_EC_DSAWithDigest

Purpose:
This AI allows you to create or verify SHA1 ECDSA signatures. It is passed the
plaintext and computes the SHA1 digest as well as the ECDSA signature of that
digest. See AI_EC_DSA for the ECDSA algorithm type without the SHA1 digest.

Type of information this allows you to use:
the specified digest algorithm combined with the ECDSA signature algorithm for
performing ECDSA signing and verifying as defined in X9.62 Draft. The only digest
method supported in this API is SHA1.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_DIGEST_SPECIFIER structure:

Crypto-C 4.2 supports only AI_SHA1 as a digestInfoType, with NULL_PTR as the
digestInfoParams.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_DIGEST_SPECIFIER structure.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You must pass an initialized random algorithm in B_SignFinal, but
may pass (B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.

Algorithm methods to include in application's algorithm chooser:
For signing, AM_ECFP_DSA_SIGN for odd prime fields and AM_ECF2POLY_DSA_SIGN for
an even characteristic. For verifying, AM_ECFP_DSA_VERIFY for odd prime fields and
AM_ECF2POLY_DSA_VERIFY for even characteristic. Also required is the appropriate AM

typedef struct {
 B_INFO_TYPE digestInfoType;
 POINTER digestInfoParams;
} B_DIGEST_SPECIFIER;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 6 7

AI_EC_DSAWithDigest
for the digest specified, for instance, AM_SHA when the digestInfoType is AI_SHA1.

Key info types for keyObject in B_SignInit:

KI_ECPrivate.

Key info types for keyObject in B_VerifyInit:

KI_ECPublic.

Output considerations:
The signature result of B_SignFinal is a BER-encoded value of type SEQUENCE
(INTEGER, INTEGER) where the first field is the value r and the second field is the
value s, as defined in section 5.3.1 of X9.57 Draft. The size of signature is 6 + (2 ·
(length of order)) bytes. For instance, if the order is 160 bits (20 bytes), the signature
will be 46 bytes long.
6 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_EC_ES
AI_EC_ES

Purpose:
This AI allows you to perform public-key encryption or private-key decryption using
the Elliptic-Curve Authenticated Encryption System, where ciphertext includes the
SHA1 digest as well as encrypted plaintext.

Type of information this allows you to use:
the elliptic curve authenticated encryption scheme as defined in X9.63 Draft, as of 10/
97.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You must pass an initialized random
algorithm in B_EncryptFinal, but may pass (B_ALGORITHM_OBJ)NULL_PTR for all other
randomAlgorithm arguments.

Algorithm methods to include in application's algorithm chooser:

AM_ECFP_ENCRYPT for encryption and AM_ECFP_DECRYPT for decryption with odd prime
fields, AM_ECF2POLY_ENCRYPT for encryption and AM_ECF2POLY_DECRYPT for decryption
with even characteristic.

Output Considerations:
The encrypted data can be as much as ((21 + 2 · (the size of a field element in bytes) +
(length of input in bytes)) bytes long.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 6 9

AI_ECKeyGen
AI_ECKeyGen

Purpose:
This AI allows you to generate an elliptic curve key pair for given EC parameters.

Type of information this allows you to use:
the parameters for generating a compatible elliptic curve key pair. The precomputed
table values from AI_ECAcceleratorTable can optionally be used to accelerate this
operation.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_EC_PARAMS structure:

where parameterInfoType must be AI_ECParameters and parameterInfoValue must be a
pointer to an A_EC_PARAMS structure:

Format of info returned by B_GetAlgorithmInfo:

B_GetAlgorithmInfo is not supported with this AI. If called, it will return an error.

typedef struct {
 B_INFO_TYPE parameterInfoType; /* used to interpret EC parameters */
 POINTER parameterInfoValue; /* describes elliptic curve */
} B_EC_PARAMS;

typedef struct {
 unsigned int version; /* implementation version */
 unsigned int fieldType; /* indicates type of base field */
 ITEM fieldInfo; /* The prime number if fieldType = FT_FP; */
 /* the basis polynomial if fieldType = FT_F2_POLYNOMIAL; */
 /* and the degree of the field if fieldType = FT_F2_ONB */
 ITEM coeffA; /* elliptic curve coefficient */
 ITEM coeffB; /* elliptic curve coefficient */
 ITEM base; /* elliptic curve group generator */
 ITEM order; /* order of subgroup’s generating element */
 ITEM cofactor; /* the cofactor of the subgroup */
 unsigned int compressIndicator; /* controls field element representation */
 unsigned int fieldElementBits; /* field element size in bits */
} A_EC_PARAMS;
7 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_ECKeyGen
Crypto-C procedures to use with algorithm object:

B_GenerateInit and B_GenerateKeypair. B_GenerateKeypair sets the publicKey key
object with the KI_ECPublic information and the privateKey key object with the
KI_ECPrivate information. You must pass an initialized random algorithm to
B_GenerateKeypair.

Algorithm methods to include in application’s algorithm chooser:

AM_ECFP_KEY_GEN for odd prime fields and AM_ECF2POLY_KEY_GEN for even
characteristic.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 7 1

AI_ECParameters
AI_ECParameters

Purpose:
This AI allows you to specify EC parameters to be used for elliptic curve operations.
New EC parameters may be generated using the AI_ECParamGen algorithm type.

Type of information this allows you to use:
the parameters generated by executing AI_ECParamGen for either generating keys or
executing key agreements.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a A_EC_PARAMS structure that has been set by AI_ECParamGen:

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_EC_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_SetAlgorithmInfo and B_GetAlgorithmInfo.

Algorithm methods to include in application’s algorithm chooser:
None.

typedef struct {
 unsigned int version; /* implementation version */
 unsigned int fieldType; /* indicates type of base field */
 ITEM fieldInfo; /* The prime number if fieldType = FT_FP; */
 /* the basis polynomial if fieldType = FT_F2_POLYNOMIAL; */
 /* and the degree of the field if fieldType = FT_F2_ONB */
 ITEM coeffA; /* elliptic curve coefficient */
 ITEM coeffB; /* elliptic curve coefficient */
 ITEM base; /* elliptic curve group generator */
 ITEM order; /* order of subgroup’s generating element */
 ITEM cofactor; /* the cofactor of the subgroup */
 unsigned int compressIndicator; /* controls field element representation */
 unsigned int fieldElementBits; /* field element size in bits */
} A_EC_PARAMS;
7 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_ECParamGen
AI_ECParamGen

Purpose:
This AI allows you to generate EC parameters to be used for elliptic curve operations.

Type of information this allows you to use:
the input parameters for generating an elliptic curve system as defined in X9.62 Draft
and IEEE P1363 Draft.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_EC_PARAM_GEN_PARAMS structure:

Set the arguments as follows:

typedef struct {
 unsigned int version; /* implementation version */
 unsigned int fieldType; /* base field for the elliptic curve */
 unsigned int fieldElementBits; /* length of field element in bits */
 unsigned int compressIndicator; /* ignored for now */
 unsigned int minOrderBits; /* minimum size of group generated by base */
 /* input of 0 defaults to fieldElementBits - 7 */
 unsigned int trialDivBound; /* maximum size of second largest prime */
 /* subgroup of group generated by base */
 /* input of 0 defaults to 255 */
 unsigned int tableLookup; /* characteristic 2 only. Set if the */
 /* use of precomputed params is desired */
} B_EC_PARAM_GEN_PARAMS;

Argument Values Comments

version 0 Only value currently available; allows
growth for future versions

fieldType FT_FP odd prime field

FT_F2_ONB even characteristic, optimal normal
basis

FT_F2_POLYNOMIAL even characteristic, polynomial basis
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 7 3

AI_ECParamGen
Note: The parameter range given above for minOrderBits includes values that are
not secure. If you pass 0 for minOrderBits, Crypto-C will choose the value for

compressIndicator CI_NO_COMPRESS do not compress the base or public key

CI_HYBRID express the base and public key in
“hybrid” form; that is, do not compress,
but append the compressed y-
coordinate, .

fieldElementBits 64 - 384 bits fieldType = FT_FP or
FT_F2_POLYNOMIAL

65, 66, 69, 74, 81, 82, 83, 86, 89, 90, 95,
98, 99, 100, 105, 106, 113, 119, 130,
131, 134, 135, 138, 146, 148, 155, 158,
162, 172, 173, 174, 178, 179, 180, 183,
186, 189, 191, 194, 196, 209, 210, 221,
226, 230, 231, 233, 239, 243, 245, 251,
254, 261, 268, 270, 273, 278, 281, 292,
293, 299, 303, 306, 309, 316, 323, 326,
329, 330, 338, 346, 348, 350, 354, 359,
371, 372, 375, 378

fieldType = FT_F2_ONB

minOrderBits 0 (recommended);
1 to fieldElementBits

0 tells Crypto-C to choose the value.
Note that not all values in the range
1 - fieldElementBits are secure.

Must be set to 0 if tableLookup = 1.

trialDivBound 0 (recommended); 1 - 384 0 tells Crypto-C to choose the value.

Must be set to 0 if tableLookup = 1.

tableLookup 0 or 1 set to 0 if fieldType = FT_FP

set to 0 if fieldType = FT_F2_ONB or
FT_F2_POLYNOMIAL, and you want
Crypto-C to generate new parameters
from scratch. minOrderBits and
trialDivBound may be non-zero.

set to 1 if fieldType = FT_F2_ONB or
FT_F2_POLYNOMIAL, and you want to
generate curves using table lookup.
Curve generation will be fast, but
minOrderBits and trialDivBound must be
set to 0.

Argument Values Comments

ỹP
7 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_ECParamGen
you. You should only pass a non-zero value if you are certain that you are
fully aware of the underlying cryptographic issues.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_EC_PARAM_GEN_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_GenerateInit and B_GenerateParameters. B_GenerateParameters sets the
resultAlgorithmObject with the parameter information. You must pass an initialized
random algorithm to B_GenerateParameters.

Algorithm methods to include in application’s algorithm chooser:

AM_ECFP_PARAM_GEN for odd prime fields and AM_ECF2POLY_PARAM_GEN for even
characteristic.

Notes:
Generating an elliptic curve for even characteristic without table lookup (fieldType =
FT_F2_ONB or FT_F2_POLYNOMIAL and tableLookup = 0) can be extremely time-
consuming, taking several hours in some cases. In general, larger values for
minOrderBits mean longer times for curve generation. Therefore, if you wish to
generate curves for even characteristic, but do not want to use table lookup, you can
speed curve generation by setting a smaller value for minOrderBits. Remember,
however, that the size of minOrderBits is directly tied to the security of your elliptic
curve cryptosystem. Setting minOrderBits allows you to make a trade-off between the
time it takes to generate curves and the security of your system.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 7 5

AI_ECPubKey
AI_ECPubKey

Purpose:
This AI allows you to specify an EC public key and underlying EC parameters in
order to build an acceleration table.

Type of information this allows you to use:
a specified elliptic curve public key to build a public-key specific acceleration table.

Format of info supplied to B_SetKeyInfo:
pointer to an A_EC_PUBLIC_KEY structure:

Each ITEM supplies an integer in canonical format, where the ITEM’s data points to an
unsigned byte array -- most significant byte first -- and the ITEM’s len gives its length.
For all ITEM values except the public component (x) and the curve parameter base,
leading zeros are stripped before they are copied to the key object.

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_EC_PUBLIC_KEY structure.

Can get this info type if algorithm object already has:

AI_ECPubKey.

typedef struct {
 A_EC_PARAMS curveParams; /* the underlying elliptic curve parameters */
 ITEM publicKey; /* public component */
} A_EC_PUBLIC_KEY;
7 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_FeedbackCipher
AI_FeedbackCipher

Purpose:
This AI allows you to perform various kinds of block cipher encryption or decryption
with feedback. The parameters of this AI include encryption method, feedback
method, and padding method.

Type of information this allows you to use:
a descriptor for block ciphers with feedback, as defined in X9.52.

Format of info supplied to B_SetAlgorithmInfo:
a pointer to a B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

Format of info returned by B_GetAlgorithmInfo:
pointer to a structure of type B_BLK_CIPHER_W_FEEDBACK_PARAMS.

typedef struct {
 unsigned char *encryptionMethodName; /* examples include */
 /* "des", "des_ede" */
 POINTER encryptionParams; /* e.g., RC5 parameters */
 unsigned char *feedbackMethodName; /*feedback method name, */
 /* e.g., “cbc” */
 POINTER feedbackParams; /* Points at init vector ITEM */
 /* for all feedback modes except cfb */
 unsigned char *paddingMethodName; /* padding method name, */
 /* e.g., "pad" */
 POINTER paddingParams; /* Ignored for now, but may be used */
 /* for new padding schemes */
} B_BLK_CIPHER_W_FEEDBACK_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 7 7

AI_FeedbackCipher
Type of padding schemes available:

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:
the block cipher AM and the feedback mode AM specified by encryptionMethodName
and feedbackMethodName, respectively.

Padding Scheme Reference String Comments

Standard CBC padding "pad"

No padding "nopad" Input length must be a multiple of cipher
block length (= 8 for all but rc5-64)

Stream "stream" Only available when using CFB in 1-bit and 8-
bit modes.

Table 2-1 Algorithm methods for block ciphers

encryptionMethodName
Algorithm methods to
include in chooser Parameters Key Size

Encryption

"des" AM_DES_ENCRYPT; null 8 bytes

"des_ede" AM_DES_EDE_ENCRY
PT;

null 24 bytes

“desx” AM_DESX_ENCRYPT; null 24 bytes

"rc2" AM_RC2_ENCRYPT; Pointer to an
A_RC2_PARAMS structure

1 - 128 bytes

"rc5" AM_RC5_ENCRYPT; Pointer to an
A_RC5_PARAMS structure

0 - 255 bytes;
32-bit word

“rc5_64” AM_RC5_64ENCRYPT
;

Pointer to an
A_RC5_PARAMS structure

0 - 255 bytes;
64-bit word

Decryption

"des" AM_DES_DECRYPT; null 8 bytes
7 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_FeedbackCipher
The RC2 algorithm methods, AM_RC2_ENCRYPT and AM_RC2_DECRYPT, require an
A_RC2_PARAMS structure:

The RC5 algorithm methods, AM_RC5_ENCRYPT, AM_RC564_ENCRYPT, AM_RC5_DECRYPT,
and AM_RC564_DECRYPT, require an A_RC5_PARAMS structure. Note that the 64-bit
versions of RC5, AM_RC5_64_ENCRYPT and AM_RC5_64_DECRYPT, are evaluation
implementations and are not optimized in Crypto-C 4.2:

"des_ede" AM_DES_EDE_DECRY
PT;

null 24 bytes

“desx” AM_DESX_DECRYPT; null 24 bytes

"rc2" AM_RC2_DECRYPT; Pointer to an
A_RC2_PARAMS structure

1 - 128 bytes

"rc5" AM_RC5_DECRYPT; Pointer to an
A_RC5_PARAMS structure

0 - 255 bytes;
32-bit word

"rc5_64" AM_RC5_64DECRYPT
;

Pointer to an
A_RC5_PARAMS structure

0 - 255 bytes;
64-bit word

typedef struct {
 unsigned int effectiveKeyBits; /* effective key size in bits */
} A_RC2_PARAMS;

typedef struct {
 unsigned int version; / * currently version 1.0 -- defined as 0x10 */
 unsigned int rounds; /* number of rounds (0 - 255) */
 unsigned int wordSizeInBits; /* 32 for “rc5” or 64 for “rc5_64” */
} A_RC5_PARAMS;

Table 2-2 Algorithm methods for feedback modes

feedbackMethodName
Algorithm methods to include in
chooser Parameter Type

Encryption

"cbc" AM_CBC_ENCRYPT; ITEM that contains the
initialization vector

Table 2-1 Algorithm methods for block ciphers

encryptionMethodName
Algorithm methods to
include in chooser Parameters Key Size
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 7 9

AI_FeedbackCipher
The CFB modes require a B_CFB_PARAMS structure:

Note: The initialization vector should be the same size as the block. In particular, the
IV should be 8 bytes, except for RC5 implemented with a 64-bit word, which
requires a 16-byte IV.

"cbc_interleaved" AM_CBC_INTER_LEAVED_ENCRYPT
;

ITEM that contains the
initialization vector

"cfb" AM_CFB_ENCRYPT; B_CFB_PARAMS

"cfb_pipelined" AM_CFB_PIPELINED_ENCRYPT; B_CFB_PARAMS

"ecb" AM_ECB_ENCRYPT; unsigned int that gives
the block length

"ofb" AM_OFB_ENCRYPT; ITEM that contains the
initialization vector

"ofb_pipelined" AM_OFB_PIPELINED_ENCRYPT; ITEM that contains the
initialization vector

Decryption

"cbc" AM_CBC_DECRYPT; ITEM that contains the
initialization vector

"cbc_interleaved" AM_CBC_INTER_LEAVED_DECRYPT
;

ITEM that contains the
initialization vector

"cfb" AM_CFB_DECRYPT; B_CFB_PARAMS

"cfb_pipelined" AM_CFB_PIPELINED_DECRYPT; B_CFB_PARAMS

"ecb" AM_ECB_DECRYPT; unsigned int that gives
the block length

"ofb" AM_OFB_DECRYPT; ITEM that contains the
initialization vector

"ofb_pipelined" AM_OFB_PIPELINED_DECRYPT; ITEM that contains the
initialization vector

typedef struct {
 ITEM ivItem;
 unsigned int transferSize;
} B_CFB_PARAMS;

Table 2-2 Algorithm methods for feedback modes

feedbackMethodName
Algorithm methods to include in
chooser Parameter Type
8 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_FeedbackCipher
Key info types for keyObject in B_EncryptInit or B_DecryptInit:
Depends on cipher type, as follows:

Compatible representations:

Output considerations:
For encryption, when padding is used, the total number of output bytes can be as
many as one block size more than the total input. For decryption, the output buffer
should be the same size as the input buffer, even if padding was used.

Cipher KIs

DES KI_Item, KI_DES8, KI_DES8Strong, KI_8Byte

Triple DES KI_Item, KI_DES24Strong, KI_24Byte

DESX KI_Item, KI_DES24Strong, KI_24Byte

RC2 KI_Item, KI_8Byte

RC5 KI_Item, which gives the address and length of the RC5 Key.

Cipher Compatible representations

DES with CBC mode AI_DES_CBC_IV8, AI_DES_CBCPadIV8, AI_DES_CBCPadBER,
AI_DES_CBCPadPEM, and AI_DES_CBC_BSAFE1

TDES with CBC mode AI_DES_EDE3_CBC_IV8, AI_DES_EDE3_CBCPadIV8, and
AI_DES_EDE3_CBCPadBER

DESX with CBC mode AI_DESX_CBC_IV8, AI_DESX_CBCPadIV8,
AI_DESX_CBCPadBER, and AI_DESX_CBC_BSAFE1

RC2 with CBC mode AI_RC2_CBC, AI_RC2_CBCPad, AI_RC2_CBCPadBER, and
AI_RC2_CBCPadPEM

RC5 with CBC mode and
32-bit word

AI_RC2_CBC_BSAFE1, AI_RC5_CBC, and AI_RC5_CBCPad
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 8 1

AI_HMAC
AI_HMAC

Purpose:
This AI allows you to create a message authentication code using a keyed hashing
algorithm called HMAC.

Type of information this allows you to use:
the specified digest algorithm for performing HMAC (Hashed-based Message
Authentication Code) as defined in the SET draft standard, a subset of the Draft-IETF-
IPSEC-AH-HMAC-SHA-04.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_DIGEST_SPECIFIER structure:

Crypto-C 4.2 supports AI_SHA1 and AI_MD5 as a digestInfoType, with NULL_PTR as the
digestInfoParams.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_DIGEST_SPECIFIER structure.

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. You must pass a key object
compatible with KI_Item with at least one byte of keying material as the keyObject
argument in B_DigestInit. It is recommended that minimally 20 bytes of key be used
when SHA1 is the hash function. More bytes are recommended if the key bytes are
weakly random (low entropy keys).

Algorithm methods to include in application’s algorithm chooser:

The appropriate AM for the digest specified; for instance, AM_SHA when the
digestInfoType is AI_SHA1, and AM_MD5 for AI_MD5.

typedef struct {
 B_INFO_TYPE digestInfoType;
 POINTER digestInfoParams;
} B_DIGEST_SPECIFIER;
8 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_HMAC
Output considerations:
The output of B_DigestFinal will be the length of the output of the digest specified;
for instance, 20 bytes when digestInfoType is AI_SHA1.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 8 3

AI_HW_Random
AI_HW_Random

Purpose:
This AI allows you to generate random bytes using a hardware device.

Type of information this allows you to use:
random bytes generated by your hardware device.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_RandomInit and B_GenerateRandomBytes, and as the randomAlgorithm argument to
other procedures.

Algorithm methods to include in application’s algorithm chooser:

AM_HW_RANDOM.

Notes:
Can only be used in conjunction with a hardware implementation; if no hardware
implementation is present, AM_HW_RANDOM does not do anything. AM_HW_RANDOM can
only be used if you have called B_CreateSessionChooser for your application.
8 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_KeypairTokenGen
AI_KeypairTokenGen

Purpose:
This AI allows you to generate the token form of a public/private key pair with a
hardware device.

Type of information this allows you to use:
the parameters for generating the token form of a public/private key pair. The BSAFE
Hardware API (BHAPI) supports token forms of RSA strong key pair generation as
defined in PKCS #1 and DSA key pair generation as defined in FIPS PUB 186.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_KEYPAIR_SPECIFIER structure:

where A_KEYPAIR_DEFINER is defined by:

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_KEYPAIR_SPECIFIER structure (see above).

typedef struct {
 A_KEYPAIR_DEFINER privateKeyDef; /* Specifications for private key */
 A_KEYPAIR_DEFINER publicKeyDef; /* Specifications for public key */
 POINTER keyParams; /* Points to RSA params in RSA case, ie, */
 /* A_RSA_KEY_GEN_PARAMS. */
 /* Points to DSA params in DSA case. */
 unsigned char *cipherName; /* String tag for key's cipher class */
 /* Either "rsa" or "dsa" to tag */
} A_KEYPAIR_SPECIFIER;

typedef struct {
 unsigned int keyUsage; /* X509 key usage bit map */
 UINT4 lifeTime; /* Key lifetime; under consideration */
 unsigned int protectFlag; /* Store key in encrypted form */
} A_KEYPAIR_DEFINER;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 8 5

AI_KeypairTokenGen
Crypto-C procedures to use with algorithm object:

B_GenerateInit and B_GenerateKeypair. If hardware is present, B_GenerateKeypair
sets the publicKeyDef and privateKeyDef key objects with the public and private key
information from KI_Token. If no hardware is present, and software emulation
methods have been included in the hardware chooser, B_GenerateKeypair sets the
publicKeyDef and privateKeyDef key objects with the public and private key
information from KI_KeypairToken. You must pass an initialized random algorithm
to B_GenerateKeypair, unless the hardware manufacturer has it internally
implemented. In this case, a properly cast NULL_PTR should be used.

Algorithm methods to include in application’s algorithm chooser:
the key-pair generation AM specified by cipherName:

Notes:
Can only be used in conjunction with a hardware implementation or software
emulation; if no hardware implementation is present, AI_KeypairTokenGen does not
do anything. AI_KeypairTokenGen can only be used if you have called
B_CreateSessionChooser for your application.

The corresponding software-emulation methods passed to B_CreateSessionChooser
via the HARDWARE_CHOOSER list are a HW_TABLE_ENTRY SF_RSA_KEY_TOKEN_GEN for RSA
keys and a HW_TABLE_ENTRY SF_DSA_KEY_TOKEN_GEN for DSA keys. These provides
software support in the case that hardware is unavailable. These methods can be
utilized only by including inside the hardware chooser table.

At B_GenerateInit the key generation object is bound to the hardware device, if one
is available. If no hardware device is present, the key-generation object is bound to the
software-emulation method if it has been included in the hardware chooser; it
defaults to the null method otherwise. For example, for an RSA key token, if no
hardware is present, the key generation object is bound to SF_RSA_KEY_TOKEN_GEN if it
is included in the hardware chooser and defaults to AM_RSA_KEY_TOKEN_GEN
otherwise.

cipherName Algorithm methods to include in chooser

"dsa" AM_DSA_KEY_TOKEN_GEN

"rsa" AM_RSA_KEY_TOKEN_GEN
8 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MAC
AI_MAC

Purpose:
This AI allows you to create a variable-length message authentication code on a non-
linear feedback shift register.

Type of information this allows you to use:
the MAC length parameter for the MAC message authentication code algorithm

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_MAC_PARAMS structure:

The minimum macLen is 2.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_MAC_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. Supply NULL_PTR for the
keyObject argument in B_DigestInit.

Algorithm methods to include in application’s algorithm chooser:

AM_MAC.

Output considerations:
The output of B_DigestFinal will be macLen bytes long.

typedef struct {
 unsigned int macLen; /* length of MAC value */
} B_MAC_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 8 7

AI_MD
AI_MD

Purpose:
Deprecated. This AI is included only for background compatibility.

Type of information this allows you to use:
the MD message digest algorithm as defined by BSAFE 1.x.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. Supply NULL_PTR for the
keyObject argument in B_DigestInit.

Algorithm methods to include in application’s algorithm chooser:

AM_MD.

Output considerations:
The output of B_DigestFinal will be 16 bytes long.
8 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD2
AI_MD2

Purpose:
This AI allows you to create a message digest using the MD2 digest algorithm as
defined in RFC 1319. This algorithm processes input data 16 bytes at a time but the
length of the input does not have to be a multiple of 16 as the algorithm pads
automatically. The primary use for this AI is to authenticate data. Other algorithms
that can be used for message digesting are AI_MD5 and AI_SHA1 and their variants. See
AI_MD2_BER for the MD2 algorithm type with BER encoding. See AI_MD2_PEM for the
MD2 algorithm type with PEM encoding.

Type of information this allows you to use:
the MD2 message digest algorithm as defined in RFC 1319.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. Supply NULL_PTR for the
keyObject argument in B_DigestInit.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2.

Compatible representation:

AI_MD2_BER, AI_MD2_PEM.

Output considerations:
The output of B_DigestFinal will be 16 bytes long.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 8 9

AI_MD2_BER
AI_MD2_BER

Purpose:
This AI is similar to AI_MD2 except that it uses the ASN.1 BER format. This AI allows
you to parse and create ASN.1 algorithm identifiers such as used in PKCS #7 and
other protocols. You call B_SetAlgorithmInfo to initialize an algorithm object from
the encoded algorithm identifier. You call B_GetAlgorithmInfo with this AI to create
an encoded algorithm identifier from an algorithm object that was created using
AI_MD2, AI_MD2_BER or AI_MD2_PEM. The OID for this algorithm, excluding the tag and
length bytes, in decimal, is "42, 134, 72, 134, 247, 13, 2, 2". Also see AI_MD2.

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the MD2 message digest
algorithm as defined in RFC 1319.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies a message digest algorithm other than MD2.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. Supply NULL_PTR for the
keyObject argument in B_DigestInit.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2.

Compatible representation:

AI_MD2, AI_MD2_PEM.
9 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD2_BER
Output considerations:
The output of B_DigestFinal will be 16 bytes long.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 9 1

AI_MD2_PEM
AI_MD2_PEM

Purpose:
This AI is similar to AI_MD2 except that it uses the PEM format. This AI allows you to
parse and create PEM algorithm identifiers such as used in the Privacy Enhanced Mail
protocol. You call B_SetAlgorithmInfo to initialize an algorithm object from the
encoded algorithm identifier. You call B_GetAlgorithmInfo with this AI to create an
encoded algorithm identifier from an algorithm object that was created using AI_MD2,
AI_MD2_BER, or AI_MD2_PEM. Also see AI_MD2.

Type of information this allows you to use:
an RFC 1423 identifier that specifies the MD2 message digest algorithm as defined in
RFC 1319. This algorithm info type is intended to process the digest identifier in a
MIC-Info field in a PEM encapsulated header.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a null-terminated string (char *) that gives the RSA-MD2 identifier. For
example, “RSA-MD2.” Space and tab characters are removed from the string before it is
copied to the algorithm object. B_SetAlgorithmInfo returns
BE_WRONG_ALGORITHM_INFO if the algorithm identifier specifies an identifier other than
RSA-MD2.

Format of info returned by B_GetAlgorithmInfo:
pointer to a null-terminated string that gives the RSA-MD2 identifier.

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. Supply NULL_PTR for the
keyObject argument in B_DigestInit.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2.

Compatible representation:

AI_MD2, AI_MD2_BER.
9 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD2_PEM
Output considerations:
The output of B_DigestFinal will be 16 bytes long.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 9 3

AI_MD2Random
AI_MD2Random

Purpose:
This AI allows you to generate a stream of pseudo-random numbers which are
guaranteed to have a very high degree of randomness. Random numbers are used in
deriving public and private keys, initialization vectors, etc. This algorithm is the same
as AI_MD5Random described in RSA Labs Bulletin #8 except that the underlying digest
algorithm used is MD2 instead of MD5. The details of the AI_MD5Random algorithm are
available online from RSA Laboratories at http://www.rsa.com/rsalabs/html/
bulletins.html.

Other algorithms that can be used to generate pseudo-random numbers are
AI_MD5Random and AI_X962Random_V0.

Type of information this allows you to use:
the MD2-Random algorithm for generating pseudo-random numbers, as defined by
RSA Data Security, Inc.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_RandomInit, B_RandomUpdate, and B_GenerateRandomBytes, and as the
randomAlgorithm argument to other procedures.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2_RANDOM.
9 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD2WithDES_CBCPad
AI_MD2WithDES_CBCPad

Purpose:
This AI allows you to perform password-based encryption. This means that the input
data will be encrypted with a secret key derived from a password, and it can be
successfully decrypted only when the correct password is provided. Although this AI
can be used to encrypt arbitrary data, its intended primary use is for encrypting
private keys when transferring them from one computer system to another, as
described in PKCS #8.

This AI employs DES secret-key encryption in cipher-block chaining (CBC) mode
with padding, where the secret key is derived from a password using the MD2
message digest algorithm. The details of this algorithm are contained in PKCS #5. DES
is defined in FIPS PUB 81, and CBC mode of DES is defined in FIPS PUB 46-1. RFC
1319 describes MD2. Other algorithms that can be used for password-based
encryption are AI_MD5WithDES_CBCPad, AI_MD5WithRC2_CBCPad,
AI_MD2WithRC2_CBCPad, and AI_SHA1WithDES_CBCPad.

Type of information this allows you to use:
the salt and iteration count for the MD2 With DES-CBC password-based encryption
algorithm as defined in PKCS #5.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_PBE_PARAMS structure:

RSA Data Security, Inc. recommends a minimum iteration count of 1,000. However,
for an additional byte or two of security the iteration should be 28 to 216.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_PBE_PARAMS structure (see above).

typedef struct {
 unsigned char *salt; /* pointer to 8-byte salt value */
 unsigned int iterationCount; /* iteration count */
} B_PBE_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 9 5

AI_MD2WithDES_CBCPad
Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2 and AM_DES_CBC_ENCRYPT for encryption or AM_DES_CBC_DECRYPT for
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the password.

Compatible representation:

AI_MD2WithDES_CBCPadBER.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
9 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD2WithDES_CBCPadBER
AI_MD2WithDES_CBCPadBER

Purpose:
This AI is similar to AI_MD2WithDES_CBCPad except that it uses the ASN.1 BER format.
This AI allows you to parse and create ASN.1 algorithm identifiers such as used in
PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm
object from the encoded algorithm identifier that includes the salt and iteration count.
You call B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier
from an algorithm object that was created using AI_MD2WithDES_CBCPad or
AI_MD2WithDES_CBCPadBER. The OID for this algorithm, excluding the tag and length
bytes, in decimal, is "42, 134, 72, 134, 247, 13, 1, 5, 1". Also see
AI_MD2WithDES_CBCPad.

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the MD2 With DES-CBC
password-based encryption algorithm as defined in PKCS #5.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than MD2 With DES-CBC.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2 and AM_DES_CBC_ENCRYPT for encryption or AM_DES_CBC_DECRYPT for
decryption.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 9 7

AI_MD2WithDES_CBCPadBER
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the password.

Compatible representation:

AI_MD2WithDES_CBCPad.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
9 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD2WithRC2_CBCPad
AI_MD2WithRC2_CBCPad

Purpose:
This AI allows you to perform password-based encryption. This means that the input
data will be encrypted with a secret key derived from a password, and it can be
successfully decrypted only when the correct password is provided. Although this AI
can be used to encrypt arbitrary data, its intended primary use is for encrypting
private keys when transferring them from one computer system to another, as
described in PKCS #8.

This AI employs RC2 block cipher with padding, where the secret key is derived from
a password using the MD2 message digest algorithm. MD2 is described in RFC 1319.
RC2 is described in RFC 2268. The CBC mode is similar to the one used in RC5-CBC
which can be found in RFC 2040. Other algorithms that can be used for password-
based encryption are AI_MD5WithDES_CBCPad, AI_MD5WithRC2_CBCPad,
AI_MD2WithDES_CBCPad, and AI_SHA1WithDES_CBCPad.

Type of information this allows you to use:
the effective key size, salt, and iteration count for the MD2 With RC2-CBC password-
based encryption algorithm, as defined by RSA Data Security, Inc.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_RC2_PBE_PARAMS structure:

This algorithm will accept a maximum of 1024 effective key bits for domestic use and
40 effective key bits for export. RSA Data Security, Inc. recommends a minimum
iteration count of 1,000. However, for an additional byte or two of security the
iteration should be 28 to 216.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_RC2_PBE_PARAMS structure (see above).

typedef struct {
 unsigned int effectiveKeyBits; /* effective key size in bits */
 unsigned char *salt; /* pointer to 8-byte salt value */
 unsigned int iterationCount; /* iteration count */
} B_RC2_PBE_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 9 9

AI_MD2WithRC2_CBCPad
Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2 and AM_RC2_CBC_ENCRYPT for encryption or AM_RC2_CBC_DECRYPT for
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the password.

Compatible representation:

AI_MD2WithRC2_CBCPadBER.

Output considerations:
During encryption, this AI pads the output. Thus, the total number of output bytes
from enryption can be as many as 8 bytes more than the total output.
1 0 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD2WithRC2_CBCPadBER
AI_MD2WithRC2_CBCPadBER

Purpose:
This AI is similar to AI_MD2WithRC2_CBCPad except that it uses the ASN.1 BER format.
This AI allows you to parse and create ASN.1 algorithm identifiers such as used in
PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm
object from the encoded algorithm identifier that includes the effective key size, salt
and iteration count. You call B_GetAlgorithmInfo with this AI to create an encoded
algorithm identifier from an algorithm object that was created using
AI_MD2WithRC2_CBCPad or AI_MD2WithRC2_CBCPadBER. The OID for this algorithm,
excluding the tag and length bytes, in decimal, is "42, 134, 72, 134, 247, 13, 1,
5, 4". Also see AI_MD2WithRC2_CBCPad.

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the MD2 With RC2-CBC
password-based encryption algorithm, as defined by RSA Data Security, Inc.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than MD2 With RC2-CBC.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2 and AM_RC2_CBC_ENCRYPT for encryption or AM_RC2_CBC_DECRYPT for
decryption.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 0 1

AI_MD2WithRC2_CBCPadBER
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the password.

Compatible representation:

AI_MD2WithRC2_CBCPad.

Output considerations:
During encryption, this AI pads the output. Thus, the total number of output bytes
from enryption can be as many as 8 bytes more than the total output.
1 0 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD2WithRSAEncryption
AI_MD2WithRSAEncryption

Purpose:
This AI allows you to perform signature operations that involve the MD2 digest
algorithm and RSA public key algorithm. The digest of a message is created using the
MD2 algorithm and then it is signed using PKCS#1 digital signature algorithm. Other
algorithms that can be used for the same purpose are AI_MD5WithRSAEncryption and
AI_SHA1WithRSAEncryption. See AI_MD2WithRSAEncryptionBER for the same
algorithm type with BER encoding.

Type of information this allows you to use:
the MD2 With RSA Encryption signature algorithm that uses the MD2 digest
algorithm and RSA to create and verify RSA digital signatures as defined in PKCS #1.
Note that in order to perform PKCS #1 digital signatures with a 16-byte digest, the
RSA key must be at least 360 bits long.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm
arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2, and AM_RSA_CRT_ENCRYPT, AM_RSA_CRT_ENCRYPT_BLIND, or AM_RSA_ENCRYPT,
for signature creation; and AM_RSA_DECRYPT for signature verification.
AM_RSA_CRT_ENCRYPT_BLIND performs blinding to protect against timing attacks,
whereas AM_RSA_CRT_ENCRYPT does not.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 0 3

AI_MD2WithRSAEncryption
Key info types for keyObject in B_SignInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, KI_RSAPrivate or
KI_RSAPrivateBSAFE1. Unless you use KI_RSA_CRT for your KI, you must include
AM_RSA_ENCRYPT in your application’s algorithm chooser.

Key info types for keyObject in B_VerifyInit:

KI_RSAPublic, KI_RSAPublicBER, or KI_RSAPublicBSAFE1.

Compatible representation:

AI_MD2WithRSAEncryptionBER.

Output considerations:
The signature result of B_SignFinal will be the same size as the RSA key’s modulus.

Notes:
Although the RSA signature operation is called “encryption” and the verification
operation is called “decryption”, the signer uses the digest and the private key and
follows the steps needed to decrypt, while the verifier uses the transmitted digest and
the public key and follows the steps needed to encrypt.
1 0 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD2WithRSAEncryptionBER
AI_MD2WithRSAEncryptionBER

Purpose:
This AI is similar to AI_MD2WithRSAEncryption except that it uses the ASN.1 BER
format. This AI allows you to parse and create ASN.1 algorithm identifiers such as
used in PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an
algorithm object from the encoded algorithm identifier. You call B_GetAlgorithmInfo
with this AI to create an encoded algorithm identifier from an algorithm object that
was created using AI_MD2WithRSAEncryption or AI_MD2WithRSAEncryptionBER. The
OID for this algorithm, excluding the tag and length bytes, in decimal, is "42, 134,
72, 134, 247, 13, 1, 1, 2". Also see AI_MD2WithRSAEncryption.

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the MD2 With RSA Encryption
signature algorithm that uses the MD2 digest algorithm and RSA to create and verify
RSA digital signatures as defined in PKCS #1.

Note that in order to perform PKCS #1 digital signatures with a 16-byte digest, the
RSA key must be at least 360 bits long.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than MD2 With RSA Encryption.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm
arguments.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 0 5

AI_MD2WithRSAEncryptionBER
Algorithm methods to include in application’s algorithm chooser:

AM_MD2, and AM_RSA_CRT_ENCRYPT, AM_RSA_CRT_ENCRYPT_BLIND, or AM_RSA_ENCRYPT,
for signature creation; and AM_RSA_DECRYPT for signature verification.
AM_RSA_CRT_ENCRYPT_BLIND performs blinding to protect against timing attacks,
whereas AM_RSA_CRT_ENCRYPT does not.

Key info types for keyObject in B_SignInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, KI_RSAPrivate or
KI_RSAPrivateBSAFE1. Unless you use KI_RSA_CRT for your KI, you must include
AM_RSA_ENCRYPT in your application’s algorithm chooser.

Key info types for keyObject in B_VerifyInit:

KI_RSAPublic, KI_RSAPublicBER, or KI_RSAPublicBSAFE1.

Compatible representation:

AI_MD2WithRSAEncryption.

Output considerations:
The signature result of B_SignFinal will be the same size as the RSA key’s modulus.

Notes:
Although the RSA signature operation is called “encryption” and the verification
operation is called “decryption”, the signer uses the digest and the private key and
follows the steps needed to decrypt, while the verifier uses the transmitted digest and
the public key and follows the steps needed to encrypt.
1 0 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5
AI_MD5

Purpose:
This AI allows you to create a message digest using the MD5 digest algorithm as
defined in RFC 1321. This algorithm processes input data 64 bytes at a time but the
length of the input does not have to be a multiple of 64 as the algorithm pads
automatically.

The primary use for this AI is to authenticate data. Other algorithms that can be used
for message digesting are AI_MD2 and AI_SHA1 and their variants.

Type of information this allows you to use:
the MD5 message digest algorithm as defined in RFC 1321.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. Supply NULL_PTR for the
keyObject argument in B_DigestInit.

Algorithm methods to include in application’s algorithm chooser:

AM_MD5.

Compatible representation:

AI_MD5_BER, AI_MD5_PEM.

Output considerations:
The output of B_DigestFinal will be 16 bytes long.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 0 7

AI_MD5_BER
AI_MD5_BER

Purpose:
This AI is similar to AI_MD5 except that it uses the ASN.1 BER format. This AI allows
you to parse and create ASN.1 algorithm identifiers such as used in PKCS #7 and
other protocols. You call B_SetAlgorithmInfo to initialize an algorithm object from
the encoded algorithm identifier. You call B_GetAlgorithmInfo with this AI to create
an encoded algorithm identifier from an algorithm object that was created using
AI_MD5, AI_MD5_BER, or AI_MD5_PEM. The OID for this algorithm, excluding the tag and
length bytes, in decimal is "42, 134, 72, 134, 247, 13, 2, 5".

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the MD5 message digest
algorithm as defined in RFC 1321.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies a message digest algorithm other than MD5.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. Supply NULL_PTR for the
keyObject argument in B_DigestInit.

Algorithm methods to include in application’s algorithm chooser:

AM_MD5.

Compatible representation:

AI_MD5, AI_MD5_PEM.
1 0 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5_BER
Output considerations:
The output of B_DigestFinal will be 16 bytes long.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 0 9

AI_MD5_PEM
AI_MD5_PEM

Purpose:
This AI is similar to AI_MD5 except that it uses the PEM format. This AI allows you to
parse and create PEM algorithm identifiers such as used in Privacy Enhanced Mail
protocol. You call B_SetAlgorithmInfo to initialize an algorithm object from the
encoded algorithm identifier. You call B_GetAlgorithmInfo with this AI to create an
encoded algorithm identifier from an algorithm object that was created using AI_MD5,
AI_MD5_BER, or AI_MD5_PEM.

Type of information this allows you to use:
an RFC 1423 identifier that specifies the MD5 message digest algorithm as defined in
RFC 1321. This algorithm info type is intended to process the digest identifier in a
MIC-Info field in a PEM encapsulated header.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a null-terminated string (char *) that gives the RSA-MD5 identifier. For
example, “Rsa-MD5”. Space and tab characters are removed from the string before it is
copied to the algorithm object. B_SetAlgorithmInfo returns
BE_WRONG_ALGORITHM_INFO if the algorithm identifier specifies an identifier other than
RSA-MD5.

Format of info returned by B_GetAlgorithmInfo:
pointer to a null-terminated string that gives the RSA-MD5 identifier.

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. Supply NULL_PTR for the
keyObject argument in B_DigestInit.

Algorithm methods to include in application’s algorithm chooser:

AM_MD5.

Compatible representation:

AI_MD5 and AI_MD5_BER.
1 1 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5_PEM
Output considerations:
The output of B_DigestFinal will be 16 bytes long.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 1 1

AI_MD5Random
AI_MD5Random

Purpose:
This AI allows you to generate a stream of pseudo-random numbers which are
guaranteed to have a very high degree of randomness. Random numbers are used in
deriving public and private keys, initialization vectors, etc. This AI uses MD5 as an
underlying hashing function. The details of this algorithm are available from RSA
Laboratories' Bulletin #8 or online at http://www.rsa.com/rsalabs/html/
bulletins.html.

Other algorithms that can be used to generate pseudo-random numbers are
AI_MD2Random and AI_X962Random_V0.

Type of information this allows you to use:
the MD5-Random algorithm for generating pseudo-random numbers.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_RandomInit, B_RandomUpdate, and B_GenerateRandomBytes, and as the
randomAlgorithm argument to other procedures.

Algorithm methods to include in application’s algorithm chooser:

AM_MD5_RANDOM.
1 1 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5WithDES_CBCPad
AI_MD5WithDES_CBCPad

Purpose:
This AI allows you to perform password-based encryption. This means that the input
data will be encrypted with a secret key derived from a password, and it can be
successfully decrypted only when the correct password is provided. Although this AI
can be used to encrypt arbitrary data, its intended primary use is for encrypting
private keys when transferring them from one computer system to another, as
described in PKCS #8.

This AI employs DES secret-key encryption in cipher-block chaining (CBC) mode
with padding, where the secret key is derived from a password using the MD5
message digest algorithm. The details of this algorithm are contained in PKCS #5. DES
is defined in FIPS PUB 81, and CBC mode of DES is defined in FIPS PUB 46-1. RFC
1321 describes MD5.

Other algorithms that can be used for password-based encryption are
AI_MD2WithDES_CBCPad, AI_MD2WithRC2_CBCPad, AI_MD5WithRC2_CBCPad, and
AI_SHA1WithDES_CBCPad.

Type of information this allows you to use:
the salt and iteration count for the MD5 With DES-CBC password-based encryption
algorithm as defined in PKCS #5. The salt is concatenated with the password before
being digested by MD5, and the iteration count specifies how many times the digest
needs to be run. The count of 2 indicates that the result of digesting password-and-
salt string needs to be run once more through MD5. The first 8 bytes of the final digest
become the secret key for the DES cipher after being adjusted for parity as required by
FIPS PUB 81, and the last 8 bytes become the initialization vector.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_PBE_PARAMS structure:

RSA Data Security, Inc. recommends a minimum iteration count of 1,000. However,

typedef struct {
 unsigned char *salt; /* pointer to 8-byte salt value */
 unsigned int iterationCount; /* iteration count */
} B_PBE_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 1 3

AI_MD5WithDES_CBCPad
for an additional byte or two of security the iteration should be 28 to 216.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_PBE_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD5 and AM_DES_CBC_ENCRYPT for encryption or AM_DES_CBC_DECRYPT for
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the password.

Compatible representation:
AI_MD5WithDES_CBCPadBER.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
1 1 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5WithDES_CBCPadBER
AI_MD5WithDES_CBCPadBER

Purpose:
This AI is similar to AI_MD5WithDES_CBCPad except that it uses the ASN.1 BER format.
This AI allows you to parse and create ASN.1 algorithm identifiers such as used in
PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm
object from the encoded algorithm identifier which includes ASN.1 encoding of the
B_PBE_PARAMS structure defined in the description of AI_MD5WithDES_CBCPad. You call
B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from an
algorithm object that was created using AI_MD5WithDES_CBCPad or
AI_MD5WithDES_CBCPad. The OID for this algorithm, excluding the tag and length
bytes, in decimal is "42, 134, 72, 134, 247, 13, 1, 5, 3"

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the MD5 With DES-CBC
password-based encryption algorithm as defined in PKCS #5.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than MD5 With DES-CBC.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD5 and AM_DES_CBC_ENCRYPT for encryption or AM_DES_CBC_DECRYPT for
decryption.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 1 5

AI_MD5WithDES_CBCPadBER
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the password.

Compatible representation:

AI_MD5WithDES_CBCPad.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
1 1 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5WithRC2_CBCPad
AI_MD5WithRC2_CBCPad

Purpose:
This AI allows you to perform password-based encryption. This means that the input
data will be encrypted with a secret key derived from a password, and it can be
successfully decrypted only when the correct password is provided. Although this AI
can be used to encrypt arbitrary data, its intended primary use is for encrypting
private keys when transferring them from one computer system to another, as
described in PKCS #8.

This AI employs RC2 block cipher with padding, where the secret key is derived from
a password using the MD5 message digest algorithm. MD5 is described in RFC 1321.
RC2 is described in RFC 2268. The CBC mode is similar to the one used in RC5-CBC
which can be found in RFC 2040.

Other algorithms that can be used for password-based encryption are
AI_MD2WithDES_CBCPad, AI_MD2WithRC2_CBCPad, AI_MD5WithDES_CBCPad, and
AI_SHA1WithDES_CBCPad.

Type of information this allows you to use:
the effective key size, salt, and iteration count for the MD5 With RC2-CBC password-
based encryption algorithm. The salt is concatenated with the password before being
processed by MD5, and the iteration count specifies how many times the digest needs
to be run. The count of 2 indicates that the result of digesting password-and-salt
string needs to be run once more through MD5. The first 8 bytes of the final digest are
used as an initialization vector for cipher-block chaining mode, while the last 8 bytes
are supplied as the key material to the RC2_CBCPad algorithm. This algorithm
modifies the 64 key bits according to the effectiveKeyBits parameter. RSA Data
Security, Inc. recommends using values between 40 and 128 bits for the
effectiveKeyBits parameter. Since only 64 bits of key material are supplied to the
algorithm, effectiveKeyBits values over 64 bits do not improve security.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 1 7

AI_MD5WithRC2_CBCPad
Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_RC2_PBE_PARAMS structure:

This algorithm will accept a maximum of 1024 effective key bits for domestic use and
40 effective key bits for export. RSA Data Security, Inc. recommends a minimum
iteration count of 1,000. However, for an additional byte or two of security the
iteration should be 28 to 216.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_RC2_PBE_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD5 and AM_RC2_CBC_ENCRYPT for encryption or AM_RC2_CBC_DECRYPT for
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the password.

Compatible representation:

AI_MD5WithRC2_CBCPadBER.

Output considerations:
During encryption, this AI pads the output. Thus, the total number of output bytes
from enryption can be as many as 8 bytes more than the total output.

typedef struct {
 unsigned int effectiveKeyBits; /* effective key size in bits */
 unsigned char *salt; /* pointer to 8-byte salt value */
 unsigned int iterationCount; /* iteration count */
} B_RC2_PBE_PARAMS;
1 1 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5WithRC2_CBCPadBER
AI_MD5WithRC2_CBCPadBER

Purpose:
This AI is similar to AI_MD5WithRC2_CBCPad except that it uses the ASN.1 BER format.
This AI allows you to parse and create ASN.1 algorithm identifiers such as used in
PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm
object from the encoded algorithm identifier which includes ASN.1 encoding of the
B_RC2_PBE_PARAMS structure defined in the description of AI_MD5WithRC2_CBCPad. You
call B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from
an algorithm object that was created using AI_MD5WithRC2_CBCPad or
AI_MD5WithRC2_CBCPadBER. The OID for this algorithm, excluding the tag and length
bytes, in decimal is "42, 134, 72, 134, 247, 13, 1, 5, 6."

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the MD5 With RC2-CBC
password-based encryption algorithm.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than MD5 With RC2-CBC.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD5 and AM_RC2_CBC_ENCRYPT for encryption or AM_RC2_CBC_DECRYPT for
decryption.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 1 9

AI_MD5WithRC2_CBCPadBER
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the password.

Compatible representation:

AI_MD5WithRC2_CBCPad.

Output considerations:
During encryption, this AI pads the output. Thus, the total number of output bytes
from enryption can be as many as 8 bytes more than the total output.
1 2 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5WithRSAEncryption
AI_MD5WithRSAEncryption

Purpose:
This AI allows you to perform signature operations that involve the MD5 digest
algorithm and RSA public key algorithm. The digest of a message is created using the
MD5 algorithm and then it is signed using PKCS#1 digital signature algorithm. Other
algorithms that can be used for the same purpose are AI_MD2WithRSAEncryption and
AI_SHA1WithRSAEncryption.

Type of information this allows you to use:
the MD5 With RSA signature algorithm that uses the MD5 digest algorithm and RSA
to create and verify RSA digital signatures as defined in PKCS #1. Note that in order
to perform PKCS #1 digital signatures with a 16-byte digest, the RSA key must be at
least 360 bits long.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm
arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2, and AM_RSA_CRT_ENCRYPT, AM_RSA_CRT_ENCRYPT_BLIND, or AM_RSA_ENCRYPT,
for signature creation; and AM_RSA_DECRYPT for signature verification.
AM_RSA_CRT_ENCRYPT_BLIND performs blinding to protect against timing attacks,
whereas AM_RSA_CRT_ENCRYPT does not.

Key info types for keyObject in B_SignInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, KI_RSAPrivate or
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 2 1

AI_MD5WithRSAEncryption
KI_RSAPrivateBSAFE1. Unless you use KI_RSA_CRT for your KI, you must include
AM_RSA_ENCRYPT in your application’s algorithm chooser.

Key info types for keyObject in B_VerifyInit:

KI_RSAPublic, KI_RSAPublicBER, or KI_RSAPublicBSAFE1.

Compatible representation:

AI_MD5WithRSAEncryptionBER.

Output considerations:
The signature result of B_SignFinal will be the same size as the RSA key’s modulus.

Notes:
Although the RSA signature operation is called “encryption” and the verification
operation is called “decryption”, the signer uses the digest and the private key and
follows the steps needed to decrypt, while the verifier uses the transmitted digest and
the public key and follows the steps needed to encrypt.
1 2 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5WithRSAEncryptionBER
AI_MD5WithRSAEncryptionBER

Purpose:
This AI is similar to AI_MD5WithRSAEncryption except that it uses the ASN.1 BER
format. This AI allows you to parse and create ASN.1 algorithm identifiers such as
those used in PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize
an algorithm object from the encoded algorithm identifier. You call
B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from an
algorithm object that was created using AI_MD5WithRSAEncryption or
AI_MD5WithRSAEncryptionBER. The OID for this algorithm, excluding the tag and
length bytes, in decimal is "42, 134, 72, 134, 247, 13, 1, 1, 4"

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the MD5 With RSA signature
algorithm that uses the MD5 digest algorithm and RSA to create and verify RSA
digital signatures as defined in PKCS #1.

Note that in order to perform PKCS #1 digital signatures with a 16-byte digest, the
RSA key must be at least 360 bits long.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than MD5 With RSA Encryption.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm
arguments.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 2 3

AI_MD5WithRSAEncryptionBER
Algorithm methods to include in application’s algorithm chooser:

AM_MD2, and AM_RSA_CRT_ENCRYPT, AM_RSA_CRT_ENCRYPT_BLIND, or AM_RSA_ENCRYPT,
for signature creation; and AM_RSA_DECRYPT for signature verification.
AM_RSA_CRT_ENCRYPT_BLIND performs blinding to protect against timing attacks,
whereas AM_RSA_CRT_ENCRYPT does not.

Key info types for keyObject in B_SignInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, KI_RSAPrivate or
KI_RSAPrivateBSAFE1. Unless you use KI_RSA_CRT for your KI, you must include
AM_RSA_ENCRYPT in your application’s algorithm chooser.

Key info types for keyObject in B_VerifyInit:

KI_RSAPublic, KI_RSAPublicBER, or KI_RSAPublicBSAFE1.

Compatible representation:

AI_MD5WithRSAEncryption.

Output considerations:
The signature result of B_SignFinal will be the same size as the RSA key’s modulus.

Notes:
Although the RSA signature operation is called “encryption” and the verification
operation is called “decryption”, the signer uses the digest and the private key and
follows the steps needed to decrypt, while the verifier uses the transmitted digest and
the public key and follows the steps needed to encrypt.
1 2 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5WithXOR
AI_MD5WithXOR

Purpose:
This AI is used for encrypting the file keys. This algorithm implements a variant of
password-based encryption. The data being encrypted is exclusive-or’ed (XOR'ed)
with a secret key derived from a password, and it can be successfully decrypted only
when the correct password is provided. Since the secret key is a 128-bit output of
MD5 message digest algorithm, the data being encrypted should be no longer than
128 bits. A description of MD5 can be found in RFC 1321.

Type of information this allows you to use:
the salt and iteration count for the MD5 With “exclusive or” (XOR) password-based
encryption algorithm. The salt is concatenated with the password before being
digested by MD5, and the iteration count specifies how many times the digest needs
to be run. The count of 2 indicates that the result of digesting password-and-salt
string needs to be run once more through MD5. The final digest is XOR'ed with the
data to obtain the encryption.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_PBE_PARAMS structure:

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_PBE_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

typedef struct {
 unsigned char *salt; /* pointer to 8-byte salt value */
 unsigned int iterationCount; /* iteration count */
} B_PBE_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 2 5

AI_MD5WithXOR
Algorithm methods to include in application’s algorithm chooser:

AM_MD5 and AM_MD5_RANDOM.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the password.

Compatible representation:

AI_MD5WithXOR_BER.
1 2 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_MD5WithXOR_BER
AI_MD5WithXOR_BER

Purpose:
This AI is similar to AI_MD5WithXOR except that it uses the ASN.1 BER format. This AI
allows you to parse and create ASN.1 algorithm identifiers such as used in PKCS #7
and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm object
from the encoded algorithm identifier which includes ASN.1 encoding of the
B_PBE_PARAMS structure defined in the description of AI_MD5WithXOR. You call
B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from an
algorithm object that was created using AI_MD5WithXOR or AI_MD5WithXOR_BER. The
OID for this algorithm, excluding the tag and length bytes, in decimal is "42, 134, 72,
134, 247, 13, 1, 5, 9."

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the MD5 With “exclusive or”
(XOR) password-based encryption algorithm, as defined by RSA Data Security, Inc.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than MD5 With XOR.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD5 and AM_MD5_RANDOM.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 2 7

AI_MD5WithXOR_BER
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the password.

Compatible representation:

AI_MD5WithXOR.
1 2 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEP_RSAPrivate
AI_PKCS_OAEP_RSAPrivate

Purpose:
This AI allows you to decrypt data using the RSA public-key algorithm with the
OAEP padding scheme defined in PKCS #1 v2.0. The OAEP padding scheme prevents
a theoretical attack on interactive key-establishment protocols that use PKCS #1 v1.5.
The parameters of this algorithm include the hash function, mask generator function,
and P source function that are explained below. AI_PKCS_RSAPrivate provides the
PKCS #1 v1.5 version of the RSA private key decryption algorithm.
AI_SET_OAEP_RSAPrivate provides a different type of OAEP padding scheme defined
by the SET specification. See AI_PKCS_OAEP_RSAPrivateBER for the same algorithm
type with BER encoding.

Type of information this allows you to use:
the RSA algorithm for performing private key decryption with OAEP message
padding as defined in PKCS #1 v2.0 (DRAFT 1- July 14, 1998). When decrypting, this
algorithm decodes the data according to the definition of EME-OAEP-Decode as
specified in PKCS #1 v2.0.

Format of info supplied to B_SetAlgorithmInfo:
either:

NULL_PTR. The following parameters are employed when NULL_PTR is specified:

or:

PKCS OAEP RSA PARAMETER DEFAULT VALUE DEFAULT PARAMS

hashFunc "sha1" empty ITEM

maskGenFunc "mgf1" empty ITEM

maskGenFuncUnderlyingAlg "sha1" empty ITEM

pSourceFunc "specifiedParameters" empty ITEM
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 2 9

AI_PKCS_OAEP_RSAPrivate
a pointer to an A_PKCS_OAEP_PARAMS structure:

The parameters are as follows:

hashFunc determines the digest function. Currently, it may contain a NULL_PTR or a
pointer to the null-terminated ASCII string, "sha1". In both cases SHA1 will become
the digest function.

maskGenFunc determines the mask generator function. Currently, it may contain a
NULL_PTR or a pointer to the null-terminated ASCII string, "mgf1". In both cases MGF1
will become the mask generator function.

maskGenFuncUnderlyingAlg may contain a NULL_PTR or a pointer to the null-terminated
ASCII string, "sha1". In both cases SHA1 will become the underlying algorithm.

pSourceFunc is the method for determining the PKCS #1 v2.0 OAEP parameter, P.
pSourceFunc may contain a NULL_PTR or a pointer to the null-terminated ASCII string,
"specifiedParameters". In both cases "specifiedParameters" will become the
pSource method.

If pSourceFunc is "specifiedParameters" and if pSourceParams.len is 0, then P is
assumed to be empty. pSourceParams may also be initialized to the caller's data as in
this example:

hashFuncParams, maskGenFuncParams, and maskGenFuncUnderlyingAlgParams are available
to provide for future growth. The caller should initialize these parameters as ITEM
types as follows:

typedef struct {
 unsigned char* hashFunc;
 ITEM hashFuncParams;
 unsigned char* maskGenFunc;
 ITEM maskGenFuncParams;
 unsigned char* maskGenFuncUnderlyingAlg;
 ITEM maskGenFuncUnderlyingAlgParams;
 unsigned char* pSourceFunc;
 ITEM pSourceParams;
} A_PKCS_OAEP_PARAMS;

 pSourceParams.len = sizeof(dataObject);
 pSourceParams.data = &dataObject;
1 3 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEP_RSAPrivate
Failure to properly intialize these parameters may cause bugs when they are
implemented in future versions of Crypto-C. In this case, the default parameters for
pSourceParams should be set by the caller as follows:

Format of info supplied to B_GetAlgorithmInfo:

NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal. You may pass
(B_ALGORITHM_OBJ)NULL_PTR for the randomAlgorithm argument in B_DecryptUpdate
and B_DecryptFinal.

Algorithm methods to include in application's algorithm chooser:

AM_RSA_CRT_DECRYPT or AM_RSA_CRT_DECRYPT_BLIND for decryption.
AM_RSA_CRT_DECRYPT_BLIND performs blinding to protect against timing attacks,
whereas AM_RSA_CRT_DECRYPT does not. AM_SHA is required for the default pSource
digest function. It is also required for MGF1 as underlying algorithm.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, or KI_PKCS_RSAPrivateBER.

Compatible representation:
AI_PKCS_OAEP_RSAPrivateBER.

 hashFuncParams.len = 0;
 hashFuncParams.data = NULL_PTR
 maskGenFuncParams.len = 0;
 maskGenFuncParams.data = NULL_PTR
 maskGenFuncUnderlyingAlgParams.len = 0;
 maskGenFuncUnderlyingAlgParams.data = NULL_PTR

 pSourceParams.len = 0;
 pSourceParams.data = NULL_PTR;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 3 1

AI_PKCS_OAEP_RSAPrivate
Output considerations:
The output of decryption will be the same size as the original message.
1 3 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEP_RSAPrivateBER
AI_PKCS_OAEP_RSAPrivateBER

Purpose:
This AI is similar to AI_PKCS_OAEP_RSAPrivate except that it uses the ASN.1 BER
format. This AI allows you to parse and create ASN.1 algorithm identifiers such as
those used in PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize
an algorithm object from the encoded algorithm identifier that includes the hash
function, mask generator function, and P source function. You call
B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from an
algorithm object that was created using AI_PKCS_OAEP_RSAPrivate or
AI_PKCS_OAEP_RSAPrivateBER. The OID for the RSA OAEP encryption, excluding the
tag and length bytes, in decimal, is "42, 134, 72, 134, 247, 13, 1, 1, 7". The OID
for the mask function, excluding the tag and length bytes, in decimal, is "42, 134,
72, 134, 247, 13, 1, 1, 8". The OID for the P source function, excluding the tag and
length bytes, in decimal, is "42, 134, 72, 134, 247, 13, 1, 1, 9". Also see
AI_PKCS_OAEP_RSAPrivate.

Type of information this allows you to use:
the RSA algorithm for performing private key decryption with OAEP message
padding as defined in PKCS #1 v2.0 (DRAFT 1- July 14, 1998). When decrypting, this
algorithm decodes the data according to the definition of EME-OAEP-Decode as
specified in PKCS #1 v2.0.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than RSAES-OAEP Encryption as
specified by PKCS #1 v2.0.

The general ASN.1 syntax for RSAES-OAEP is complicated. The simple DER
encoding of the default algorithm is given first, followed by the general syntax.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 3 3

AI_PKCS_OAEP_RSAPrivateBER
Simple DER encoding for the default algorithm:

The general syntax is:

 -- Default Algorithm Identifier for RSAES-OAEP.
 -- The DER Encoding of this is in hexadecimal given below.
 -- Notice that the DER encoding of the default parameters
 -- is just an empty sequence.
 -- 30 0D
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 07
 -- 30 00
 RSAES-OAEP-Default-Identifier ::= AlgorithmIdentifier {
 id-RSAES-OAEP,
 { sha1Identifier,
 mgf1SHA1Identifier,
 pSpecifiedEmptyIdentifier
 }
 }

RSAES-OAEP ::= Sequence {
 algorithm OBJECT IDENTIFIER (id-RSAES-OAEP),
 parameters RSAES-OAEP-params
 }
 -- Identifier for PKCS #1 v2.0 OAEP.
 -- The DER for this in hexadecimal is:
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 07
 --
 id-RSAES-OAEP OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) RSAES-OAEP(7)}
 -- Identifier for the PKCS #1 v2.0 mask generation function,
 -- which takes a hash function AlgID as a parameter.
 -- The DER for this in hexadecimal is:
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 08
 --
 id-mgf1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) mgf1(8)}
1 3 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEP_RSAPrivateBER
 -- The identifier says that the algorithm by which the P
 -- string for RSAES-OAEP is generated is by setting it
 -- equal to the contents of the OCTET STRING which is
 -- the parameter for this AlgorithmIdentifier.
 -- The DER for this in hexadecimal is:
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 09
 --
 id-pSpecified OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) pSpecified(9)}
 -- Identifier for the SHA1 digest function.
 -- The DER for this in hexadecimal is:
 -- 06 05
 -- 2B 0E 03 02 1A
 --
 id-sha1 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithms(2) sha1(26) }
 -- Syntax of AlgorithmIdentifier.parameters for RSAES-OAEP.
 -- Note that the tags in this Sequence are explicit.
 -- The DER encoding of DEFAULT values is to omit them.
 --
 RSAES-OAEP-params ::= SEQUENCE {
 hashFunc [0] AlgorithmIdentifier {
 {oaepDigestAlgorithms} }
 DEFAULT sha1Identifier,
 maskGenFunc [1] AlgorithmIdentifier {
 {pkcs1MGFAlgorithms} }
 DEFAULT mgf1SHA1Identifier,
 pSourceFunc [2] AlgorithmIdentifier {
 {pkcs1PGenAlgorithms} }
 DEFAULT pSpecifiedEmptyIdentifier
 }
 -- Algorithm Identifier for SHA1, which is the OAEP default.
 --
 sha1Identifier ::= AlgorithmIdentifier {
 id-sha1, NULL }
 -- Default AlgorithmIdentifier for id-RSAES-OAEP.maskGenFunc.
 --
 mgf1SHA1Identifier ::= AlgorithmIdentifier {
 id-mgf1, sha1Identifier }
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 3 5

AI_PKCS_OAEP_RSAPrivateBER
Format of info supplied to B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:
The following procedures perform OAEP padding with encryption:

B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal. You may pass
(B_ALGORITHM_OBJ)NULL_PTR for the randomAlgorithm argument in B_DecryptUpdate
and B_DecryptFinal.

Algorithm methods to include in application's algorithm chooser:

AM_RSA_CRT_DECRYPT or AM_RSA_CRT_DECRYPT_BLIND for decryption.
AM_RSA_CRT_DECRYPT_BLIND performs blinding to protect against timing attacks,
whereas AM_RSA_CRT_DECRYPT does not. AM_SHA is required for the default pSource
digest function. It is also required for MGF1 as underlying algorithm.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:
KI_RSA_CRT, KI_PKCS_RSAPrivate, or KI_PKCS_RSAPrivateBER.

Compatible representation:

AI_PKCS_OAEP_RSAPrivate.

Output considerations:
The output of decryption will be the same size as the original message.

 -- This identifier means that P is an empty string, so the digest
D“D
 -- of the empty string appears in the RSA block before masking.
 --
safe-00.Ì‘D
 pSpecifiedEmptyIdentifier ::= AlgorithmIdentifier {
 id-pSpecified, OCTET STRING SIZE (0)
 }
1 3 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEP_RSAPublic
AI_PKCS_OAEP_RSAPublic

Purpose:
This AI allows you to encrypt data using the RSA public-key algorithm with the
OAEP padding scheme defined in PKCS #1 v2.0. The OAEP padding scheme prevents
a theoretical attack on interactive key-establishment protocols that use PKCS #1 v1.5.
The parameters of this algorithm include the hash function, mask generator function
and P source function that are explained below. AI_PKCS_RSAPublic provides the
PKCS #1 v1.5 version of the RSA public key encryption algorithm.
AI_SET_OAEP_RSAPublic provides a different type of OAEP padding scheme defined
by the SET specification. See AI_PKCS_OAEP_RSAPublicBER for the same algorithm
type with BER encoding.

Type of information this allows you to use:
the RSA algorithm for performing public key encryption with OAEP message
padding as defined in PKCS #1 v2.0 (DRAFT 1- July 14, 1998). When encrypting, this
algorithm encodes the data according to the definition of EME-OAEP-Encode as
specified in PKCS #1 v2.0.

Format of info supplied to B_SetAlgorithmInfo:
either:

NULL_PTR. The following parameters are employed when NULL_PTR is specified:

or:

PKCS OAEP RSA PARAMETER DEFAULT VALUE DEFAULT PARAMETERS

hashFunc "sha1" empty ITEM

maskGenFunc "mgf1" empty ITEM

maskGenFuncUnderlyingAlg "sha1" empty ITEM

pSourceFunc "specifiedParameters" empty ITEM
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 3 7

AI_PKCS_OAEP_RSAPublic
a pointer to an A_PKCS_OAEP_PARAMS structure:

The parameters are as follows:

hashFunc determines the digest function. Currently, it may contain a NULL_PTR or a
pointer to the null-terminated ASCII string, "sha1". In both cases SHA1 will become
the digest function.

maskGenFunc determines the mask generator function. Currently, it may contain a
NULL_PTR or a pointer to the null-terminated ASCII string, "mgf1". In both cases MGF1
will become the mask generator function.

maskGenFuncUnderlyingAlg may contain a NULL_PTR or a pointer to the null-terminated
ASCII string, "sha1". In both cases SHA1 will become the underlying algorithm.

pSourceFunc is the method for determining the PKCS #1 v2.0 OAEP parameter, P.
pSourceFunc may contain a NULL_PTR or a pointer to the null-terminated ASCII string,
"specifiedParameters". In both cases "specifiedParameters" will become the
pSource method.

If pSourceFunc is "specifiedParameters" and if pSourceParams.len is 0, then P is
assumed to be empty. pSourceParams may also be initialized to the caller's data as in
this example:

hashFuncParams, maskGenFuncParams, and maskGenFuncUnderlyingAlgParams are available
to provide for future growth. The caller should initialize these parameters as ITEM
types as follows:

typedef struct {
 unsigned char* hashFunc;
 ITEM hashFuncParams;
 unsigned char* maskGenFunc;
 ITEM maskGenFuncParams;
 unsigned char* maskGenFuncUnderlyingAlg;
 ITEM maskGenFuncUnderlyingAlgParams;
 unsigned char* pSourceFunc;
 ITEM pSourceParams;
} A_PKCS_OAEP_PARAMS;

 pSourceParams.len = sizeof(dataObject);
 pSourceParams.data = &dataObject;
1 3 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEP_RSAPublic
Failure to properly intialize these parameters may cause bugs when they are
implemented in future versions of Crypto-C. In this case, the default parameters for
pSourceParams should be set by the caller as follows:

Format of info supplied to B_GetAlgorithmInfo:

NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, and B_EncryptFinal.

B_EncryptFinal requires a valid random number generator as a B_ALGORITHM_OBJ in
its randomAlgorithm argument. PKCS #1 v2.0 does not specify the random number
generation method. It is recommended that AI_X962Random_V0 or AI_SHA1Random be
initialized with enough seed bytes to produce 160 bits of entropy.

You may pass (B_ALGORITHM_OBJ)NULL_PTR for the randomAlgorithm argument in
B_EncryptUpdate.

Algorithm methods to include in application's algorithm chooser:

AM_RSA_ENCRYPT.

AM_SHA is required for the default pSource digest function and also for the default MGF
underlying digest method.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSAPublic or KI_RSAPublicBER.

 hashFuncParams.len = 0;
 hashFuncParams.data = NULL_PTR
 maskGenFuncParams.len = 0;
 maskGenFuncParams.data = NULL_PTR
 maskGenFuncUnderlyingAlgParams.len = 0;
 maskGenFuncUnderlyingAlgParams.data = NULL_PTR

 pSourceParams.len = 0;
 pSourceParams.data = NULL_PTR;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 3 9

AI_PKCS_OAEP_RSAPublic
Compatible representation:

AI_PKCS_RSAPublicBER.

Input constraints:
The key's modulus must be at least [(2 * hLen) + 2] bytes longer than the message.

Output considerations:
The output of encryption will be the same size as the key's modulus.
1 4 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEP_RSAPublicBER
AI_PKCS_OAEP_RSAPublicBER

Purpose:
This AI is similar to AI_PKCS_OAEP_RSAPublic except that it uses the ASN.1 BER
format. This AI allows you to parse and create ASN.1 algorithm identifiers such as
those used in PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize
an algorithm object from the encoded algorithm identifier that includes the hash
function, mask generator function, and P source function. You call
B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from an
algorithm object that was created using AI_PKCS_OAEP_RSAPublic or
AI_PKCS_OAEP_RSAPublicBER. The OID for the RSA OAEP encryption, excluding the
tag and length bytes, in decimal, is "42, 134, 72, 134, 247, 13, 1, 1, 7". The OID
for the mask function, excluding the tag and length bytes, in decimal, is "42, 134,
72, 134, 247, 13, 1, 1, 8". The OID for the P source function, excluding the tag and
length bytes, in decimal, is "42, 134, 72, 134, 247, 13, 1, 1, 9". Also see
AI_PKCS_OAEP_RSAPublic.

Type of information this allows you to use:
the RSA algorithm for performing public key encryption with OAEP message
padding as defined in PKCS #1 v2.0 (DRAFT 1- July 14, 1998). When encrypting, this
algorithm encodes the data according to the definition of EME-OAEP-Encode as
specified in PKCS #1 v2.0.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than RSAES-OAEP Encryption as
specified by PKCS #1 v2.0.

The general ASN.1 syntax for RSAES-OAEP is complicated. Here the simple DER
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 4 1

AI_PKCS_OAEP_RSAPublicBER
encoding of the default algorithm is given first, followed by the general syntax.

The general syntax is:

 -- Default Algorithm Identifier for RSAES-OAEP.
 -- The DER Encoding of this is in hexadecimal given below.
 -- Notice that the DER encoding of the default parameters
 -- is just an empty sequence.
 -- 30 0D
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 07
 -- 30 00
 --
 RSAES-OAEP-Default-Identifier ::= AlgorithmIdentifier {
 id-RSAES-OAEP,
 { sha1Identifier,
 mgf1SHA1Identifier,
 pSpecifiedEmptyIdentifier
 }
 }

 RSAES-OAEP ::= Sequence {
 algorithm OBJECT IDENTIFIER (id-RSAES-OAEP),
 parameters RSAES-OAEP-params
 }
 -- Identifier for PKCS #1 v2.0 OAEP.
 -- The DER for this in hexadecimal is:
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 07
 --
 id-RSAES-OAEP OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) RSAES-OAEP(7)}
1 4 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEP_RSAPublicBER
 -- Identifier for the PKCS #1 v2.0 mask generation function,
 -- which takes a hash function AlgID as a parameter.
 -- The DER for this in hexadecimal is:
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 08
 --
 id-mgf1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) mgf1(8)}
 -- The identifier says that the algorithm by which the P
 -- string for RSAES-OAEP is generated is by setting it
 -- equal to the contents of the OCTET STRING which is
 -- the parameter for this AlgorithmIdentifier.
 -- The DER for this in hexadecimal is:
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 09
 --
 id-pSpecified OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) pSpecified(9)}
 -- Identifier for the SHA1 digest function.
 -- The DER for this in hexadecimal is:
 -- 06 05
 -- 2B 0E 03 02 1A
 --
 id-sha1 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithms(2) sha1(26) }
 -- Syntax of AlgorithmIdentifier.parameters for RSAES-OAEP.
 -- Note that the tags in this Sequence are explicit.
 -- The DER encoding of DEFAULT values is to omit them.
 --
 RSAES-OAEP-params ::= SEQUENCE {
 hashFunc [0] AlgorithmIdentifier {
 {oaepDigestAlgorithms} }
 DEFAULT sha1Identifier,
 maskGenFunc [1] AlgorithmIdentifier {
 {pkcs1MGFAlgorithms} }
 DEFAULT mgf1SHA1Identifier,
 pSourceFunc [2] AlgorithmIdentifier {
 {pkcs1PGenAlgorithms} }
 DEFAULT pSpecifiedEmptyIdentifier
 }
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 4 3

AI_PKCS_OAEP_RSAPublicBER
Format of info supplied to B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, and B_EncryptFinal.

B_EncryptFinal requires a valid random number generator as a B_ALGORITHM_OBJ in
its randomAlgorithm argument. PKCS #1 v2.0 does not specify the random number
generation method. It is recommended that AI_X962Random_V0 or AI_SHA1Random be
initialized with enough seed bytes to produce 160 bits of entropy.

You may pass (B_ALGORITHM_OBJ)NULL_PTR for the randomAlgorithm argument in
B_EncryptUpdate.

Algorithm methods to include in application's algorithm chooser:

AM_RSA_ENCRYPT.

AM_SHA is required for the default pSource digest function and also for the default MGF
underlying digest method.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSAPublic and KI_RSAPublicBER may be used to perform RSA encryption or
decryption.

 -- Algorithm Identifier for SHA1, which is the OAEP default.
 --
 sha1Identifier ::= AlgorithmIdentifier {
 id-sha1, NULL }
 -- Default AlgorithmIdentifier for id-RSAES-OAEP.maskGenFunc.
 --
 mgf1SHA1Identifier ::= AlgorithmIdentifier {
 id-mgf1, sha1Identifier }
 -- This identifier means that P is an empty string, so the digest
 -- of the empty string appears in the RSA block before masking.
 --
 pSpecifiedEmptyIdentifier ::= AlgorithmIdentifier {
 id-pSpecified, OCTET STRING SIZE (0)
 }
1 4 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEP_RSAPublicBER
Compatible representation:

AI_PKCS_OAEP_RSAPublic.

Input constraints:
The key's modulus must be at least [(2 * hLen) + 2] bytes longer than the message.

Output considerations:
The output of encryption will be the same size as the key's modulus.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 4 5

AI_PKCS_OAEPRecode
AI_PKCS_OAEPRecode

Purpose:
This AI allows you to perform raw or hardware-based encoding or decoding using
the PKCS #1 v2.0 OAEP padding scheme. The OAEP padding scheme prevents a
theoretical attack on interactive key-establishment protocols that use PKCS #1 v1.5.
The parameters of this algorithm include the hash function, mask generator function,
and P source function that are explained below. Encrypting with the
AI_PKCS_OAEP_RSAPublic algorithm is equivalent to first encoding the data with
AI_PKCS_OAEPRecode using the B_Encode routines and then encrypting with
AI_RSAPublic using the B_Encrypt routines. See AI_PKCS_OAEPRecodeBER for the same
algorithm type with BER encoding.

Type of information this allows you to use:
OAEP message padding as defined in PKCS #1 v2.0 (DRAFT 1- July 14, 1998). When
encoding, this algorithm encodes the data according to the definition of EME-OAEP-
Encode as specified in PKCS #1 v2.0. When decoding, this algorithm decodes the data
according to the definition of EME-OAEP-Decode. This permits the use of raw or
hardware-based RSA with the PKCS #1 v2.0 flavor of Optimal Asymmetric
Encryption Padding.

Format of info supplied to B_SetAlgorithmInfo:
Either:

NULL_PTR.

The following parameters are employed when NULL_PTR is specified:

or:

PKCS OAEP RSA PARAMETER DEFAULT VALUE DEFAULT PARAMETERS

hashFunc "sha1" empty ITEM

maskGenFunc "mgf1" empty ITEM

maskGenFuncUnderlyingAlg "sha1" empty ITEM

pSourceFunc "specifiedParameters" empty ITEM
1 4 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEPRecode
a pointer to an A_PKCS_OAEP_PARAMS structure:

The parameters are as follows:

hashFunc determines the digest function. Currently, it may contain a NULL_PTR or a
pointer to the null-terminated ASCII string, "sha1". In both cases SHA1 will become
the digest function.

maskGenFunc determines the mask generator function. Currently, it may contain a
NULL_PTR or a pointer to the null-terminated ASCII string, "mgf1". In both cases MGF1
will become the mask generator function.

maskGenFuncUnderlyingAlg may contain a NULL_PTR or a pointer to the null-terminated
ASCII string, "sha1". In both cases SHA1 will become the underlying algorithm.

pSourceFunc is the method for determining the PKCS #1 v2.0 OAEP parameter, P.
pSourceFunc may contain a NULL_PTR or a pointer to the null-terminated ASCII string,
"specifiedParameters". In both cases "specifiedParameters" will become the
pSource method.

If pSourceFunc is "specifiedParameters" and if pSourceParams.len is 0, then P is
assumed to be empty. pSourceParams may also be initialized to the caller's data as in
this example:

hashFuncParams, maskGenFuncParams, and maskGenFuncUnderlyingAlgParams are available
to provide for future growth. The caller should initialize these parameters as ITEM
types as follows:

typedef struct {
 unsigned char* hashFunc;
 ITEM hashFuncParams;
 unsigned char* maskGenFunc;
 ITEM maskGenFuncParams;
 unsigned char* maskGenFuncUnderlyingAlg;
 ITEM maskGenFuncUnderlyingAlgParams;
 unsigned char* pSourceFunc;
 ITEM pSourceParams;
} A_PKCS_OAEP_PARAMS;

 pSourceParams.len = sizeof(dataObject);
 pSourceParams.data = &dataObject;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 4 7

AI_PKCS_OAEPRecode
Failure to properly intialize these parameters may cause bugs when they are
implemented in future versions of Crypto-C. In this case, the default parameters for
pSourceParams should be set by the caller as follows:

Format of info supplied to B_GetAlgorithmInfo:

NULL_PTR.

Crypto-C procedures to use with algorithm object:
B_EncodeInit, B_EncodeUpdate, B_EncodeFinal, B_DecodeInit, B_DecodeUpdate, and
B_DecodeFinal.

The final call to B_EncodeUpdate does not contain message data. Rather, the trailing
call to B_EncodeUpdate is included to pass in a number of random seed bytes for the
OAEP encoding process. It is recommended that the caller use AI_X962Random_V0 or
AI_SHA1Random to generate hLen bytes initialized with 160 bits of entropy. The default
digest algorithm for PKCS #1 v2.0 OAEP is SHA1. SHA1 produces a digest of 20
bytes, so hLen for SHA1 is 20 bytes.

B_Decode_Update does not contain an extra call for seed bytes.

Algorithm methods to include in application's algorithm chooser:

AM_SHA is required for the default pSource digest function and also for the default MGF
underlying digest method.

Compatible representation:

AI_PKCS_OAEPRecodeBER.

 hashFuncParams.len = 0;
 hashFuncParams.data = NULL_PTR
 maskGenFuncParams.len = 0;
 maskGenFuncParams.data = NULL_PTR
 maskGenFuncUnderlyingAlgParams.len = 0;
 maskGenFuncUnderlyingAlgParams.data = NULL_PTR

 pSourceParams.len = 0;
 pSourceParams.data = NULL_PTR;
1 4 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEPRecode
Input constraints:
The total number of bytes to encode must be at least [(2 * hLen) + 1] bytes long.

Output considerations:
The output of encoding will be an encoded message that is the same size as
maxPartOutLen. (See B_EncodeUpdate, B_EncodeFinal, B_DecodeUpdate, and
B_DecodeFinal.) The output of the decoding will be the original message.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 4 9

AI_PKCS_OAEPRecodeBER
AI_PKCS_OAEPRecodeBER

Purpose:
This AI is similar to AI_PKCS_OAEPRecode except that it uses the ASN.1 BER format.
This AI allows you to parse and create ASN.1 algorithm identifiers such as those used
in PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an
algorithm object from the encoded algorithm identifier that includes the hash
function, mask generator function, and P source function. You call
B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from an
algorithm object that was created using AI_PKCS_OAEPRecode or
AI_PKCS_OAEPRecodeBER. The OID for the RSA OAEP encryption, excluding the tag
and length bytes, in decimal, is "42, 134, 72, 134, 247, 13, 1, 1, 7". The OID for
the mask function, excluding the tag and length bytes, in decimal, is "42, 134, 72,
134, 247, 13, 1, 1, 8". The OID for the P source function, excluding the tag and
length bytes, in decimal, is "42, 134, 72, 134, 247, 13, 1, 1, 9". Also see
AI_PKCS_OAEPRecode.

Type of information this allows you to use:
OAEP message padding as defined in PKCS #1 v2.0 (DRAFT 1- July 14, 1998). When
encoding, this algorithm encodes the data according to the definition of EME-OAEP-
Encode as specified in PKCS #1 v2.0. When decoding, this algorithm decodes the data
according to the definition of EME-OAEP-Decode.

This permits the use of raw or hardware-based RSA with the PKCS #1 v2.0 flavor of
Optimal Asymmetric Encryption Padding.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than RSAES-OAEP Encryption as
specified by PKCS #1 v2.0.

The general ASN.1 syntax for RSAES-OAEP is complicated, the simple DER encoding
1 5 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEPRecodeBER
of the default algorithm is given first, followed by the general syntax.

The general syntax is:

 -- Default Algorithm Identifier for RSAES-OAEP.
 -- The DER Encoding of this is in hexadecimal given below.
 -- Notice that the DER encoding of the default parameters
 -- is just an empty sequence.
 -- 30 0D
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 07
 -- 30 00
 --
 RSAES-OAEP-Default-Identifier ::= AlgorithmIdentifier {
 id-RSAES-OAEP,
 { sha1Identifier,
 mgf1SHA1Identifier,
 pSpecifiedEmptyIdentifier
 }
 }

 RSAES-OAEP ::= Sequence {
 algorithm OBJECT IDENTIFIER (id-RSAES-OAEP),
 parameters RSAES-OAEP-params
 }
 -- Identifier for PKCS #1 v2.0 OAEP.
 -- The DER for this in hexadecimal is:
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 07
 --
 id-RSAES-OAEP OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) RSAES-OAEP(7)}
 -- Identifier for the PKCS #1 v2.0 mask generation function,
 -- which takes a hash function AlgID as a parameter.
 -- The DER for this in hexadecimal is:
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 08
 --
 id-mgf1 OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) mgf1(8)}
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 5 1

AI_PKCS_OAEPRecodeBER
 -- The identifier says that the algorithm by which the P
 -- string for RSAES-OAEP is generated is by setting it
 -- equal to the contents of the OCTET STRING which is
 -- the parameter for this AlgorithmIdentifier.
 -- The DER for this in hexadecimal is:
 -- 06 09
 -- 2A 86 48 86 F7 0D 01 01 09
 --
 id-pSpecified OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-1(1) pSpecified(9)}
 -- Identifier for the SHA1 digest function.
 -- The DER for this in hexadecimal is:
 -- 06 05
 -- 2B 0E 03 02 1A
 --
 id-sha1 OBJECT IDENTIFIER ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithms(2) sha1(26) }
 -- Syntax of AlgorithmIdentifier.parameters for RSAES-OAEP.
 -- Note that the tags in this Sequence are explicit.
 -- The DER encoding of DEFAULT values is to omit them.
 --
 RSAES-OAEP-params ::= SEQUENCE {
 hashFunc [0] AlgorithmIdentifier {
 {oaepDigestAlgorithms} }
 DEFAULT sha1Identifier,
 maskGenFunc [1] AlgorithmIdentifier {
 {pkcs1MGFAlgorithms} }
 DEFAULT mgf1SHA1Identifier,
 pSourceFunc [2] AlgorithmIdentifier {
 {pkcs1PGenAlgorithms} }
 DEFAULT pSpecifiedEmptyIdentifier
 }
 -- Algorithm Identifier for SHA1, which is the OAEP default.
 --
 sha1Identifier ::= AlgorithmIdentifier {
 id-sha1, NULL }
 -- Default AlgorithmIdentifier for id-RSAES-OAEP.maskGenFunc.
 --
1 5 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_OAEPRecodeBER
Format of info supplied to B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:
B_EncodeInit, B_EncodeUpdate, B_EncodeFinal, B_DecodeInit, B_DecodeUpdate, and
B_DecodeFinal.

The final call to B_EncodeUpdate does not contain message data. Rather, the trailing
call to B_EncodeUpdate is included to pass in a number of random seed bytes for the
OAEP encoding process. It is recommended that the caller use AI_X962Random_V0 or
AI_SHA1Random to generate hLen bytes initialized with 160 bits of entropy. The default
digest algorithm for PKCS #1 v2.0 OAEP is SHA1. SHA1 produces a digest of 20
bytes, so hLen for SHA1 is 20 bytes.

B_Decode_Update does not contain an extra call for seed bytes.

Algorithm methods to include in application's algorithm chooser:

AM_SHA is required for the default pSource digest function and also for the default MGF
underlying digest method.

Compatible representation:

AI_PKCS_OAEPRecodeBER.

Input constraints:
The total number of bytes to encode must be at least [(2 * hLen) + 1] bytes long.

 mgf1SHA1Identifier ::= AlgorithmIdentifier {
 id-mgf1, sha1Identifier }
 -- This identifier means that P is an empty string, so the digest
 -- of the empty string appears in the RSA block before masking.
 --
 pSpecifiedEmptyIdentifier ::= AlgorithmIdentifier {
 id-pSpecified, OCTET STRING SIZE (0)
 }
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 5 3

AI_PKCS_OAEPRecodeBER
Output considerations:
The output of encoding will be an encoded message that is the same size as
maxPartOutLen. (See B_EncodeUpdate, B_EncodeFinal, B_DecodeUpdate, and
B_DecodeFinal.) The output of the decoding will be the original message.
1 5 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_RSAPrivate
AI_PKCS_RSAPrivate

Purpose:
This AI allows you to decrypt data encrypted using the RSA public-key cryptosystem
as defined in PKCS #1.

Type of information this allows you to use:
the RSA algorithm for performing private key decryption as defined in PKCS #1.
When encrypting, this algorithm encodes the data according to block type 01. When
decrypting, this algorithm decodes the data from a block type 02.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_RSA_CRT_ENCRYPT or AM_RSA_CRT_ENCRYPT_BLIND for encryption, or
AM_RSA_CRT_DECRYPT or AM_RSA_CRT_DECRYPT_BLIND for decryption.

AM_RSA_CRT_ENCRYPT_BLIND and AM_RSA_CRT_DECRYPT_BLIND perform blinding to
protect against timing attacks, whereas AM_RSA_CRT_ENCRYPT and
AM_RSA_CRT_DECRYPT do not.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, or KI_RSAPrivateBSAFE1.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 5 5

AI_PKCS_RSAPrivate
Compatible representation:

AI_PKCS_RSAPrivateBER, AI_PKCS_RSAPrivatePEM.

Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is the key’s
modulus size in bytes.

Output considerations:
The output of encryption will be the same size as the key’s modulus.
1 5 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_RSAPrivateBER
AI_PKCS_RSAPrivateBER

Purpose:
This AI is similar to AI_PKCS_RSAPrivate except that it uses the ASN.1 BER format.
This AI allows you to parse and create ASN.1 algorithm identifiers such as those used
in PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an
algorithm object from the encoded algorithm identifier. You call B_GetAlgorithmInfo
with this AI to create an encoded algorithm identifier from an algorithm object that
was created using AI_PKCS_RSAPrivate, AI_PKCS_RSAPrivateBER or
AI_PKCS_RSAPrivatePEM. The OID for this algorithm, excluding the tag and length
bytes, in decimal is "42, 134, 72, 134, 247, 13, 1, 1, 1"

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the RSA algorithm for
performing private key decryption as defined in PKCS #1. When encrypting, this
algorithm encodes the data according to block type 01. When decrypting, this
algorithm decodes the data from a block type 02.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than RSA Encryption.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_RSA_CRT_ENCRYPT or AM_RSA_CRT_ENCRYPT_BLIND for encryption, or
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 5 7

AI_PKCS_RSAPrivateBER
AM_RSA_CRT_DECRYPT or AM_RSA_CRT_DECRYPT_BLIND for decryption.

AM_RSA_CRT_ENCRYPT_BLIND and AM_RSA_CRT_DECRYPT_BLIND perform blinding to
protect against timing attacks, whereas AM_RSA_CRT_ENCRYPT and
AM_RSA_CRT_DECRYPT do not.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, or KI_RSAPrivateBSAFE1.

Compatible representation:

AI_PKCS_RSAPrivate, AI_PKCS_RSAPrivatePEM.

Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is the key’s
modulus size in bytes.

Output considerations:
The output of encryption will be the same size as the key’s modulus.
1 5 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_RSAPrivatePEM
AI_PKCS_RSAPrivatePEM

Purpose:
This AI is similar to AI_PKCS_RSAPrivate except that it uses the PEM format. This AI
allows you to parse and create PEM algorithm identifiers such as those used in
Privacy Enhanced Mail protocol. You call B_SetAlgorithmInfo to initialize an
algorithm object from the encoded algorithm identifier. You call B_GetAlgorithmInfo
with this AI to create an encoded algorithm identifier from an algorithm object that
was created using AI_PKCS_RSAPrivate, AI_PKCS_RSAPrivateBER or
AI_PKCS_RSAPrivatePEM.

Type of information this allows you to use:
an RFC 1423 identifier that specifies the RSA algorithm for performing private key
decryption as defined in PKCS #1. When encrypting, this algorithm encodes the data
according to block type 01. When decrypting, this algorithm decodes the data from a
block type 02.

This algorithm info type is intended to process the asymmetric encryption identifier
in a MIC-Info and Key-Info field in a PEM encapsulated header.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a null-terminated string (char *) that gives the RSA identifier, for example,
“RSA”. Space and tab characters are removed from the string before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an identifier other than RSA.

Format of info returned by B_GetAlgorithmInfo:
pointer to a null-terminated string that gives the RSA identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 5 9

AI_PKCS_RSAPrivatePEM
Algorithm methods to include in application’s algorithm chooser:

AM_RSA_CRT_ENCRYPT or AM_RSA_CRT_ENCRYPT_BLIND for encryption, or
AM_RSA_CRT_DECRYPT or AM_RSA_CRT_DECRYPT_BLIND for decryption.
AM_RSA_CRT_ENCRYPT_BLIND and AM_RSA_CRT_DECRYPT_BLIND perform blinding to
protect against timing attacks, whereas AM_RSA_CRT_ENCRYPT and
AM_RSA_CRT_DECRYPT do not.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER or KI_RSAPrivateBSAFE1.

Compatible representation:

AI_PKCS_RSAPrivate, AI_PKCS_RSAPrivateBER.

Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is the keys
modulus size in bytes.

Output considerations:
The output of encryption will be the same size as the key’s modulus.
1 6 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_RSAPublic
AI_PKCS_RSAPublic

Purpose:
This AI allows you to encrypt data using the RSA public-key cryptosystem as defined
in PKCS #1.

Type of information this allows you to use:
the RSA algorithm for performing public key encryption as defined in PKCS #1. When
encrypting, this algorithm encodes the data according to block type 02. When
decrypting, this algorithm decodes the data from block type 01.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, and B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. Note that B_EncryptUpdate and
B_EncryptFinal require a random algorithm. You may pass
(B_ALGORITHM_OBJ)NULL_PTR for the randomAlgorithm argument in B_DecryptUpdate
and B_DecryptFinal.

Algorithm methods to include in application’s algorithm chooser:

AM_RSA_ENCRYPT for encryption or AM_RSA_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSAPublic, KI_RSAPublicBER, or KI_RSAPublicBSAFE1.

Compatible representation:

AI_PKCS_RSAPublicBER, AI_PKCS_RSAPublicPEM.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 6 1

AI_PKCS_RSAPublic
Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is the key’s
modulus size in bytes.

Output considerations:
The output of encryption will be the same size as the key’s modulus.
1 6 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_RSAPublicBER
AI_PKCS_RSAPublicBER

Purpose:
This AI is similar to AI_PKCS_RSAPublic except that it uses the ASN.1 BER format.
This AI allows you to parse and create ASN.1 algorithm identifiers such as those used
in PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an
algorithm object from the encoded algorithm identifier. You call B_GetAlgorithmInfo
with this AI to create an encoded algorithm identifier from an algorithm object that
was created using AI_PKCS_RSAPublic, AI_PKCS_RSAPublicBER or
AI_PKCS_RSAPublicPEM. The OID for this algorithm, excluding the tag and length
bytes, in decimal is "42, 134, 72, 134, 247, 13, 1, 1, 1".

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the RSA algorithm for
performing public key encryption as defined in PKCS #1. When encrypting, this
algorithm encodes the data according to block type 02. When decrypting, this
algorithm decodes the data from block type 01.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than RSA Encryption.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. Note that B_EncryptUpdate and
B_EncryptFinal require a random algorithm. You may pass
(B_ALGORITHM_OBJ)NULL_PTR for the randomAlgorithm argument in B_DecryptUpdate
and B_DecryptFinal.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 6 3

AI_PKCS_RSAPublicBER
Algorithm methods to include in application’s algorithm chooser:

AM_RSA_ENCRYPT for encryption and AM_RSA_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSAPublic, KI_RSAPublicBER or KI_RSAPublicBSAFE1.

Compatible representation:

AI_PKCS_RSAPublic, AI_PKCS_RSAPublicPEM.

Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is the key’s
modulus size in bytes.

Output considerations:
The output of encryption will be the same size as the key’s modulus.
1 6 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_PKCS_RSAPublicPEM
AI_PKCS_RSAPublicPEM

Purpose:
This AI is similar to AI_PKCS_RSAPublic except that it uses the PEM format. This AI
allows you to parse and create PEM algorithm identifiers such as used in Privacy
Enhanced Mail protocol. You call B_SetAlgorithmInfo to initialize an algorithm
object from the encoded algorithm identifier. You call B_GetAlgorithmInfo with this
AI to create an encoded algorithm identifier from an algorithm object that was created
using AI_PKCS_RSAPublic, AI_PKCS_RSAPublicBER, or AI_PKCS_RSAPublicPEM.

Type of information this allows you to use:
an RFC 1423 identifier that specifies the RSA algorithm for performing public key
encryption as defined in PKCS #1. When encrypting, this algorithm encodes the data
according to block type 02. When decrypting, this algorithm decodes the data from a
block type 01. This algorithm info type is intended to process the asymmetric
encryption identifier in a MIC-Info and Key-Info field in a PEM encapsulated header.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a null-terminated string (char *) that gives the RSA identifier. For example,
“RSA”. Space and tab characters are removed from the string before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an identifier other than RSA.

Format of info returned by B_GetAlgorithmInfo:
pointer to a null-terminated string that gives the RSA identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. Note that B_EncryptUpdate and
B_EncryptFinal require a random algorithm. You may pass
(B_ALGORITHM_OBJ)NULL_PTR for the randomAlgorithm argument in B_DecryptUpdate
and B_DecryptFinal.

Algorithm methods to include in application’s algorithm chooser:

AM_RSA_ENCRYPT for encryption or AM_RSA_DECRYPT for decryption.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 6 5

AI_PKCS_RSAPublicPEM
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSAPublic, KI_RSAPublicBER, or KI_RSAPublicBSAFE1.

Compatible representation:

AI_PKCS_RSAPublic, AI_PKCS_RSAPublicBER.

Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is the key’s
modulus size in bytes.

Output considerations:
The output of encryption will be the same size as the key’s modulus.
1 6 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC2_CBC
AI_RC2_CBC

Purpose:
This AI allows you to perform RC2 encryption or decryption in CBC mode with an 8-
byte initialization vector. During encryption, this algorithm does not pad the output.
Thus, you must provide input that is a multiple of 8 bytes. See AI_RC2_CBCPad for the
same algorithm with padding. RC2 is a variable-key-size block cipher which means
that the key can be anywhere between 1 and 128 bytes. The larger the key, the greater
the security. RC2 is described in RFC 2268, and the CBC mode is similar to the one
described in RFC 2040.

Other algorithms that can be used for encryption/decryption in CBC mode without
padding are AI_DES_CBC_IV8, AI_DES_EDE3_CBC_IV8, AI_DESX_CBC_IV8, and
AI_RC5_CBC.

Type of information this allows you to use:
an effective key size and an 8-byte initialization vector for the RC2-CBC encryption
algorithm.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_RC2_CBC_PARAMS structure:

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_RC2_CBC_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

typedef struct {
 unsigned int effectiveKeyBits; /* effective key size in bits */
 unsigned char *iv; /* initialization vector */
} A_RC2_CBC_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 6 7

AI_RC2_CBC
Algorithm methods to include in application’s algorithm chooser:

AM_RC2_CBC_ENCRYPT for encryption and AM_RC2_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_8Byte, KI_Item, KI_RC2WithBSAFE1Params, or KI_RC2_BSAFE1.

Input constraints:
During encryption, this algorithm does not pad the output. Thus, you must provide
input that is a mulitple of 8 bytes.

Token-based algorithm methods:

AI_RC2_CBC may be used to access the hardware-related algorithm
methods AM_TOKEN_RC2_CBC_ENCRYPT and AM_TOKEN_RC2_CBC_DECRYPT, for use with
BHAPI.

Token-based key info types:
When used with one of the hardware algorithm methods listed above, AI_RC2_CBC
should be used with KI_Token or KI_ExtendedToken.
1 6 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC2_CBC_BSAFE1
AI_RC2_CBC_BSAFE1

Purpose:
Deprecated. This AI is included only for backward compatibility.

Type of information this allows you to use:
the encryption type parameter (pad, pad with checksum, or raw) for the RC2
encryption algorithm as defined by BSAFE 1.x. Note that RC2 is the same as SX1.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_BSAFE1_ENCRYPTION_PARAMS structure:

encryptionType should be set to B_BSAFE1_PAD for pad mode, B_BSAFE1_PAD_CHECKSUM
for pad with checksum mode, or B_BSAFE1_RAW for raw mode.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_BSAFE1_ENCRYPTION_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_RC2_CBC_ENCRYPT for encryption and AM_RC2_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RC2WithBSAFE1Params or KI_RC2_BSAFE1.

typedef struct {
 int encryptionType; /* encryption type */
} B_BSAFE1_ENCRYPTION_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 6 9

AI_RC2_CBC_BSAFE1
Input constraints:
During encryption, this algorithm does not pad the output. Thus, you must provide
input that is a mulitple of 8 bytes.

Output considerations:
In pad mode, the total number of output bytes from encryption can be as many as 8
more than the total input. In pad with checksum mode, the total number of output
bytes from encryption can be as many as 16 more than the total input.
1 7 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC2_CBCPad
AI_RC2_CBCPad

Purpose:
This AI allows you to perform RC2 encryption or decryption in CBC mode with an 8-
byte initialization vector. This algorithms pads as described in PKCS #5, so the input
data does not have to be a multiple of 8 bytes. RC2 is a variable-key-size block cipher
which means that the key can be anywhere between 1 and 128 bytes. The larger the
key, the greater the security. RC2 is described in RFC 2268, and CBC mode is similar
to the one described in RFC 2040.

Other algorithms that can be used for encryption/decryption in CBC mode with
padding are AI_DES_CBCPadIV8, AI_DES_EDE3_CBCPadIV8, AI_DESX_CBCPadIV8, and
AI_RC5_CBCPad.

Type of information this allows you to use:
an 8-byte initialization vector and effective key size for the RC2-CBC With Padding
encryption algorithm.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_RC2_CBC_PARAMS structure:

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_RC2_CBC_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

typedef struct {
 unsigned int effectiveKeyBits; /* effective key size in bits */
 unsigned char *iv; * initialization vector */
} A_RC2_CBC_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 7 1

AI_RC2_CBCPad
Algorithm methods to include in application’s algorithm chooser:

AM_RC2_CBC_ENCRYPT for encryption and AM_RC2_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_8Byte, KI_Item, KI_RC2WithBSAFE1Params, or KI_RC2_BSAFE1.

Compatible representation:

AI_RC2_CBCPadBER, AI_RC2_CBCPadPEM.

Output considerations:
During encryption, this AI pads the output. Thus, the total number of output bytes
from enryption can be as many as 8 bytes more than the total output.
1 7 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC2_CBCPadBER
AI_RC2_CBCPadBER

Purpose:
This AI is similar to AI_RC2_CBCPad except that it uses the ASN.1 BER format. This AI
allows you to parse and create ASN.1 algorithm identifiers such as used in PKCS #7
and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm object
from the encoded algorithm identifier which includes ASN.1 encoding of the
A_RC2_CBC_PARAMS structure defined in the description of AI_RC2_CBCPad. You call
B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from an
algorithm object that was created using AI_RC2_CBCPad, AI_RC2_CBCPadBER or
AI_RC2_CBCPadPEM. The OID for this algorithm, excluding the tag and length bytes, in
decimal is "42, 134, 72, 134, 247, 13, 3, 2".

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the RC2-CBC With Padding
encryption algorithm.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than RC2-CBC With Padding.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_RC2_CBC_ENCRYPT for encryption and AM_RC2_CBC_DECRYPT for decryption.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 7 3

AI_RC2_CBCPadBER
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_8Byte, KI_Item, KI_RC2WithBSAFE1Params, or KI_RC2_BSAFE1.

Compatible representation:

AI_RC2_CBCPad, AI_RC2_CBCPadPEM.

Output considerations:
During encryption, this AI pads the output. Thus, the total number of output bytes
from enryption can be as many as 8 bytes more than the total output.
1 7 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC2_CBCPadPEM
AI_RC2_CBCPadPEM

Purpose:
This AI is similar to AI_RC2_CBCPad except that it uses the PEM format. This AI allows
you to parse and create PEM algorithm identifiers such as used in Privacy Enhanced
Mail protocol. You call B_SetAlgorithmInfo to initialize an algorithm object from the
encoded algorithm identifier which includes PEM encoding of the A_RC2_CBC_PARAMS
structure defined in the description of AI_RC2_CBCPad. You call B_GetAlgorithmInfo
with this AI to create an encoded algorithm identifier from an algorithm object that
was created using AI_RC2_CBCPad, AI_RC2_CBCPadBER, or AI_RC2_CBCPadPEM.

Type of information this allows you to use:
an RFC 1423-style identifier that specifies the RC2-CBC With Padding encryption
algorithm. This algorithm info type is intended to process the value of a DEK-Info
field in a PEM encapsulated header.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a null-terminated string (char *) that gives the RC2-CBC identifier and
parameters. For example, “RC2-CBC,BAgRIjNEVWZ3iA==”. Space and tab characters are
removed from the string before it is copied to the algorithm object.
B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the algorithm identifier
specifies an identifier other than RC2-CBC.

Format of info returned by B_GetAlgorithmInfo:
pointer to a null-terminated string that gives the RC2-CBC identifier and parameters.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_RC2_CBC_ENCRYPT for encryption and AM_RC2_CBC_DECRYPT for decryption.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 7 5

AI_RC2_CBCPadPEM
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_8Byte, KI_Item, KI_RC2WithBSAFE1Params, or KI_RC2_BSAFE1.

Compatible representation:

AI_RC2_CBCPad, AI_RC2_CBCPadBER.

Output considerations:
During encryption, this AI pads the output. Thus, the total number of output bytes
from enryption can be as many as 8 bytes more than the total output.
1 7 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC4
AI_RC4

Purpose:
This AI allows you to perform RC4 encryption and decryption. RC4 is a stream cipher
and its description can be found in B. Schneier's book Applied Cryptography. Because it
is a stream cipher, there are no restrictions on the length of input data. A similar
algorithm that allows you to authenticate the encrypted data is AI_RC4WithMAC.

Type of information this allows you to use:
the RC4 encryption algorithm.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Due to the nature of the RC4 algorithm, security is compromised if multiple data
blocks are encrypted with the same RC4 key. Therefore, B_EncryptUpdate cannot be
called after B_EncryptFinal. To begin an encryption operation for a new data block,
you must call B_EncryptInit and supply a new key.

Algorithm methods to include in application’s algorithm chooser:

AM_RC4_ENCRYPT for encryption and AM_RC4_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the address and length of the RC4 key.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 7 7

AI_RC4
Compatible representation:

AI_RC4_BER.

Token-based algorithm methods:

AI_RC4 may be used to access the hardware-related algorithm methods
AM_TOKEN_RC4_ENCRYPT and AM_TOKEN_RC4_DECRYPT, for use with BHAPI.

Token-based key info types:
When used with one of the hardware algorithm methods listed above, AI_RC4 should
be used with KI_Token or KI_ExtendedToken.
1 7 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC4_BER
AI_RC4_BER

Purpose:
This AI is similar to AI_RC4 except that it uses the ASN.1 BER format. This AI allows
you to parse and create ASN.1 algorithm identifiers such as those used in PKCS #7
and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm object
from the encoded algorithm identifier. You call B_GetAlgorithmInfo with this AI to
create an encoded algorithm identifier from an algorithm object that was created
using AI_RC4 or AI_RC4_BER. The OID for this algorithm, excluding the tag and length
bytes, in decimal is "42, 134, 72, 134, 247, 13, 3, 4".

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the RC4 encryption algorithm.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than RC4.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Due to the nature of the RC4 algorithm, security is compromised if multiple data
blocks are encrypted with the same RC4 key. Therefore, B_EncryptUpdate cannot be
called after B_EncryptFinal. To begin an encryption operation for a new data block,
you must call B_EncryptInit and supply a new key.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 7 9

AI_RC4_BER
Algorithm methods to include in application’s algorithm chooser:

AM_RC4_ENCRYPT for encryption and AM_RC4_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the address and length of the RC4 key.

Compatible representation:

AI_RC4.
1 8 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC4WithMAC
AI_RC4WithMAC

Purpose:
This AI implements a stream cipher with a simple tamper-detection message
authentication code based on AI_MAC. When applied to a plaintext buffer of N bytes, it
produces a ciphertext of N bytes using the same algorithm as AI_RC4, and then it
appends a MAC of macLen bytes. You can find the description of AI_RC4 in B.
Schneier's Applied Cryptography, and the detailed description of AI_MAC can be found
in Appendix B.

Type of information this allows you to use:
the RC4 With MAC encryption algorithm. The MAC is computed using AI_MAC by
first passing the key to AI_MAC, then the plaintext, and finally a block of macLen zero
bytes. The resulting value from AI_MAC is appended to the ciphertext. For decryption,
the MAC value is checked.

The key passed to both AI_RC4 and AI_MAC is created by appending the salt bytes to
the end of the key passed to B_EncryptInit or B_DecryptInit. That is, for this AI, the
RC4 key depends on the salt as well as the key object passed to Init routine.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_RC4_WITH_MAC_PARAMS structure:

The salt ITEM supplies the salt value that is appended to the key, where the ITEM’s
data points to an unsigned byte array and the ITEM’s len gives its length. If the length
is zero, no salt is appended to the key, and the ITEM’s data is ignored. macLen has a
minimum of 2 and maximum of 16.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_RC4_WITH_MAC_PARAMS structure (see above).

typedef struct {
 ITEM salt; /* variable-length salt */
 unsigned int macLen; /* length to use for MAC value */
} B_RC4_WITH_MAC_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 8 1

AI_RC4WithMAC
Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. B_DecryptFinal returns BE_INPUT_DATA if the
MAC does not match. You may pass (B_ALGORITHM_OBJ)NULL_PTR for all
randomAlgorithm arguments.

Due to the nature of the RC4 algorithm, security is compromised if multiple data
blocks are encrypted with the same RC4 key. Therefore, B_EncryptUpdate cannot be
called after B_EncryptFinal. To begin an encryption operation for a new data block,
you must call B_EncryptInit and supply a new key.

Algorithm methods to include in application’s algorithm chooser:

AM_RC4_WITH_MAC_ENCRYPT for encryption, or AM_RC4_WITH_MAC_DECRYPT for
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the address and length of the RC4 key.

Compatible representation:

AI_RC4WithMAC_BER.

Output considerations:
The total number of output bytes from encryption will be macLen bytes more than the
input.

Token-based algorithm methods:
AI_RC4WithMAC may be used to access the hardware-related algorithm
methods AM_TOKEN_RC4_ENCRYPT and AM_TOKEN_RC4_DECRYPT, for use with BHAPI.

Token-based key info types:
When used with one of the hardware algorithm methods listed above, AI_RC4WithMac
should be used with KI_Token or KI_ExtendedToken.
1 8 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC4WithMAC_BER
AI_RC4WithMAC_BER

Purpose:
This AI is similar to AI_RC4WithMAC except that it uses the ASN.1 BER format. This AI
allows you to parse and create ASN.1 algorithm identifiers such as used in PKCS #7
and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm object
from the encoded algorithm identifier which includes ASN.1 encoding of the
B_RC4_WITH_MAC_PARAMS structure defined in the description of AI_RC4WithMAC. You
call B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from
an algorithm object that was created using AI_RC4WithMAC or AI_RC4WithMAC_BER.
The OID for this algorithm, excluding the tag and length bytes, in decimal is "42, 134,
72, 134, 247, 13, 3, 5".

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the RC4 With MAC encryption
algorithm.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than RC4.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. B_DecryptFinal returns BE_INPUT_DATA if the
MAC does not match. You may pass (B_ALGORITHM_OBJ)NULL_PTR for all
randomAlgorithm arguments.

Due to the nature of the RC4 algorithm, security is compromised if multiple data
blocks are encrypted with the same RC4 key. Therefore, B_EncryptUpdate cannot be
called after B_EncryptFinal. To begin an encryption operation for a new data block,
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 8 3

AI_RC4WithMAC_BER
you must call B_EncryptInit and supply a new key.

Algorithm methods to include in application’s algorithm chooser:

AM_RC4_WITH_MAC_ENCRYPT for encryption or AM_RC4_WITH_MAC_DECRYPT for
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the address and length of the RC4 key.

Compatible representation:

AI_RC4WithMAC.

Output considerations:
The total number of output bytes from encryption will be macLen bytes more than the
input.
1 8 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC5_CBC
AI_RC5_CBC

Purpose:
This AI allows you to perform RC5 encryption and decryption in CBC mode with an
8-byte initialization vector and a variable number of rounds, as defined in RFC 2040.
Since AI_RC5_CBC does not pad, the total number of input bytes must be a multiple of
8 bytes. See AI_RC5_CBCPad for the same algorithm with padding.

Other algorithms that can be used for encryption/decryption in CBC mode without
padding are AI_DES_CBC_IV8, AI_DES_EDE3_CBC_IV8, AI_DESX_CBC_IV8, and
AI_RC2_CBC.

Type of information this allows you to use:
a version number, a rounds count, a word size, and an 8-byte initialization vector for
the RC5 32/r/b CBC encryption algorithm.

Note: To implement RC5 with a word size other than 32 bits, you should use
AI_FeedbackCipher.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_RC5_CBC_PARAMS structure:

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_RC5_CBC_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

typedef struct {
 unsigned int version; /* currently 1.0 defined 0x10 */
 unsigned int rounds; /* number of rounds (0 - 255) */
 unsigned int wordSizeInBits; /* AI_RC5_CBC requires 32 */
 unsigned char *iv; /* initialization vector (8 bytes) */
} A_RC5_CBC_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 8 5

AI_RC5_CBC
Algorithm methods to include in application’s algorithm chooser:

AM_RC5_CBC_ENCRYPT for encryption and AM_RC5_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item, that gives the address and length of the RC5 key.

Input Constraints:
During encryption, this algorithm does not pad the output. Thus, you must provide
input that is a mulitple of 8 bytes.

Token-based algorithm methods:

AI_RC5_CBC may be used to access the hardware-related (BHAPI)
algorithm methods AM_TOKEN_RC5_CBC_ENCRYPT and AM_TOKEN_RC5_CBC_DECRYPT.

Token-based key info types:
When used with one of the hardware algorithm methods listed above, AI_RC5_CBC
should be used with KI_Token or KI_ExtendedToken.
1 8 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC5_CBCPad
AI_RC5_CBCPad

Purpose:
This AI allows you to perform RC5 encryption or decryption in CBC mode with an 8-
byte initialization vector and a variable number of rounds, as defined in RFC 2040.
This algorithms pads, so the input data does not have to be a multiple of 8 bytes.

Other algorithms that can be used for encryption/decryption in CBC mode with
padding are AI_DES_CBCPadIV8, AI_DES_EDE3_CBCPadIV8, AI_DESX_CBCPadIV8, and
AI_RC2_CBCPad.

Type of information this allows you to use:
a version number, a rounds count, a word size, and an 8-byte initialization vector for
the RC5 32/r/b CBC encryption algorithm.

Note: To implement RC5 with a word size other than 32 bits, use
AI_FeedbackCipher.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_RC5_CBC_PARAMS structure:

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_RC5_CBC_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

typedef struct {
 unsigned int version; /* currently 1.0 defined 0x10 */
 unsigned int rounds; /* number of rounds (0 - 255) */
 unsigned int wordSizeInBits; /* AI_RC5_CBCPad requires 32 */
 unsigned char *iv; /* initialization vector (8 bytes) */
} A_RC5_CBC_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 8 7

AI_RC5_CBCPad
Algorithm methods to include in application’s algorithm chooser:

AM_RC5_CBC_ENCRYPT for encryption and AM_RC5_CBC_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item, that gives the address and length of the RC5 key.

Compatible representation:

AI_RC5_CBCPadBER.

Output considerations:
During encryption, this AI pads the output. Thus, the total number of output bytes
from enryption can be as many as 8 bytes more than the total output.
1 8 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RC5_CBCPadBER
AI_RC5_CBCPadBER

Purpose:
This AI is similar to AI_RC5_CBCPad except that it uses the ASN.1 BER format. This AI
allows you to parse and create ASN.1 algorithm identifiers such as those used in
PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize an algorithm
object from the encoded algorithm identifier, which includes ASN.1 encoding of the
A_RC5_CBC_PARAMS structure defined in the description of AI_RC5_CBCPad. You call
B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from an
algorithm object that was created using AI_RC5_CBCPad, AI_RC5_CBCPadBER or
AI_RC5_CBCPadPEM. The OID for this algorithm, excluding the tag and length bytes, in
decimal is "42, 134, 72, 134, 247, 13, 3, 9".

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the RC5 32/r/b CBC encryption
algorithm.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than RC5-CBC With Padding.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_RC5_CBC_ENCRYPT for encryption and AM_RC5_CBC_DECRYPT for decryption.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 8 9

AI_RC5_CBCPadBER
Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item, which gives the address and length of the RC5 key.

Compatible representation:

AI_RC5_CBCPad.

Output considerations:
During encryption, this AI pads the output. Thus, the total number of output bytes
from enryption can be as many as 8 bytes more than the total output.
1 9 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RESET_IV
AI_RESET_IV

Purpose:
This AI allows you to change the initialization vector (IV) for a cipher object created
with AI_FeedbackCipher without the need to create a new algorithm object or bind in
a new key. This increases the performance of applications that have a long-lived
symmetric key (e.g., DES key) that is used to encrypt many blocks or messages, each
of which has a unique IV.

A similar AI that can be used to change the IV of a CBC mode cipher is AI_CBC_IV8.

Type of Information this allows you to use:
a new initialization vector to reset an encryption/decryption object defined with
AI_FeedbackCipher.

Format of info supplied to B_SetAlgorithmInfo
a pointer to an ITEM of length equal to the old initialization vector.

Format of info returned by B_GetAlgorithmInfo returns
a pointer to an ITEM.

Algorithm methods to include in chooser
none.

Note: Reinitialization may be done anytime after an encryption/decryption has
been set with its algorithm info. It takes effect after the next initialization. It
may be used in conjunction with a new key to start a new encryption/
decryption session.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 9 1

AI_RFC1113Recode
AI_RFC1113Recode

Purpose:
This AI allows you to convert data from binary format to ASCII, and vice versa, as
defined by RFC 1113.

Type of information this allows you to use:
the binary to printable recoding algorithm as defined by RFC 1113; see also RFC 1421
for updated version of the standard.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_EncodeInit, B_EncodeUpdate, B_EncodeFinal, B_DecodeInit, B_DecodeUpdate, and
B_DecodeFinal.

Output considerations:
When encoding, for each 3 bytes of input there are 4 bytes of output. When decoding,
for each 4 bytes of input there are 3 bytes of output.
1 9 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RSAKeyGen
AI_RSAKeyGen

Purpose:
This AI allows you to specify the parameters for generating an RSA public/private
key pair as defined in PKCS #1. You may also use AI_RSAStrongKeyGen to generate
RSA key pairs.

Type of information this allows you to use:
the parameters for generating an RSA public/private key pair as defined in PKCS #1,
where the modulus size and public exponent are specified.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_RSA_KEY_GEN_PARAMS structure:

The publicExponent ITEM supplies an integer in canonical format, where the ITEM’s
data points to an unsigned byte array -- most significant byte first -- and the ITEM’s len
gives its length. All leading zeros are stripped from the integer before it is copied to
the algorithm object.

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_RSA_KEY_GEN_PARAMS structure (see above). All leading zeros have
been stripped from the publicExponent integer.

Crypto-C procedures to use with algorithm object:

B_GenerateInit and B_GenerateKeypair. B_GenerateKeypair sets the publicKey key
object with the KI_RSAPublic information and the privateKey key object with the
KI_PKCS_RSAPrivate information. You must pass an initialized random algorithm to
B_GenerateKeypair.

typedef struct {
 unsigned int modulusBits; /* size of modulus in bits */
 ITEM publicExponent; /* fixed public exponent */
} A_RSA_KEY_GEN_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 9 3

AI_RSAKeyGen
Algorithm methods to include in application’s algorithm chooser:

AM_RSA_KEY_GEN.
1 9 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RSAPrivate
AI_RSAPrivate

Purpose:
This AI allows you to encrypt data using the raw RSA algorithm. You can find the
description of this algorithm in B. Schneier's Applied Cryptography.

AI_RSAPrivate is different from AI_PKCS_RSAPrivate because the former allows you
to encrypt raw data, while the latter encrypts data in PKCS #1 format.

Because this algorithm does not pad, the total number of input bytes must be a
multiple of the key’s modulus size in bytes. Your application is responsible for
padding the data as appropriate. Also, each modulus-size block of input, interpreted
as an integer with the most significant byte first, must be numerically less than the
key’s modulus. To do this, divide your data into blocks that are one byte smaller than
the modulus, and prepend one byte of zeros to each block.

To perform RSA encryption you can also use AI_PKCS_RSAPrivate and
AI_SET_OAEP_RSAPrivate. But you can use AI_RSAPrivate only if the data will be
decrypted with AI_RSAPublic.

Type of information this allows you to use:
the RSA algorithm for performing raw private-key encryption.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_RSA_CRT_ENCRYPT or AM_RSA_CRT_ENCRYPT_BLIND for encryption, or
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 9 5

AI_RSAPrivate
AM_RSA_CRT_DECRYPT or AM_RSA_CRT_DECRYPT_BLIND for decryption.

AM_RSA_CRT_ENCRYPT_BLIND and AM_RSA_CRT_DECRYPT_BLIND perform blinding to
protect against timing attacks, whereas AM_RSA_CRT_ENCRYPT and
AM_RSA_CRT_DECRYPT does not.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, or KI_RSAPrivateBSAFE1.

Input constraints:
Because this algorithm does not pad, the total number of input bytes must be a
multiple of the key’s modulus size in bytes. Also, each modulus-size block of input,
interpreted as an integer with the most significant byte first, must be numerically less
than the key’s modulus.

Token-based algorithm methods:

AI_RSAPrivate may include the hardware algorithm method
AM_TOKEN_RSA_CRT_ENCRYPT or AM_TOKEN_RSA_CRT_DECRYPT in the algorithm chooser,
for use with BHAPI.

Token-based key info types:
When used with one of the hardware algorithm methods described, AI_RSAPrivate
should be used with KI_Token or KI_KeypairToken.
1 9 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RSAPrivateBSAFE1
AI_RSAPrivateBSAFE1

Purpose:
Deprecated. This AI is included only for backward compatibility.

Type of information this allows you to use:
the encryption type parameter (pad, pad with checksum, or raw) for performing RSA
private key encryption as defined by BSAFE 1.x.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_BSAFE1_ENCRYPTION_PARAMS structure:

encryptionType should be set to B_BSAFE1_PAD for pad mode, B_BSAFE1_PAD_CHECKSUM
for pad with checksum mode, or B_BSAFE1_RAW for raw mode.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_BSAFE1_ENCRYPTION_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. Note that for pad mode or pad with
checksum mode, B_EncryptUpdate, and B_EncryptFinal require a random algorithm.
You may pass (B_ALGORITHM_OBJ)NULL_PTR for the randomAlgorithm argument in
B_DecryptUpdate and B_DecryptFinal.

Notes:
If the input and output buffers of the RSA operation are interpreted as integers, the
BSAFE 1.x format puts the least significant byte of the integer at the beginning of the
buffer. This is in reverse order from algorithms in BSAFE 2.1 and above, such as
AI_RSAPrivate and AI_PKCS_RSAPrivate, which put the most significant byte of the

typedef struct {
 int encryptionType; /* encryption type */
} B_BSAFE1_ENCRYPTION_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 9 7

AI_RSAPrivateBSAFE1
integer at the beginning of the buffer.

Algorithm methods to include in application’s algorithm chooser:

AM_RSA_CRT_ENCRYPT or AM_RSA_CRT_ENCRYPT_BLIND for encryption, or
AM_RSA_CRT_DECRYPT or AM_RSA_CRT_DECRYPT_BLIND for decryption.

AM_RSA_CRT_ENCRYPT_BLIND and AM_RSA_CRT_DECRYPT_BLIND perform blinding to
protect against timing attacks, whereas AM_RSA_CRT_ENCRYPT and
AM_RSA_CRT_DECRYPT do not.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, or KI_RSAPrivateBSAFE1.

Input constraints:
In raw mode, the total number of input bytes must be a multiple of the key’s modulus
size in bytes. Also, each modulus-size block of input, interpreted as an integer with
the most significant byte first, must be numerically less than the key’s modulus.

Output considerations:
In pad mode and in pad with checksum mode, the output can be as large as one block
greater than the number of input blocks, where each block is the size of the key’s
modulus size in bytes. For instance, given a 512-bit (64-byte) key and input of 64 bytes
or less (one block), the output can be either 64 or 128 bytes long. With input of more
than 64 bytes but less than or equal to 128 (two blocks), the output can be either 128 or
192 bytes long.
1 9 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RSAPublic
AI_RSAPublic

Purpose:
This AI allows you to decrypt data using the raw RSA algorithm. You can find the
description of this algorithm in B. Schneier's Applied Cryptography.

AI_RSAPublic is different from AI_PKCS_RSAPublic because the latter allows you to
decrypt k-11 bytes, where k is the size of the modulus in bytes, while you can use the
former to decrypt up to k bytes. Note that it is the application’s responsibility to strip
the padding that was appended by the application to the data during encryption with
AI_RSAPrivate.

Because this algorithm does not pad, the total number of input bytes must be a
multiple of the key’s modulus size in bytes. Also, each modulus-size block of input,
interpreted as an integer with the most significant byte first, must be numerically less
than the key's modulus.

To perform RSA decryption you can also use AI_PKCS_RSAPublic and
AI_SET_OAEP_RSAPublic. But you can use AI_RSAPublic only if the data has been
encrypted with AI_RSAPrivate.

Type of information this allows you to use:
the RSA algorithm for performing raw public-key decryption.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 1 9 9

AI_RSAPublic
Algorithm methods to include in application’s algorithm chooser:

AM_RSA_ENCRYPT for encryption or AM_RSA_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSAPublic, KI_RSAPublicBER, or KI_RSAPublicBSAFE1.

Input constraints:
Because this algorithm does not pad, the total number of input bytes must be a
multiple of the key’s modulus size in bytes. Also, each modulus-size block of input,
interpreted as an integer with the most significant byte first, must be numerically less
than the key’s modulus.

Token-based algorithm methods:

AI_RSAPublic may include the hardware algorithm methods
AM_TOKEN_RSA_ENCRYPT, AM_TOKEN_RSA_DECRYPT, and AM_TOKEN_RSA_PUB_DECRYPT in
the algorithm chooser for use with BHAPI.

Token-based key info types:
When used with one of the hardware algorithm methods described, AI_RSAPublic
should be used with KI_Token or KI_KeypairToken.
2 0 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RSAPublicBSAFE1
AI_RSAPublicBSAFE1

Purpose:
Deprecated. This AI is included only for backward compatibility.

Type of information this allows you to use:
the decryption type parameter (pad, pad with checksum, or raw) for performing RSA
public key decryption as defined by BSAFE 1.x.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_BSAFE1_ENCRYPTION_PARAMS structure:

encryptionType should be set to B_BSAFE1_PAD for pad mode, B_BSAFE1_PAD_CHECKSUM
for pad with checksum mode, or B_BSAFE1_RAW for raw mode.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_BSAFE1_ENCRYPTION_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. Note that for pad mode or pad with
checksum mode, B_EncryptUpdate and B_EncryptFinal require a random algorithm.
You may pass (B_ALGORITHM_OBJ)NULL_PTR for the randomAlgorithm argument in
B_DecryptUpdate and B_DecryptFinal.

Notes:
If the input and output buffers of the RSA operation are interpreted as integers, the
BSAFE 1.x format puts the least significant byte of the integer at the beginning of the
buffer. This is in reverse order from algorithms in BSAFE 2.1 and above, such as
AI_RSAPublic and AI_PKCS_RSAPublic, which put the most significant byte of the

typedef struct {
 int encryptionType; /* encryption type */
} B_BSAFE1_ENCRYPTION_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 0 1

AI_RSAPublicBSAFE1
integer at the beginning of the buffer.

Algorithm methods to include in application’s algorithm chooser:

AM_RSA_ENCRYPT for encryption or AM_RSA_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSAPublic, KI_RSAPublicBER, or KI_RSAPublicBSAFE1.

Input constraints:
In raw mode, the total number of input bytes must be a multiple of the key’s modulus
size in bytes. Also, each modulus-size block of input, interpreted as an integer with
the most significant byte first, must be numerically less than the key’s modulus.

Output considerations:
In pad mode and in pad with checksum mode, the output can be as large as one block
greater than the number of input blocks, where each block is the size of the key’s
modulus size in bytes. For instance, given a 512-bit (64-byte) key and input of 64 bytes
or less (one block), the output can be either 64 or 128 bytes long. With input of more
than 64 bytes but less than or equal to 128 (two blocks), the output can be either 128 or
192 bytes long.
2 0 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_RSAStrongKeyGen
AI_RSAStrongKeyGen

Purpose:
This AI allows you to specify the parameters for generating an RSA public/private
key pair as defined in PKCS #1. The moduli generated are in conformance with the
strength criteria of the ANSI X9.31 Draft. If this conformance is not desired, you may
use a faster AI_RSAKeyGen to generate RSA key pairs.

Type of information this allows you to use:
the parameters for generating an RSA public/private key pair as defined in PKCS #1,
where the modulus size and public exponent are specified. The moduli generated are
in conformance with the strength criteria of the ANSI X9.31 Draft.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_RSA_KEY_GEN_PARAMS structure:

The publicExponent ITEM supplies an integer in canonical format, where the ITEM’s
data points to an unsigned byte array, most significant byte first and the ITEM’s len
gives its length. All leading zeros are stripped from the integer before it is copied to
the algorithm object. modulusBits must be at least 512 and must be a multiple of 16.

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_RSA_KEY_GEN_PARAMS structure (see above). All leading zeros have
been stripped from the publicExponent integer.

Crypto-C procedures to use with algorithm object:

B_GenerateInit and B_GenerateKeypair. B_GenerateKeypair sets the publicKey key
object with the KI_RSAPublic information and the privateKey key object with the
KI_PKCS_RSAPrivate information. You must pass an initialized random algorithm to
B_GenerateKeypair.

typedef struct {
 unsigned int modulusBits; /* size of modulus in bits */
 ITEM publicExponent; /* fixed public exponent */
} A_RSA_KEY_GEN_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 0 3

AI_RSAStrongKeyGen
Algorithm methods to include in application’s algorithm chooser:

AM_RSA_STRONG_KEY_GEN.
2 0 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_SET_OAEP_RSAPrivate
AI_SET_OAEP_RSAPrivate

Purpose:
This AI allows you to decrypt data encrypted using AI_SET_OAEP_RSAPublic. This
algorithm is used by the Secure Electronic Transaction (SET) protocol defined by Visa
and MasterCard in the SET 1.0 specification released August 1, 1996. It replaces PKCS
#1 v1.5 padding with a form of Optimal Asymmetric Encryption Padding (OAEP)
that was developed for the SET protocol. OAEP provides protection against
cryptanalytic attacks on the padding algorithm which are possible when most of the
message being encrypted is known to the attacker. A more standard form of OAEP is
now part of version 2.0 of the PKCS #1 standard and is implemented by
AI_PKCS_OAEP_RSAPrivate and AI_PKCS_OAEP_RSAPublic.

Type of information this allows you to use:
the RSA algorithm for performing private key decryption following the OAEP
procedure outlined in the Aug. 1, 1996 version of the SET specifications.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, and B_EncryptFinal for encryption, and
B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal for decryption.
B_EncryptUpdate and B_EncryptFinal require a random algorithm. You may pass
(B_ALGORITHM_OBJ)NULL_PTR for the randomAlgorithm argument in B_DecryptUpdate
and B_DecryptFinal.

Algorithm methods to include in application’s algorithm chooser:

AM_RSA_CRT_ENCRYPT or AM_RSA_CRT_ENCRYPT_BLIND for encryption and
AM_RSA_CRT_DECRYPT or AM_RSA_CRT_DECRYPT_BLIND for decryption.
AM_RSA_CRT_ENCRYPT_BLIND and AM_RSA_CRT_DECRYPT_BLIND will perform blinding to
protect against timing attacks, whereas AM_RSA_CRT_ENCRYPT and
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 0 5

AI_SET_OAEP_RSAPrivate
AM_RSA_CRT_DECRYPT do not.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, or KI_RSAPrivateBSAFE1.

Input considerations:
The key size, in bits, must be a multiple of 8. For instance, 1024 is a valid key size; 1030
is not.

If encrypting, the total number of bytes to encrypt must be 25 fewer than the key size
in bytes. For instance, with a 1024-bit key (128-bytes) the input must be 103-bytes
(128 - 25). The SET standard calls for the input data to follow a particular format. The
first byte is the block content (BC) and the following bytes are the actual data bytes
(ADB). This AI does not check whether those bytes adhere to the SET specifications.

Output considerations:
The output of encryption will be the same size as the key’s modulus. The output of
decryption will be 25 bytes fewer than the key size in bytes.
2 0 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_SET_OAEP_RSAPublic
AI_SET_OAEP_RSAPublic

Purpose:
This AI allows you to encrypt data which will be decrypted using
AI_SET_OAEP_RSAPrivate. This algorithm is used by the Secure Electronic Transaction
(SET) protocol defined by Visa and MasterCard in the SET 1.0 specification released
August 1, 1996. It replaces PKCS #1 v1.5 padding with a form of Optimal Asymmetric
Encryption Padding (OAEP) that was developed for the SET protocol. OAEP provides
protection against cryptanalytic attacks on the padding algorithm which are possible
when most of the message being encrypted is known to the attacker. A more standard
form of OAEP is now part of version 2.0 of the PKCS #1 standard and is implemented
by AI_PKCS_OAEP_RSAPrivate and AI_PKCS_OAEP_RSAPublic.

Type of information this allows you to use:
the RSA algorithm for performing public key encryption following the OAEP
procedure outlined in the Aug. 1, 1996 version of the SET specifications.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. B_EncryptUpdate and B_EncryptFinal
require a random algorithm. You may pass (B_ALGORITHM_OBJ)NULL_PTR for the
randomAlgorithm argument in B_DecryptUpdate and B_DecryptFinal.

Algorithm methods to include in application’s algorithm chooser:

AM_RSA_ENCRYPT for encryption and AM_RSA_DECRYPT for decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_RSAPublic, KI_RSAPublicBER, or KI_RSAPublicBSAFE1.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 0 7

AI_SET_OAEP_RSAPublic
Input considerations:
The key size in bits must be a multiple of 8; e.g., 1024 is a valid key size whereas 1030
is not.

If encrypting, the total number of bytes to encrypt must be 25 fewer than the key size
in bytes. For instance, with a 1024-bit key (128-bytes) the input must be 103 bytes
(128 - 25). The SET standard calls for the input data to follow a particular format. The
first byte is the block content (BC) and the following bytes are the actual data bytes
(ADB). This AI does not check whether those bytes adhere to the SET specifications.

Output considerations:
The output of encryption will be the same size as the key’s modulus. The output of
decryption will be 25 bytes fewer than the key size in bytes.
2 0 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_SHA1
AI_SHA1

Purpose:
This AI allows you to create a message digest using the SHA1 digest algorithm as
defined in FIPS PUB 180-1. This algorithm processes input data 64 bytes at a time but
the length of the input does not have to be a multiple of 64 as the algorithm pads
automatically.

The primary use for this AI is to authenticate data. Other algorithms that can be used
for message digesting are AI_MD2 and AI_MD5 and their variants.

Type of information this allows you to use:
the 20-byte SHA1 message digest algorithm as defined in FIPS PUB 180-1.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. Supply NULL_PTR for the
keyObject argument in B_DigestInit.

Algorithm methods to include in application’s algorithm chooser:

AM_SHA.

Compatible representation:
AI_SHA1_BER

Output considerations:
The output of B_DigestFinal will be 20 bytes long.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 0 9

AI_SHA1_BER
AI_SHA1_BER

Purpose:
This AI is similar to AI_SHA1 except that it uses the ASN.1 BER format. This AI allows
you to parse and create ASN.1 algorithm identifiers such as used in PKCS #7 and
other protocols. You call B_SetAlgorithmInfo to initialize an algorithm object from
the encoded algorithm identifier. You call B_GetAlgorithmInfo with this AI to create
an encoded algorithm identifier from an algorithm object that was created using
AI_SHA1 or AI_SHA1_BER. The OID for this algorithm, excluding the tag and length
bytes, in decimal is "43, 14, 3, 2, 26".

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the SHA1 message digest
algorithm as defined in FIPS PUB 180-1.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies a message digest algorithm other than SHA1.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_DigestInit, B_DigestUpdate, and B_DigestFinal. Supply NULL_PTR for the
keyObject argument in B_DigestInit.

Algorithm methods to include in application’s algorithm chooser:

AM_SHA.

Compatible representation:
AI_SHA1
2 1 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_SHA1_BER
Output considerations:
The output of B_DigestFinal will be 20 bytes long.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 1 1

AI_SHA1Random
AI_SHA1Random

Purpose:
This AI allows you to generate a stream of pseudo-random numbers which are
guaranteed to have a very high degree of randomness. Random numbers are used in
deriving public and private keys, initialization vectors, etc. This AI uses SHA1 as an
underlying hashing function. The details of this algorithm are available from RSA
Laboratories' Bulletin #8 or online at http://www.rsa.com/rsalabs/html/
bulletins.html.

Other algorithms that can be used to generate pseudo-random numbers are
AI_MD2Random, AI_MD5Random, and AI_X962Random_V0.

Notes:
In this API, AI_SHA1Random is identical to AI_X962Random_V0 (Section 2.97); however,
this identification may change in future versions of Crypto-C. For forward
compatibility, we recommend that you do not use the name AI_SHA1Random in your
applications; use AI_X962Random_V0 instead.

AI_X962Random_V0 provides an implementation of SHA-1 Random that is based on
the X9.62 Draft standard; this is different from the implementation of SHA-1 Random
in RSA Data Security, Inc.'s Java cryptographic toolkit, RSA BSAFE Crypto-J . Future
versions of Crypto-C may implement AI_SHA1Random in a manner compatible with the
implementation provided via the "SHA1Random" value passed to the
JSAFE_SecureRandom class in Crypto-J.
2 1 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_SHA1WithDES_CBCPad
AI_SHA1WithDES_CBCPad

Purpose:
This AI allows you to perform password-based encryption. This means that the input
data will be encrypted with a secret key derived from a password, and it can be
successfully decrypted only when the correct password is provided. Although this AI
can be used to encrypt arbitrary data, its intended primary use is for encrypting
private keys when transferring them from one computer system to another, as
described in PKCS #8.

This AI employs DES secret-key encryption in cipher-block chaining (CBC) mode
with padding, where the secret key is derived from a password using the SHA1
message digest algorithm. The details of this algorithm are contained in PKCS #5. DES
is defined in FIPS PUB 81, and CBC mode of DES is defined in FIPS PUB 46-1. FIPS
PUB 180-1 describes SHA1.

Other algorithms that can be used for password-based encryption are
AI_MD2WithDES_CBCPad, AI_MD2WithRC2_CBCPad, AI_MD5WithRC2_CBCPad, and
AI_MD5WithDES_CBCPad.

Type of information this allows you to use:
the salt and iteration count for the SHA1 With DES-CBC password-based encryption
algorithm. The salt is concatenated with the password before being digested by
SHA1, and the iteration count specifies how many times the digest needs to be run.
The count of 2 indicates that the result of digesting password-and-salt string needs to
be run once more through SHA1. The first 8 bytes of the final digest become the secret
key for the DES cipher after being adjusted for parity as required by FIPS PUB 81, the
next 8 bytes become the initialization vector, and the last 4 bytes are ignored.

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_PBE_PARAMS structure:

RSA Data Security, Inc. recommends a minimum iteration count of 1,000. However,

typedef struct {
 unsigned char *salt; /* pointer to 8-byte salt value */
 unsigned int iterationCount; /* iteration count */
} B_PBE_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 1 3

AI_SHA1WithDES_CBCPad
for an additional byte or two of security the iteration should be 28 to 216.

Format of info returned by B_GetAlgorithmInfo:
pointer to a B_PBE_PARAMS structure (see above).

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, and B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_SHA and AM_DES_CBC_ENCRYPT for encryption or AM_DES_CBC_DECRYPT for
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the address and length of the password.

Compatible representation:
AI_SHA1WithDES_CBCPadBER.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
2 1 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_SHA1WithDES_CBCPadBER
AI_SHA1WithDES_CBCPadBER

Purpose:
This AI is similar to AI_SHA1WithDES_CBCPad except that it uses the ASN.1 BER
format. This AI allows you to parse and create ASN.1 algorithm identifiers such as
those used in PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize
an algorithm object from the encoded algorithm identifier which includes ASN.1
encoding of the B_PBE_PARAMS structure defined in the description of
AI_SHA1WithDES_CBCPad. You call B_GetAlgorithmInfo with this AI to create an
encoded algorithm identifier from an algorithm object that was created using
AI_SHA1WithDES_CBCPad or AI_SHA1WithDES_CBCPad. The OID for this algorithm,
excluding the tag and length bytes, in decimal is "42, 134, 72, 134, 247, 13, 1, 5,
10".

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies the SHA1 With DES-CBC
password-based encryption algorithm, as defined by RSA Data Security, Inc.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than SHA1 With DES-CBC.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_EncryptInit, B_EncryptUpdate, B_EncryptFinal, B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_SHA and AM_DES_CBC_ENCRYPT for encryption or AM_DES_CBC_DECRYPT for
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 1 5

AI_SHA1WithDES_CBCPadBER
decryption.

Key info types for keyObject in B_EncryptInit or B_DecryptInit:

KI_Item that gives the address and length of the password.

Compatible representation:

AI_SHA1WithDES_CBCPad.

Output considerations:
During encryption, this AI pads the output (which DES requires to be a multiple of 8
bytes long). Thus, the total number of output bytes from encryption can be as many as
8 bytes more than the total output.
2 1 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_SHA1WithRSAEncryption
AI_SHA1WithRSAEncryption

Purpose:
This AI allows you to perform signature operations that involve the SHA1 digest
algorithm and RSA public key algorithm. The digest of a message is created using the
SHA1 algorithm and then it is signed using PKCS#1 digital signature algorithm.
Other algorithms that can be used for the same purpose are
AI_MD2WithRSAEncryption and AI_MD5WithRSAEncryption.

Type of information this allows you to use:
RSA Data Security, Inc.'s SHA1 With RSA signature algorithm that uses the SHA1
digest algorithm and RSA to create and verify RSA digital signatures as defined in
PKCS #1.

Note that in order to perform PKCS #1 digital signatures with a 20-byte digest, the
RSA key must be at least 368 bits long.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR.

Format of info returned by B_GetAlgorithmInfo:
NULL_PTR.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm
arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_MD2, and AM_RSA_CRT_ENCRYPT, AM_RSA_CRT_ENCRYPT_BLIND, or AM_RSA_ENCRYPT,
for signature creation; and AM_RSA_DECRYPT for signature verification.
AM_RSA_CRT_ENCRYPT_BLIND performs blinding to protect against timing attacks,
whereas AM_RSA_CRT_ENCRYPT does not.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 1 7

AI_SHA1WithRSAEncryption
Key info types for keyObject in B_SignInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, KI_RSAPrivate or
KI_RSAPrivateBSAFE1. Unless you use KI_RSA_CRT for your KI, you must include
AM_RSA_ENCRYPT in your application’s algorithm chooser.

Key info types for keyObject in B_VerifyInit:

KI_RSAPublic, KI_RSAPublicBER or KI_RSAPublicBSAFE1.

Compatible representation:

AI_SHA1WithRSAEncryptionBER.

Output considerations:
The signature result of B_SignFinal will be the same size as the RSA key’s modulus.

Notes:
Although the RSA signature operation is called “encryption” and the verification
operation is called “decryption”, the signer uses the digest and the private key and
follows the steps needed to decrypt, while the verifier uses the transmitted digest and
the public key and follows the steps needed to encrypt.
2 1 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_SHA1WithRSAEncryptionBER
AI_SHA1WithRSAEncryptionBER

Purpose:
This AI is similar to AI_SHA1WithRSAEncryption except that it uses the ASN.1 BER
format. This AI allows you to parse and create ASN.1 algorithm identifiers such as
those used in PKCS #7 and other protocols. You call B_SetAlgorithmInfo to initialize
an algorithm object from the encoded algorithm identifier. You call
B_GetAlgorithmInfo with this AI to create an encoded algorithm identifier from an
algorithm object that was created using AI_SHA1WithRSAEncryption or
AI_SHA1WithRSAEncryptionBER. The OID for this algorithm, excluding the tag and
length bytes, in decimal is "42, 134, 72, 134, 247, 13, 1, 1, 5".

Type of information this allows you to use:
the encoding of an algorithm identifier that specifies RSA Data Security, Inc.'s SHA1
With RSA signature algorithm that uses the SHA1 digest algorithm and RSA to create
and verify RSA digital signatures as defined in PKCS #1.

Note that in order to perform PKCS #1 digital signatures with a 20-byte digest, the
RSA key must be at least 368 bits long.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the BER-encoded
algorithm identifier. The encoding is converted to DER before it is copied to the
algorithm object. B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the
algorithm identifier specifies an algorithm other than SHA1 With RSA Encryption.

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure that gives the address and length of the DER-encoded
algorithm identifier.

Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm
arguments.
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 1 9

AI_SHA1WithRSAEncryptionBER
Algorithm methods to include in application’s algorithm chooser:

AM_MD2, and AM_RSA_CRT_ENCRYPT, AM_RSA_CRT_ENCRYPT_BLIND, or AM_RSA_ENCRYPT,
for signature creation; and AM_RSA_DECRYPT for signature verification.
AM_RSA_CRT_ENCRYPT_BLIND performs blinding to protect against timing attacks,
whereas AM_RSA_CRT_ENCRYPT does not.

Key info types for keyObject in B_SignInit:

KI_RSA_CRT, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, KI_RSAPrivate or
KI_RSAPrivateBSAFE1. Unless you use KI_RSA_CRT for your KI, you must include
AM_RSA_ENCRYPT in your application’s algorithm chooser.

Key info types for keyObject in B_VerifyInit:

KI_RSAPublic, KI_RSAPublicBER, or KI_RSAPublicBSAFE1.

Compatible representation:

AI_SHA1WithRSAEncryption.

Output considerations:
The signature result of B_SignFinal will be the same size as the RSA key’s modulus.

Notes:
Although the RSA signature operation is called “encryption” and the verification
operation is called “decryption”, the signer uses the digest and the private key and
follows the steps needed to decrypt, while the verifier uses the transmitted digest and
the public key and follows the steps needed to encrypt.
2 2 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_SignVerify
AI_SignVerify

Purpose:
This AI allows you to sign a message in compliance with the X9.31 Draft standard, or
to verify X9.31 Draft compliant signatures.

Type of information this allows you to use:
an RSA private key to sign a message in compliance with the X9.31 Draft standard, or
an RSA public key to verify X9.31 Draft compliant signatures. For keys with even
public exponent that were created with AI_RSAStrongKeyGen, uses the Rabin-Williams
algorithm as in X9.31 Draft.

Format of info supplied to B_SetAlgorithmInfo:
a pointer to a B_SIGN_VERIFY_PARAMS structure:

If formatMethodName is "formatX931", formatParams must be given a pointer to a
structure of type A_X931_PARAMS:

Format of info returned by B_GetAlgorithmInfo:
a pointer to a B_SIGN_VERIFY_PARAMS structure.

typedef struct { /* Current Choices */
 unsigned char *encryptionMethodName; /* "rsaSignX931", "rsaVerifyX931" */
 POINTER encryptionParams; /* Null for what is currently available*/
 unsigned char *digestMethodName; /* "sha1" */
 POINTER digestParams; /* Null for sha1 */
 unsigned char *formatMethodName; /*"formatX931" */
 POINTER formatParams; /* structure of type A_X931_PARAMS for sha1 */
} B_SIGN_VERIFY_PARAMS;

typedef struct {
 unsigned int blockLen;
 unsigned int oidNum;
} A_X931_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 2 1

AI_SignVerify
Crypto-C procedures to use with algorithm object:

B_SignInit, B_SignUpdate, B_SignFinal, B_VerifyInit, B_VerifyUpdate, and
B_VerifyFinal. You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm
arguments.

Algorithm methods to include in application’s algorithm chooser:

AM_SHA, AM_FORMAT_X931, and AM_RSA_CRT_X931_ENCRYPT for signature creation; or
AM_SHA, AM_EXTRACT_X931, and AM_RSA_X931_DECRYPT for signature verification.

Key info types for keyObject in B_SignInit or B_VerifyInit:

KI_RSAPrivate or compatible key types to create a signature, or KI_RSAPublic or
compatible key types to verify a signature.
2 2 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_SymKeyTokenGen
AI_SymKeyTokenGen

Purpose:
This AI allows you to generate the token form of a symmetric-cipher key.

Type of information this allows you to use:
the parameters for generating the token form of a symmetric key. The BSAFE
Hardware API supports token forms of DES, RC2, RC4, RC5, and TDES keys.

Format of info supplied to B_SetAlgorithmInfo:
pointer to an A_SYMMETRIC_KEY_SPECIFIER structure:

where cipherName is one of: “des”, “desx”, “rc2”, “rc4”, “rc5”, or “tripledes”.

Format of info returned by B_GetAlgorithmInfo:
pointer to an A_SYMMETRIC_KEY_SPECIFIER structure.

Crypto-C procedures to use with algorithm object:

B_SymmetricKeyGenerateInit and B_SymmetricKeyGenerate.

Algorithm methods to include in application’s algorithm chooser:
AM_SYMMETRIC_KEY_TOKEN_GEN

Notes:
Can only be used in conjunction with a hardware implementation; if no hardware

typedef struct {
 unsigned int keyUsage; /* X509 key usage bit map */
 unsigned int keyLengthInBytes;
 unsigned long lifeTime; /* Key lifetime; under consideration */
 unsigned int protectFlag; /* Store key in encrypted form */
 unsigned char *cipherName; /* String tag for key's cipher class */
 /* , eg, "des" */
} A_SYMMETRIC_KEY_SPECIFIER;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 2 3

AI_SymKeyTokenGen
implementation is present, AI_SymKeyTokenGen does not do anything.
AI_SymKeyTokenGen can only be used if you have called B_CreateSessionChooser for
your application.

The corresponding software-based method is a HW_TABLE_ENTRY
SF_SYMMETRIC_KEY_TOKEN_GEN. This provides software support in the case that
hardware is unavailable. This method can be utilized only by including inside the
hardware chooser table.
2 2 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_X931Random
AI_X931Random

Purpose:
This AI allows you to generate random numbers for RSA key generation in
conformance with ANSI X9.31 standard. This AI can be used to supply multiple
independent streams of randomness. It is included in Crypto-C mainly to satisfy the
requirements of independent generation of large and private prime factors, as
specified by ANSI X9.31 standard.

This AI is intended for use with AI_RSAStrongKeyGen only. The SHA-1 based pseudo-
random number generator, G(sha1), that is defined in the X9.31 standard and in the
FIPS182-1 DSA standard, is available as AI_X962Random_V0. If you are not using X9.31
rDSA signatures but require the G(sha1) hash function you should use
AI_X962Random_V0 and not AI_X931Random.

Type of information this allows you to use:
A SHA-1 based pseudo-random number generator as defined in Appendix A of the
X9.31 standard.

Format of info supplied to B_SetAlgorithmInfo:
NULL_PTR, if there is only one stream and no additional seeding is desired,

or

a pointer to an A_X931_RANDOM_PARAMS structure:

When AI_X931Random is used with AI_RSAStrongKeyGen, the numberOfStreams field
must always be equal to 6.

Format of info returned by B_GetAlgorithmInfo:
returns a NULL_PTR if set with NULL_PTR; returns a pointer to an

typedef struct
{
 unsigned int numberOfStreams; /* number of independent streams */
 ITEM seed; /* additional seeding */
 /* to be equally divided among the streams */
} A_X931_RANDOM_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 2 5

AI_X931Random
A_X931_RANDOM_PARAMS structure otherwise.

BSAFE procedures to use with algorithm object:
B_RandomInit, B_RandomUpdate, and B_GenerateRandomBytes, and as the
randomAlgorithm argument to other procedures.

Algorithm methods to include in application’s algorithm chooser:
AM_X931_RANDOM.
2 2 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

AI_X962Random_V0
AI_X962Random_V0

Purpose:
This AI allows you to generate a stream of pseudo-random numbers which are
guaranteed to have a very high degree of randomness. Random numbers are used in
deriving public and private keys, initialization vectors, etc. This AI uses SHA1 as an
underlying hashing function. The details of this algorithm are specified in the
American National Standard X9.62-1997 Draft and it is similar to the algorithm in
section A.2.1 of X9.31-1997 Draft.

This algorithm can produce numbers between zero and the value of a given prime
minus one. Such numbers are useful for the US Government Digital Signature
Standard.

Other algorithms that can be used to generate pseudo-random numbers are
AI_MD2Random, AI_SHA1Random, and AI_MD5Random.

Type of information this allows you to use:
the SHA-1 pseudo-random generator as defined in the X9.62 Draft standard.

Format of info supplied to B_SetAlgorithmInfo:

NULL_PTR, if it is desired to use the AI_X962Random_V0 object in the same fashion as
AI_MD5Random.

a pointer to an A_SHA_RANDOM_PARAMS struct:.

typedef struct {
ITEM prime; /* Optional input for X-9.62 mode only. Used to */
 /* generate a pseudo-random number (but not uniform) */
 /* in [1, prime - 1]. Set prime.len to zero otherwise */
ITEM seed; /* Special additional seeding of 20 to 128 bytes long.*/
 /* May be used in place of usual B_UpdateRandom seeding calls, */
 /* but requires the availability of nearly perfectly random bytes. */
 /* If B_UpdateRandom seeding calls are used, then */
 /* this additional seeding material is used to augment the */
 /* randomness of the pseudo-random numbers generated.*/
} A_SHA_RANDOM_PARAMS;
C h a p t e r 2 A l g o r i t h m I n f o Ty p e s 2 2 7

AI_X962Random_V0
Format of info returned by B_GetAlgorithmInfo:
returns a NULL_PTR if set with NULL_PTR; otherwise, returns a pointer to an
A_SHA_RANDOM_PARAMS structure.

Crypto-C procedures to use with algorithm object:

B_RandomInit, B_RandomUpdate, and B_GenerateRandomBytes, and as the
randomAlgorithm argument to other procedures.

Algorithm methods to include in application’s algorithm chooser:

AM_SHA_RANDOM.

Notes:
There are a number of possible implementations of SHA-1 pseudo random number
generation. AI_X962Random_V0 implements an SHA-1 Random generator that is based
on the X9.62 Draft standard. The FIPS 186 standard defines a similar algorithm (also
defined in X9.31 Draft), but due to slight differences between FIPS 186 and X9.62
Draft, the same seeding sequence will produce different outputs. In addition,
AI_X962Random_V0’s implementation of SHA-1 Random is substantially different from
the implementation in RSA Data Security, Inc.’s Java cryptographic toolkit, Crypto-J.
2 2 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Chapter 3

Key Info Types
This chapter lists the standard key information types (KIs) offered with Crypto-C. For
an explanation of the key object, see “The Key Object” on page 9. A typical application
supplies a key info type as the infoType argument to B_SetKeyInfo. For examples of
how to use key info types with certain algorithms, see the User’s Manual.

The format for each entry is shown in Figure 3-1 on page 230.
C h a p t e r 3 K e y I n f o Ty p e s 2 2 9

Figure 3-1 Sample Key Info Type

KI_PKCS_RSAPrivate
Purpose:
This KI allows you to specify a private key of the RSA algorithm as defined
in PKCS #1. The information consists of the modulus, exponents, two primes
and the Chinese Remainder Theorem information that are explained below.
See KI_PKCS_RSAPrivateBER for the same key info type with BER
encoding.
Type of information this allows you to use:
an RSA private key where all the integers are specified as in PKCS #1:
modulus, public and private exponents, and Chinese Remainder Theorem
information. Note that KI_RSA_CRT can be used for a private key that has the
modulus and Chinese Remainder Theorem information but no public or
private exponent.
Format of info supplied to B_SetKeyInfo:
pointer to an A_PKCS_RSA_PRIVATE_KEY structure:

Each ITEM supplies an integer in canonical format, where the ITEM’s data
points to an unsigned byte array, most significant byte first and the ITEM’s
len gives its length. All leading zeros are stripped from each integer before it
is copied to the key object.
Format of info returned by B_GetKeyInfo:
pointer to an A_PKCS_RSA_PRIVATE_KEY structure (see above). All leading
zeros have been stripped from each integer in the structure.
Can get this info type if key object already has:
KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER or KI_RSA_CRT.

typedef struct {
 ITEM modulus; /* modulus */
 ITEM publicExponent; /* exponent for public key */
 ITEM privateExponent; /* exponent for private key */
 ITEM prime[2]; /* prime factors */
 ITEM primeExponent[2]; /* exponents for prime factors */
 ITEM coefficient; /* CRT coefficient */
} A_PKCS_RSA_PRIVATE_KEY;

Type of information
this allows you to use:
Describes the type and
format of key information
you can use with the key
info type.

Format of info
supplied to
B_SetKeyInfo:
Describes the exact
format for supplying the
key value to
B_SetKeyInfo.

Can get this info type if
key object already
has:
Most keys have multiple
representations for the
key information. For
example, you can specify
an 8-byte RC2 key with
KI_8Byte or KI_Item. This
describes what type of
key information a key
object must already have
if you want to call
B_GetKeyInfo using this
key info type.

Format of info
returned by
B_GetKeyInfo:
Describes the exact
format that B_GetKeyInfo
returns for the key value.
This is generally a
“cleaned up” version of
the format supplied to
B_SetKeyInfo. For
example, B_GetKeyInfo
with KI_DES8 returns the
DES key with the DES key
parity set.

Purpose:
Describes the KI, what it
is for, and what it does.
2 3 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_8Byte
KI_8Byte

Purpose:
This KI allows you to specify a generic 8-byte key for a symmetric encryption
algorithm that may be RC2, DES, or any other symmetric algorithm. For DES
encryption, there exist more specific variants of 8-byte key info types: KI_DES8 and
KI_DES8Strong.

Type of information this allows you to use:
an 8-byte value for symmetric keys such as DES and RC2. Note that KI_DES8Strong is
usually used for a DES key because it sets the DES parity and checks for weak DES
keys.

Format of info supplied to B_SetKeyInfo:
pointer to an unsigned char array that holds the 8 bytes.

Format of info returned by B_GetKeyInfo:
pointer to an unsigned char array that holds the 8 bytes.

Can get this info type if key object already has:
KI_8Byte, KI_Item (if the length of the ITEM is 8), or KI_DES8.
C h a p t e r 3 K e y I n f o Ty p e s 2 3 1

KI_24Byte
KI_24Byte

Purpose:
This KI allows you to specify a generic 24-byte key for a symmetric encryption
algorithm such as Triple DES. It may also be used as keying material for certain MAC
algorithms such as HMAC. See KI_DES24Strong for a Triple DES specific variant of
this key info type.

Type of information this allows you to use:
a 24-byte value for symmetric keys such as DES_EDE.

Format of info supplied to B_SetKeyInfo:
pointer to an unsigned char array that holds the 24 bytes.

Format of info returned by B_GetKeyInfo:
pointer to an unsigned char array that holds the 24 bytes.

Can get this info type if key object already has:
KI_24Byte, KI_Item (if the length of the ITEM is 24), KI_DESX.
2 3 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_DES8
KI_DES8

Purpose:
This KI allows you to specify an 8-byte key used by the DES algorithm. The key object
will satisfy the DES parity requirement. Unlike KI_DES8Strong, it does not check
against known DES weak keys. See the user manual, DES Weak Keys.

Type of information this allows you to use:
an 8-byte value for a DES key where the information stored in the key object must be
DES parity adjusted according to FIPS 46-1. Crypto-C treats the least significant bit of
each byte of the key data as the DES parity adjustment bit.

Format of info supplied to B_SetKeyInfo:
pointer to an unsigned char array that holds the 8-byte DES key. The key is DES parity
adjusted when it is copied to the key object.

For added security, it is prudent to check the proposed key data against know byte
sequences that produce weak DES keys before calling B_SetKeyInfo. See Section 5.6
"DES Weak Keys."

Format of info returned by B_GetKeyInfo:
pointer to an unsigned char array that holds the 8-byte DES key that is DES parity
adjusted.

Can get this info type if key object already has:
KI_DES8, KI_Item (if the length of the ITEM is 8 and the data's DES parity is correct),
or KI_8Byte (if the DES parity is correct).

Notes:
It is more secure to use KI_DES8Strong instead of KI_DES8. When you call
B_SetAlgorithmInfo with KI_DES8Strong, Crypto-C checks the key against a list of
known weak keys and returns an error if the resulting key would be weak. See Section
5.6 "DES Weak Keys."
C h a p t e r 3 K e y I n f o Ty p e s 2 3 3

KI_DES8Strong
KI_DES8Strong

Purpose:
This KI allows you to specify an 8-byte key used by the DES algorithm. The key object
will satisfy the DES parity requirement and will be checked against known DES weak
keys. Also see KI_DES8.

Type of information this allows you to use:
an 8-byte value for a DES key where the information stored in the key object will be
DES parity adjusted according to FIPS 46-1. Crypto-C treats the least significant bit of
each byte of the key data as the DES parity adjustment bit. When setting a key object
with this KI, Crypto-C will check the input data against a list of known DES weak
keys. If the resulting key would be weak, Crypto-C returns an error.

Format of info supplied to B_SetKeyInfo:
pointer to an unsigned char array that holds the 8-byte DES key. The key is DES parity
adjusted when it is copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an unsigned char array that holds the 8-byte DES key, which is DES parity
adjusted.

Can get this info type if key object already has:
KI_DES8Strong, KI_DES8 (if the key is not weak), KI_Item (if the length of the ITEM is
8, the data's DES parity is correct, and the key is not weak), or KI_8Byte (if the DES
parity is correct and the key is not weak.
2 3 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_DES24Strong
KI_DES24Strong

Purpose:
This KI allows you to specify a 24-byte key used by the Triple DES algorithm. The key
object will satisfy the DES parity requirement and will be checked against known DES
weak keys.

Type of information this allows you to use:
24-byte value for a Triple DES key where the information stored in the key object will
be DES parity-adjusted according to FIPS 46-1. Crypto-C treats the least significant bit
of each byte of the key data as the DES parity-adjustment bit. When setting a key
object with this KI, Crypto-C will check the input data against a list of known DES
weak keys. If the resulting key would be weak, Crypto-C returns an error.

Format of info supplied to B_SetKeyInfo:
pointer to an unsigned char array that holds the 24-byte Triple DES key. The key is
DES parity adjusted when it is copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an unsigned char array that holds the 24-byte Triple DES key that is DES
parity adjusted.

Can get this info type if key object already has:
KI_DES24Strong, KI_24Byte (if the key is not weak), KI_Item (if the length of the ITEM
is 24 and the key is not weak), KI_DESX (if the key is not weak).
C h a p t e r 3 K e y I n f o Ty p e s 2 3 5

KI_DES_BSAFE1
KI_DES_BSAFE1

Purpose:
Deprecated. This type is included only for backward compatibility.

Type of information this allows you to use:
the BSAFE 1.x encoding of a DES key.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BSAFE 1.x
encoding. B_SetKeyInfo returns BE_WRONG_KEY_INFO if the encoding specifies a secret
key for an algorithm other than DES.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BSAFE 1.x
encoding.

Can get this info type if key object already has:
KI_DES_BSAFE1, KI_DES8, KI_Item (if the length of the ITEM is 8 and the data’s DES
parity is correct), KI_8Byte (if the DES parity is correct), KI_RC2WithBSAFE1Params (if
the DES parity of the RC2 key is correct) or KI_RC2_BSAFE1 (if the DES parity of the 8
Byte RC2 key is correct).
2 3 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_DESX
KI_DESX

Purpose:
This KI allows you to specify keying materials for the DESX algorithm. They include
the key value, input whitener, and output whitener. The key value will be used as the
DES encryption key for the DESX algorithm and thus it will be parity adjusted. See
the AI_DESX_CBC_IV8 section for descriptions of the DESX algorithm.

Type of information this allows you to use:
a DESX key where the key value, input whitener, and output whitener are specified.

Format of info supplied to B_SetKeyInfo:
pointer to an A_DESX_KEY structure:

The value of key is DES parity adjusted when it is copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an A_DESX_KEY structure (see above). The value of key is DES parity
adjusted.

Can get this info type if key object already has:
KI_24Byte (if the DES parity is correct), KI_Item (if the length of the ITEM is 24 and
the data's DES parity is correct), or KI_DESX.

typedef struct {
 unsigned char *key; /* pointer to 8-byte key */
 unsigned char *inputWhitener; /* pointer to 8-byte input whitener */
 unsigned char *outputWhitener; /* pointer to 8-byte output whitener */
} A_DESX_KEY;
C h a p t e r 3 K e y I n f o Ty p e s 2 3 7

KI_DESX_BSAFE1
KI_DESX_BSAFE1

Purpose:
Deprecated. This type is included only for backward compatibility.

Type of information this allows you to use:
the BSAFE 1.x encoding of a DESX key.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BSAFE 1.x
encoding. B_SetKeyInfo returns BE_WRONG_KEY_INFO if the encoding specifies a secret
key for an algorithm other than DESX.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BSAFE 1.x
encoding.

Can get this info type if key object already has:
KI_DESX_BSAFE1 or KI_DESX (if the output whitener is the MAC of the key and the
input whitener).
2 3 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_DSAPrivate
KI_DSAPrivate

Purpose:
This KI allows you to specify a private key used by the DSA algorithm. The
information consists of a private component and the three parameters: p, q, and g,
which are explained below. See KI_DSAPrivateBER or KI_DSAPrivateX957BER for the
same key type with BER encoding.

Type of information this allows you to use:
a DSA private key. The parameters of the key are specified as the following: private
component (x), the prime (p), the subprime (q) and the base (g).

Format of info supplied to B_SetKeyInfo:
pointer to an A_DSA_PRIVATE_KEY structure:

where A_DSA_PARAMS is defined as

Each ITEM supplies an integer in canonical format, where the ITEM’s data points to an
unsigned byte array, most significant byte first and the ITEM’s len gives its length. All
leading zeros are stripped from each integer before it is copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an A_DSA_PRIVATE_KEY structure (see above). All leading zeros have been
stripped from each integer in the structure.

typedef struct {
 ITEM x; /* private component */
 A_DSA_PARAMS params; /* the DSA parameters, p, q and g */
} A_DSA_PRIVATE_KEY;

typedef struct {
 ITEM prime; /* the prime p */
 ITEM subPrime; /* the subprime q */
 ITEM base; /* the base g */
} A_DSA_PARAMS;
C h a p t e r 3 K e y I n f o Ty p e s 2 3 9

KI_DSAPrivate
Can get this info type if key object already has:
KI_DSAPrivate, KI_DSAPrivateBER, or KI_DSAPrivateX957BER.
2 4 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_DSAPrivateBER
KI_DSAPrivateBER

Purpose:
This KI is similar to KI_DSAPrivate except that it uses the ASN.1 BER format. This KI
allows you to parse and create an ASN.1 key info type encoded with the PKCS #8
standard. You call B_SetKeyInfo to initialize a key object from the encoded key info
type that includes the private component, prime, subprime, and base. You call
B_GetKeyInfo with this KI to create an encoded key info type from a key object that
was created using KI_DSAPrivate or KI_DSAPrivateBER. The OID for DSA keys,
excluding the tag and length bytes, in decimal, is "43, 14, 3, 2, 12". Also see
KI_DSAPrivate and KI_DSAPrivateX957BER.

Type of information this allows you to use:
the encoding of a DSA private key that is encoded as a PKCS #8 PrivateKeyInfo type
and that contains an RSA Data Security, Inc. DSAPrivateKey type. Note that this
encoding contains all of the information specified by KI_DSAPrivate.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BER encoding.
The encoding is converted to DER before it is copied to the key object. B_SetKeyInfo
returns BE_WRONG_KEY_INFO if the PrivateKeyInfo specifies a private key for an
algorithm other than DSA.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the DER encoding.

Can get this info type if key object already has:
KI_DSAPrivate, KI_DSAPrivateBER, or KI_DSAPrivateX957BER.
C h a p t e r 3 K e y I n f o Ty p e s 2 4 1

KI_DSAPrivateX957BER
KI_DSAPrivateX957BER

Purpose:
This KI represents the same algorithm type as KI_DSAPrivate except that it uses the
ASN.1 BER format. It allows you to parse and create an ASN.1 key info type encoded
as specified by ANSI X9.57 standard. You call B_SetKeyInfo to initialize a key object
from the encoded key info type that includes the private component, prime,
subprime, and base. You call B_GetKeyInfo with this KI to create an encoded key info
type from a key object that was created using KI_DSAPrivate, KI_DSAPrivateBER, or
KI_DSAPrivateX957BER. The OID for DSA keys, excluding the tag and length bytes, in
decimal, is "42, 134, 72, 206, 56, 4, 1". Also see KI_DSAPrivate and
KI_DSAPrivateBER.

Type of information this allows you to use:
the encoding of a DSA private key that is encoded as ANSI X9.57 PrivateKeyInfo type
that contains an RSA Data Security, Inc. DSAPrivateKey type. Note that this encoding
contains all of the information specified by KI_DSAPrivate.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BER encoding.
The encoding is converted to DER before it is copied to the key object. B_SetKeyInfo
returns BE_WRONG_KEY_INFO if the PrivateKeyInfo specifies a private key for an
algorithm other than DSA (as defined by ANSI X9.57 standard).

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the DER encoding.

Can get this info type if key object already has:
KI_DSAPrivate, KI_DSAPrivateBER, or KI_DSAPrivateX957BER.
2 4 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_DSAPublic
KI_DSAPublic

Purpose:
This KI allows you to specify a public key used by the DSA algorithm. The
information consists of a private component and the three parameters: p, q, and g,
which are explained below. See KI_DSAPublicBER or KI_DSAPublicX957BER for the
same key type with BER encoding.

Type of information this allows you to use:
a DSA public key where all the parameters are specified as in X9.30 Part III: the public
component (y), the prime (p), the subprime (q), and the base (g).

Format of info supplied to B_SetKeyInfo:
pointer to an A_DSA_PUBLIC_KEY structure:

where A_DSA_PARAMS is defined as:

Each ITEM supplies an integer in canonical format, where the ITEM’s data points to an
unsigned byte array, most significant byte first and the ITEM’s len gives its length. All
leading zeros are stripped from each integer before it is copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an A_DSA_PUBLIC_KEY structure (see above). All leading zeros have been
stripped from each integer in the structure.

typedef struct {
 ITEM y; /* public component */
 A_DSA_PARAMS params; /* the DSA parameters, p, q and g */
} A_DSA_PUBLIC_KEY;

typedef struct {
 ITEM prime; /* the prime p */
 ITEM subPrime; /* the subprime q */
 ITEM base; /* the base g */
} A_DSA_PARAMS;
C h a p t e r 3 K e y I n f o Ty p e s 2 4 3

KI_DSAPublic
Can get this info type if key object already has:
KI_DSAPublic, KI_DSAPublicBER, KI_DSAPublicX957BER.
2 4 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_DSAPublicBER
KI_DSAPublicBER

Purpose:
This KI is similar to KI_DSAPublic except that it uses the ASN.1 BER format. This KI
allows you to parse and create an ASN.1 key info type encoded with the X.509
standard for SubjectPublicKeyInfo. You call B_SetKeyInfo to initialize a key object
from the encoded key info type that includes the public component, prime, subprime,
and base. You call B_GetKeyInfo with this KI to create an encoded key info type from
a key object that was created using KI_DSAPublic or KI_DSAPublicBER. The OID for
DSA keys, excluding the tag and length bytes, in decimal, is "43, 14, 3, 2, 12". Also
see KI_DSAPublic and KI_DSAPublicX957BER.

Type of information this allows you to use:
the encoding of a DSA public key that is encoded as an X.509 SubjectPublicKeyInfo
type as defined in X9.30 Part III. Note that this encoding contains all of the
information specified by KI_DSAPublic.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BER encoding.
The encoding is converted to DER before it is copied to the key object. B_SetKeyInfo
returns BE_WRONG_KEY_INFO if the PublicKeyInfo specifies a public key for an
algorithm other than DSA.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the DER encoding.

Can get this info type if key object already has:
KI_DSAPublic, KI_DSAPublicBER, KI_DSAPublicX957BER.
C h a p t e r 3 K e y I n f o Ty p e s 2 4 5

KI_DSAPublicX957BER
KI_DSAPublicX957BER

Purpose:
This KI is similar to KI_DSAPublic except that it uses the ASN.1 BER format. This KI
allows you to parse and create an ASN.1 key info type encoded as specified by ANSI
X9.57 standard. You call B_SetKeyInfo to initialize a key object from the encoded key
info type that includes the public component, prime, subprime, and base. You call
B_GetKeyInfo with this KI to create an encoded key info type from a key object that
was created using KI_DSAPublic, KI_DSAPublicBER, or KI_DSAPublicX957BER. The OID
for DSA keys, excluding the tag and length bytes, in decimal, is
"42, 134, 72, 206, 56, 4, 1". Also see KI_DSAPublic and KI_DSAPublicBER.

Type of information this allows you to use:
the encoding of a DSA public key that is encoded as ANSI X9.57 SubjectPublicKeyInfo
type. Note that this encoding contains all of the information specified by
KI_DSAPublic.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BER encoding.
The encoding is converted to DER before it is copied to the key object. B_SetKeyInfo
returns BE_WRONG_KEY_INFO if the PublicKeyInfo specifies a public key for an
algorithm other than DSA (as defined by ANSI X9.57 standard).

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the DER encoding.

Can get this info type if key object already has:
KI_DSAPublic, KI_DSAPublicBER, KI_DSAPublicX957BER.
2 4 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_ECPrivate
KI_ECPrivate

Purpose:
This KI allows you to specify a private key used by the Elliptic Curve algorithm. The
information consists of the private component and the underlying elliptic curve
parameters.

Type of information this allows you to use:
an elliptic curve private key. The parameters of the key are specified as the private
component privateKey, and the underlying elliptic curve parameters.

Format of info supplied to B_SetKeyInfo:
pointer to an A_EC_PRIVATE_KEY structure:

Each ITEM supplies an integer in canonical format, where the ITEM's data points to an
unsigned byte array, most significant byte first, and the ITEM's len gives its length. For
all ITEM values except the curve parameter base, leading zeros are stripped before it is
copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an A_EC_PRIVATE_KEY structure.

Can get this info type if key object already has:
KI_ECPrivate.

typedef struct {
 A_EC_PARAMS curveParams; /*the underlying elliptic curve parameters */
 ITEM privateKey; /* private component */
} A_EC_PRIVATE_KEY;
C h a p t e r 3 K e y I n f o Ty p e s 2 4 7

KI_ECPrivateComponent
KI_ECPrivateComponent

Purpose:
This KI allows you to specify the private component of an EC private key. Unlike
KI_ECPrivate, it does not contain the underlying EC parameters and it is not to be
used with any algorithms. It provides a way to extract the EC private key.

Type of information this allows you to use:
the private component of an EC private key.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure containing the private component of an EC private key.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure containing the private component of an EC private key.

Restrictions:
Key objects built with this KI are not compatible with any Crypto-C AI. This KI is
supplied only as a convenience to extract the EC private component.

Can get this info type if key object already has:
KI_ECPrivateComponent or KI_ECPrivate.
2 4 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_ECPublic
KI_ECPublic

Purpose:
This KI allows you to specify a public key used by the Elliptic Curve algorithm. The
information consists of the public component and the underlying elliptic curve
parameters.

Type of information this allows you to use:
an elliptic curve public key. The parameters of the key are specified as the public
component (publicKey), and the underlying elliptic curve parameters.

Format of info supplied to B_SetKeyInfo:
pointer to an A_EC_PUBLIC_KEY structure:

Each ITEM supplies an integer in canonical format, where the ITEM's data points to an
unsigned byte array, most significant byte first, and the ITEM's len gives its length. For
all ITEM values except the public component (x) and the curve parameter base, leading
zeros are stripped before it is copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an A_EC_PUBLIC_KEY structure.

Can get this info type if key object already has:
KI_ECPublic.

typedef struct {
 A_EC_PARAMS curveParams; /*the underlying elliptic curve parameters */
 ITEM publicKey; /* public component */
} A_EC_PUBLIC_KEY;
C h a p t e r 3 K e y I n f o Ty p e s 2 4 9

KI_ECPublicComponent
KI_ECPublicComponent

Purpose:
This KI allows you to specify the public key component of an EC public key. Unlike
KI_ECPublic, it does not specify the underlying EC parameters and it is not to be used
with any algorithms. It provides a way to extract the EC public key.

Type of information this allows you to use:
the public component of an elliptic curve public key.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure containing the public component of an EC public key.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure containing the public component of an EC public key.

Restrictions:
Key objects built with this KI are not compatible with any Crypto-C AI. This KI is
supplied only as a convenience to extract the EC public component.

Can get this info type if key object already has:
KI_ECPublicComponent or KI_ECPublic.
2 5 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_ExtendedToken
KI_ExtendedToken

Purpose:
This KI allows you to specify a software-based token form of a symmetric key. See
KI_KeypairToken for a token form of a public/private key pair.

Type of information this allows you to use:
software-based token forms of symmetric keys. Downward compatible with
KI_Token.

Format of info supplied to B_SetKeyInfo:
pointer to a KI_EXTENDED_TOKEN_INFO structure

where A_X509_ATTRIB_INFO is defined by:

and A_SYMMETRIC_KEY_DEFINER is defined by:

typedef struct {
 KI_TOKEN_INFO keyDataStruct;
 A_X509_ATTRIB_INFO attributes;
} KI_EXTENDED_TOKEN_INFO;

typedef struct {
 A_SYMMETRIC_KEY_DEFINER externalSpecs;
 unsigned char *keyOID; /* Currently unimplemented */
 unsigned int keyOIDLen; /* ditto */
 unsigned long dateOfBirth; /* When the key was created. */
 his time stamp currently defaults to time () function */
} A_X509_ATTRIB_INFO;

typedef struct {
 unsigned int keyUsage;
 unsigned int keyLengthInBytes;
 UINT4 lifeTime;
 unsigned int protectFlag;
} A_SYMMETRIC_KEY_DEFINER;
C h a p t e r 3 K e y I n f o Ty p e s 2 5 1

KI_ExtendedToken
Format of info returned by B_GetKeyInfo:
pointer to a KI_EXTENDED_TOKEN_INFO structure (see above).

Can get this info type if key object already has:
a symmetric key of the appropriate type, for example, a DES key when using DES.
Used when one of the algorithm methods used by AI_SymKeyTokenGen has been listed
in the fixedChooser argument to B_CreateSessionChooser, but no hardware is
present.

Notes:
KI_ExtendedToken can only be used if you have called B_CreateSessionChooser for
your application.
2 5 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_Item
KI_Item

Purpose:
This KI allows you to specify a generic keying material of any length. It may be used
to hold a secret key of a symmetric encryption algorithm, a key of a keyed hash
algorithm, a password object, etc.

Type of information this allows you to use:
a variable-length block of data (such as an RC4 key), a password for password-based
encryption algorithms, or the value of a secret key when it is recovered from a public-
key encryption block.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure:

where data is the address of the unsigned byte array and len is its length.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure (see above)

Can get this info type if key object already has:
KI_Item, KI_8Byte, KI_24Byte, KI_DES8, KI_DES8Strong, or KI_DESX.

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;
C h a p t e r 3 K e y I n f o Ty p e s 2 5 3

KI_KeypairToken
KI_KeypairToken

Purpose:
This KI allows you to specify the software-based token form of a public and private
key pair of type RSA or DSA. See KI_ExtendedToken for the token form of a
symmetric key.

Type of information this allows you to use:
software-based token forms of RSA or DSA public and private key pairs. Downward
compatible with KI_Token.

Format of info supplied to B_SetKeyInfo:
pointer to a KI_KEYPAIR_TOKEN_INFO structure:

where A_X509_KEYPAIR_ATTRIB_INFO is defined by:

and A_KEYPAIR_DEFINER is defined by:

Format of info returned by B_GetKeyInfo:
pointer to a KI_KEYPAIR_TOKEN_INFO structure.

typedef struct {
 KI_TOKEN_INFO keyDataStruct;
 A_X509_KEYPAIR_ATTRIB_INFO attributes;
} KI_KEYPAIR_TOKEN_INFO;

typedef struct {
 A_KEYPAIR_DEFINER externalSpecs;
 unsigned long dateOfBirth;
} A_X509_KEYPAIR_ATTRIB_INFO;

typedef struct {
 unsigned int keyUsage; /* X509 key usage bit map */
 UINT4 lifeTime; /* Key lifetime; under consideration */
 unsigned int protectFlag; /* Store key in encrypted form */
} A_KEYPAIR_DEFINER;
2 5 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_KeypairToken
Can get this info type if key object already has:
an RSA or DSA key pair. Used when one of the algorithm methods used by
KI_KeypairTokenGen has been listed in the fixedChooser argument to
B_CreateSessionChooser, but no hardware is present.

Notes:
KI_KeypairToken can only be used if you have called B_CreateSessionChooser for
your application.
C h a p t e r 3 K e y I n f o Ty p e s 2 5 5

KI_PKCS_RSAPrivate
KI_PKCS_RSAPrivate

Purpose:
This KI allows you to specify a private key of the RSA algorithm as defined in PKCS
#1. The information consists of the modulus, exponents, two primes, and the Chinese
Remainder Theorem information. See KI_PKCS_RSAPrivateBER for the same key info
type with BER encoding.

Type of information this allows you to use:
an RSA private key where all the integers are specified as in PKCS #1: modulus,
public and private exponents, and Chinese Remainder Theorem information. Note
that KI_RSA_CRT can be used for a private key that has the modulus and Chinese
Remainder Theorem information but no public or private exponent.

Format of info supplied to B_SetKeyInfo:
pointer to an A_PKCS_RSA_PRIVATE_KEY structure:

Each ITEM supplies an integer in canonical format, where the ITEM’s data points to an
unsigned byte array, most significant byte first and the ITEM’s len gives its length. All
leading zeros are stripped from each integer before it is copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an A_PKCS_RSA_PRIVATE_KEY structure (see above). All leading zeros have
been stripped from each integer in the structure.

Can get this info type if key object already has:
KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER, or KI_RSA_CRT.

typedef struct {
 ITEM modulus; /* modulus */
 ITEM publicExponent; /* exponent for public key */
 ITEM privateExponent; /* exponent for private key */
 ITEM prime[2]; /* prime factors */
 ITEM primeExponent[2]; /* exponents for prime factors */
 ITEM coefficient; /* CRT coefficient */
} A_PKCS_RSA_PRIVATE_KEY;
2 5 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_PKCS_RSAPrivateBER
KI_PKCS_RSAPrivateBER

Purpose:
This KI is similar to KI_PKCS_RSAPrivate except that it uses the ASN.1 BER format.
This KI allows you to parse and create an ASN.1 key info type that is encoded with
the PKCS #8 standard. You call B_SetKeyInfo to initialize a key object from the
encoded key info type that includes the modulus, exponents, two primes, and
Chinese Remainder Theorem information. You call B_GetKeyInfo with this KI to
create an encoded key info type from a key object that was created using
KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER or KI_RSA_CRT. The OID for RSA PKCS
#1 encryption, excluding the tag and length bytes, in decimal, is "42, 134, 72, 134,
247, 13, 1, 1, 1". Also see KI_PKCS_RSAPrivate.

Type of information this allows you to use:
the encoding of an RSA private key that is encoded as a PKCS #8 PrivateKeyInfo type
that contains a PKCS #1 RSAPrivateKey type. Note that this encoding contains all of
the information specified by KI_PKCS_RSAPrivate.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BER encoding.
The encoding is converted to DER before it is copied to the key object. B_SetKeyInfo
returns BE_WRONG_KEY_INFO if the PrivateKeyInfo specifies a private key for an
algorithm other than RSA.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the DER encoding.

Can get this info type if key object already has:
KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER or KI_RSA_CRT.
C h a p t e r 3 K e y I n f o Ty p e s 2 5 7

KI_RC2_BSAFE1
KI_RC2_BSAFE1

Purpose:
Deprecated. This type is included only for backward compatibility.

Type of information this allows you to use:
the BSAFE 1.x encoding of an RC2 key, which is the same as an SX1 key.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BSAFE 1.x
encoding. B_SetKeyInfo returns BE_WRONG_KEY_INFO if the encoding specifies a secret
key for an algorithm other than RC2 (which is the same as SX1).

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BSAFE 1.x
encoding.

Can get this info type if key object already has:
KI_RC2_BSAFE1 or KI_RC2WithBSAFE1Params.
2 5 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_RC2WithBSAFE1Params
KI_RC2WithBSAFE1Params

Purpose:
Deprecated. This type is included only for backward compatibility.

Type of information this allows you to use:
an RC2 key (which is the same as an SX1 key) where the key value and effective key
size are specified. Usually, the effective key size is a parameter to the RC2 encryption
algorithm; however, BSAFE 1.x also encodes the effective key size with the RC2 key.

Format of info supplied to B_SetKeyInfo:
pointer to a B_RC2_BSAFE1_PARAMS_KEY structure:

effectiveKeyBits must be between 2 and 64, inclusive. The value of key is adjusted
when it is copied to the key object by zeroizing unneeded bytes because
effectiveKeyBits is smaller than 64. For example, if effectiveKeyBits is 32 and the
hexadecimal value of key is 0102030405060708, then 0102030400000000 is copied to the
key object because only 32 bits (4 bytes) are needed.

Format of info returned by B_GetKeyInfo:
pointer to a B_RC2_BSAFE1_PARAMS_KEY structure (see above). The value of key is
adjusted by zeroizing unneeded bytes based on the effectiveKeyBits as explained
above.

Can get this info type if key object already has:
KI_RC2WithBSAFE1Params or KI_RC2_BSAFE1.

typedef struct {
 unsigned char *key; /* pointer to 8-byte key */
 unsigned int effectiveKeyBits; /* effective key size parameter */
} B_RC2_BSAFE1_PARAMS_KEY;
C h a p t e r 3 K e y I n f o Ty p e s 2 5 9

KI_RSA_CRT
KI_RSA_CRT

Purpose:
This KI allows you to specify a private key of the RSA algorithm without the public or
private key exponent information. The modulus and Chinese Remainder Theorem
information have to be provided.

Type of information this allows you to use:
an RSA private key where the modulus and Chinese Remainder Theorem information
integers are specified, but not the public or private exponent integers. (For RSA
private key information with the public and private exponent integers, see
KI_PKCS_RSAPrivate.)

Format of info supplied to B_SetKeyInfo:
pointer to an A_RSA_CRT_KEY structure:

Each ITEM supplies an integer in canonical format, where the ITEM’s data points to an
unsigned byte array, most significant byte first and the ITEM’s len gives its length. All
leading zeros are stripped from each integer before it is copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an A_RSA_CRT_KEY structure (see above). All leading zeros have been
stripped from each integer in the structure.

Can get this info type if key object already has:
KI_RSA_CRT, KI_PKCS_RSAPrivate, or KI_PKCS_RSAPrivateBER.

typedef struct {
 ITEM modulus; /* modulus */
 ITEM prime[2]; /* prime factors */
 ITEM primeExponent[2]; /* exponents for prime factors */
 ITEM coefficient; /* CRT coefficient */
} A_RSA_CRT_KEY;
2 6 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_RSAPrivate
KI_RSAPrivate

Purpose:
This KI allows you to specify an RSA private key with the modulus and private key
exponent. Unlike KI_PKCS_RSAPrivate, it does not contain the Chinese Remainder
Theorem information and it is not be used with any algorithms. It provides a way to
store or transport a private key.

Type of information this allows you to use:
an RSA private key where the modulus and private exponent integers are specified,
but not the Chinese Remainder Theorem information.

Format of info supplied to B_SetKeyInfo:
pointer to an A_RSA_KEY structure:

Each ITEM supplies an integer in canonical format, where the ITEM’s data points to an
unsigned byte array, most significant byte first and the ITEM’s len gives its length. All
leading zeros are stripped from each integer before it is copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an A_RSA_KEY structure (see above). All leading zeros have been stripped
from each integer in the structure.

Can get this info type if key object already has:
KI_RSAPrivate, KI_PKCS_RSAPrivate or KI_PKCS_RSAPrivateBER.

Note:
You can use KI_RSAPrivate to set a key object with your private modulus and private
exponent. This can be used for storing your key information or when you need to
export the information in “raw” form to another application. However, there are no

typedef struct {
 ITEM modulus; /* modulus */
 ITEM exponent; /* exponent */
} A_RSA_KEY;
C h a p t e r 3 K e y I n f o Ty p e s 2 6 1

KI_RSAPrivate
Crypto-C algorithms that use this key type.
2 6 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_RSAPrivateBSAFE1
KI_RSAPrivateBSAFE1

Purpose:
Deprecated. This type is included only for backward compatibility.

Type of information this allows you to use:
the BSAFE 1.x encoding of an RSA private key.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BSAFE 1.x
encoding. B_SetKeyInfo returns BE_WRONG_KEY_INFO if the encoding specifies a
private key for an algorithm other than RSA.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BSAFE 1.x
encoding.

Can get this info type if key object already has:
KI_RSAPrivateBSAFE1, KI_RSA_CRT, KI_PKCS_RSAPrivate or KI_PKCS_RSAPrivateBER.
C h a p t e r 3 K e y I n f o Ty p e s 2 6 3

KI_RSAPublic
KI_RSAPublic

Purpose:
This KI allows you to specify an RSA public key with the modulus and public key
exponent. See KI_RSAPublicBER for the same key info type with BER encoding.

Type of information this allows you to use:
an RSA public key where the modulus and exponent integers are specified.

Format of info supplied to B_SetKeyInfo:
pointer to an A_RSA_KEY structure:

Each ITEM supplies an integer in canonical format, where the ITEM’s data points to an
unsigned byte array, most significant byte first and the ITEM’s len gives its length. All
leading zeros are stripped from each integer before it is copied to the key object.

Format of info returned by B_GetKeyInfo:
pointer to an A_RSA_KEY structure (see above). All leading zeros have been stripped
from each integer in the structure.

Can get this info type if key object already has:
KI_RSAPublic, KI_RSAPublicBER, KI_PKCS_RSAPrivate, or KI_PKCS_RSAPrivateBER.

typedef struct {
 ITEM modulus; /* modulus */
 ITEM exponent; /* exponent */
} A_RSA_KEY;
2 6 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_RSAPublicBER
KI_RSAPublicBER

Purpose:
This KI is similar to KI_RSAPublic except that it uses the ASN.1 BER format. This KI
allows you to parse and create an ASN.1 key info type that is encoded with the X.509
standard of SubjectPublicKeyInfo. You call B_SetKeyInfo to initialize a key object
from the encoded key info type that includes the modulus and public exponent. You
call B_GetKeyInfo with this KI to create an encoded key info type from a key object
that was created using KI_RSAPublic, KI_RSAPublicBER, KI_PKCS_RSAPrivate or
KI_PKCS_RSAPrivateBER. The OID for RSA PKCS #1 encryption, excluding the tag and
length bytes, in decimal, is "42, 134, 72, 134, 247, 13, 1, 1, 1". Also see
KI_RSAPublic.

Type of information this allows you to use:
the encoding of an RSA public key that is encoded as an X.509 SubjectPublicKeyInfo
type that contains an X.509 RSAPublicKey type (also defined in PKCS #1). Note that
this encoding contains all of the information specified by KI_RSAPublic.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BER encoding.
The encoding is converted to DER before it is copied to the key object. B_SetKeyInfo
returns BE_WRONG_KEY_INFO if the public key info specifies a public key for an
algorithm other than RSA. Note that B_SetKeyInfo will accept an encoding that
contains an object identifier for rsa as well as rsaEncryption (defined in PKCS #1).

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the DER encoding.
Note that B_GetKeyInfo returns an encoding that contains the object identifier for
rsaEncryption (defined in PKCS #1) as opposed to rsa.

Can get this info type if key object already has:
KI_RSAPublicBER, KI_RSAPublic, KI_PKCS_RSAPrivate, or KI_PKCS_RSAPrivateBER.
C h a p t e r 3 K e y I n f o Ty p e s 2 6 5

KI_RSAPublicBSAFE1
KI_RSAPublicBSAFE1

Purpose:
Deprecated. This type is included only for backward compatibility.

Type of information this allows you to use:
the BSAFE 1.x encoding of an RSA public key.

Format of info supplied to B_SetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BSAFE 1.x
encoding. B_SetKeyInfo returns BE_WRONG_KEY_INFO if the encoding specifies a public
key for an algorithm other than RSA.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure that gives the address and length of the BSAFE 1.x
encoding.

Can get this info type if key object already has:
KI_RSAPublicBSAFE1, KI_RSAPublic, KI_PKCS_RSAPrivate, KI_PKCS_RSAPrivateBER
or KI_RSAPublicBER.
2 6 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

KI_Token
KI_Token

Purpose:
This KI allows you to specify a hardware-based token form of a key, which may be
either a symmetric key or a public/private key pair. Also see KI_ExtendedToken and
KI_KeypairToken for other key info types with token forms.

Type of information this allows you to use:
hardware-based token forms of symmetric keys and public/private key pairs.

Format of info supplied to B_SetKeyInfo:
pointer to a KI_TOKEN_INFO structure:

Format of info returned by B_GetKeyInfo:
pointer to a KI_TOKEN_INFO structure (see above).

Can get this info type if key object already has:
a key object of the appropriate type, for example, an RSA key pair for RSA or a DES
key for DES. Hardware that uses key tokens must be present.

Notes:
Can only be used in conjunction with a hardware implementation; in particular,
KI_Token can only be used if you have called B_CreateSessionChooser for your
application.

typedef struct {
 ITEM manufacturerId; /* tag used to differentiate */
 /* different hardware tokens */
 ITEM internalKey; /* OEM-supplied key handle */
} KI_TOKEN_INFO;
C h a p t e r 3 K e y I n f o Ty p e s 2 6 7

KI_Token
2 6 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Chapter 4

Details of Crypto-C Functions
This section describes the toolkit's top level API and its bottom level platform-specific
routines. The procedures with names that start "B_" make up the top level API which
is called by applications. The procedure names starting with "T_" are called by the
toolkit's internal routines to perform platform-specific operations like allocating and
copying memory.
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 6 9

B_BuildTableFinal
B_BuildTableFinal

Description
Generates and outputs the acceleration table to accelTable, setting accTableByteLen to
the number of bytes output. It returns BE_OUTPUT_LEN if maxAccTableLength is smaller
than needed.

Return value

int B_BuildTableFinal (
 B_ALGORITHM_OBJ buildTableObj, /* table-building object */
 unsigned char *accelTable, /* acceleration table buffer */
 unsigned int *accTableByteLen, /* size of */
 /* created acceleration table in bytes */
 unsigned int maxAccTableLength, /* size of */
 /* acceleration table buffer */
 A_SURRENDER_CTX * surrenderCtx /* surrender context */
);

Value Description

0 Operation was successful.

non-zero Error. See Appendix A, "Crypto-C Error Types."
2 7 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_BuildTableGetBufSize
B_BuildTableGetBufSize

Description
Sets tableSizeInBytes to the buffer size needed to accommodate the generated table.

Return value

int B_BuildTableGetBufSize (
 B_ALGORITHM_OBJ buildTableObj, /* table-building object */
 unsigned int *tableSizeInBytes /* size of table in bytes */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, "Crypto-C Error Types"
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 7 1

B_BuildTableInit
B_BuildTableInit

Description
Initializes a table-building object used to build acceleration tables for elliptic curve
cryptography.

Return value

int B_BuildTableInit (
 B_ALGORITHM_OBJ buildTableObj, /* table-building object */
 B_ALGORITHM_CHOOSER algorithmChooser, /* algorithm chooser */
 A_SURRENDER_CTX surrenderCtx /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, "Crypto-C Error Types"
2 7 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_CreateAlgorithmObject
B_CreateAlgorithmObject

Description
B_CreateAlgorithmObject allocates and initializes a new algorithm object, storing the
result in algorithmObject. If B_CreateAlgorithmObject is unsuccessful, no memory
is allocated and algorithmObject is set to (B_ALGORITHM_OBJ)NULL_PTR.

Return value

int B_CreateAlgorithmObject (
 B_ALGORITHM_OBJ *algorithmObject /* new algorithm object */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, “Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 7 3

B_CreateKeyObject
B_CreateKeyObject

Description
B_CreateKeyObject allocates and initializes a new key object, storing the result in
keyObject. If B_CreateKeyObject is unsuccessful, no memory is allocated and
keyObject is set to (B_KEY_OBJ)NULL_PTR.

Return value

int B_CreateKeyObject (
 B_KEY_OBJ *keyObject /* new key object */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, “Crypto-C Error Types”
2 7 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_CreateSessionChooser
B_CreateSessionChooser

Description
B_CreateSessionChooser replicates the fixed chooser inclusive of making private
copies of the AM structures. Whenever possible the software-based methods are
replaced with the hardware-based methods defined either statically by
staticHardwareList or dynamically determined by platform specific routines. All
methods in the fixedChooser will be represented in the sessionChooser and will appear
multiple times if there are multiple hardware substitutes available.

Notes:
It is a simple matter to limit the binding of hardware methods to exclusively static or
dynamically defined entries. The algorithm method structures that constitute
sessionChooser are B_METHOD structures extended to include an information pointer
and a finalization function to destroy it.

Return value

int B_CreateSessionChooser (
B_ALGORITHM_CHOOSER fixedChooser, /* Chooser consisting of */
 software-based algorithm methods. */
B_ALGORITHM_CHOOSER *sessionChooser, /* Runtime chooser */
 /* dynamically bound to available hardware based methods. */

HW_TABLE_ENTRY *staticHardwareList[], /* List of statically defined */
 /* hardware methods terminated by a */
 /* properly cast NULL_PTR. */
ITEM *passPhrase, /* hardware passphrase */
POINTER *amTagList, /* For now pass (*)NULL_PTR */
unsigned char ***listOfOEMTags /* Returns list of OEM tags */
 /* for methods in sessionChooser */
);

Value Description

0 Operation was successful.

nonzero unsuccessful, allocation error
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 7 5

B_DecodeDigestInfo
B_DecodeDigestInfo

Description
B_DecodeDigestInfo decodes the BER encoding of a PKCS #1 DigestInfo type that is
given by digestInfo of length digestInfoLen. On output, the algorithmID ITEM gives
the digest algorithm identifier and the digest ITEM gives the digest value. The ITEM
type is defined by the KI_Item key info type in Chapter 3.

Return value

int B_DecodeDigestInfo (
 ITEM *algorithmID, /* message digest algorithm identifier */
 ITEM *digest, /* message digest value */
 unsigned char *digestInfo, /* digestInfo encoding */
 unsigned int digestInfoLen /* length of digestInfo */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, “Crypto-C Error Types”
2 7 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_DecodeFinal
B_DecodeFinal

Description
B_DecodeFinal finalizes the decoding process specified by algorithmObject, writing
any remaining decoded output to partOut, which is a buffer supplied by the caller of
at least maxPartOutLen bytes, and setting partOutLen to the number of bytes written to
partOut. algorithmObject is reset to the state it was in after the call to B_DecodeInit, so
that another decoding process may be performed. See B_DecodeInit.

Return value

int B_DecodeFinal (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen /* size of output data buffer */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, “Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 7 7

B_DecodeInit
B_DecodeInit

Description
B_DecodeInit allocates and initializes algorithmObject for decoding (not decrypting)
data using the algorithm specified by a previous call to B_SetAlgorithmInfo. For
example, the AI_RFC1113Recode algorithm provides Base64 encoding and decoding to
convert binary data to and from a printable form suitable for most email systems.
Notice that there are no cryptographic keys for encoding or decoding.

B_DecodeInit only needs to be called once to set up a decode algorithm. The
B_DecodeUpdate routine can be called multiple times to process blocks of data, and
B_DecodeFinal is called once to process the last block which includes removing any
trailing pad bytes. After B_DecodeFinal is called, B_DecodeUpdate can be called to
start decoding another sequence of blocks. There is no need to call B_DecodeInit
again.

Return value

int B_DecodeInit (
 B_ALGORITHM_OBJ algorithmObject /* algorithm object */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, “Crypto-C Error Types”
2 7 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_DecodeUpdate
B_DecodeUpdate

Description
B_DecodeUpdate updates the decoding process specified by algorithmObject with
partInLen bytes from partIn, writing the decoded output to partOut, which is a buffer
supplied by the caller of at least maxPartOutLen bytes, and setting partOutLen to the
number of bytes written to partOut. B_DecodeUpdate may be called zero or more times
to supply the data by parts. See B_DecodeInit.

Return value

int B_DecodeUpdate (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen, /* size of output data buffer */
 unsigned char *partIn, /* input data */
 unsigned int partInLen /* length of output data */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, “Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 7 9

B_DecryptFinal
B_DecryptFinal

Description
B_DecryptFinal finalizes the decrypting process specified by algorithmObject,
writing any remaining decrypted output to partOut, which is a buffer supplied by the
caller of at least maxPartOutLen bytes, and setting partOutLen to the number of bytes
written to partOut. The algorithm object for supplying random numbers is
randomAlgorithm; it may be (B_ALGORITHM_OBJ)NULL_PTR for decrypting algorithms
that do not need random numbers. The surrender context for processing and
canceling during lengthy operations is surrenderContext; if its value is
(A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not use it. algorithmObject is reset to
the state it was in after the call to B_DecryptInit, so that another decrypting process
may be performed. See B_DecryptInit.

Return value

int B_DecryptFinal (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen, /* size of output data buffer */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
2 8 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_DecryptInit
B_DecryptInit

Description
B_DecryptInit initializes algorithmObject for decrypting data using the algorithm
specified by a previous call to B_SetAlgorithmInfo. The key object for supplying the
key information is keyObject. The chooser for selecting the algorithm method is
algorithmChooser. The surrender context for processing and canceling during lengthy
operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C
does not use it.

B_DecryptInit only needs to be called once to set up a key. The B_DecryptUpdate
routine can be called multiple times to process blocks of data, and B_DecryptFinal is
called once to process the last block, which includes removing the trailing pad bytes.
After B_DecryptFinal is called, B_DecryptUpdate can be called to start processing
another sequence of blocks that were encrypted in the same key. If a different CBC
Initialization Vector (IVs) is used with each sequence of blocks, B_SetAlgorithmInfo
can be called with AI_CBC_IV8 to set the new IV before calling B_DecryptUpdate.
There is no need to call B_DecryptInit again with the same key.

Return value

int B_DecryptInit (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_KEY_OBJ keyObject, /* key object */
 B_ALGORITHM_CHOOSER algorithmChooser, /* algorithm chooser */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 8 1

B_DecryptUpdate
B_DecryptUpdate

Description
B_DecryptUpdate updates the decrypting process specified by algorithmObject with
partInLen bytes from partIn, writing the decrypted output to partOut, which is a
buffer supplied by the caller of at least maxPartOutLen bytes, and setting partOutLen to
the number of bytes written to partOut. The algorithm object for supplying random
numbers is randomAlgorithm; it may be (B_ALGORITHM_OBJ)NULL_PTR for decrypting
algorithms that do not need random numbers. The surrender context for processing
and canceling during lengthy operations is surrenderContext; if its value is
(A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not use it. B_DecryptUpdate may be
called zero or more times to supply the data by parts. See B_DecryptInit.

Return value

int B_DecryptUpdate (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen, /* size of output data buffer */
 unsigned char *partIn, /* input data */
 unsigned int partInLen, /* length of input data */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
2 8 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_DestroyAlgorithmObject
B_DestroyAlgorithmObject

Description
B_DestroyAlgorithmObject destroys algorithmObject, zeroizing any sensitive
information, freeing the memory the algorithm object occupied, and setting
algorithmObject to (B_ALGORITHM_OBJ)NULL_PTR. If algorithmObject is already
(B_ALGORITHM_OBJ)NULL_PTR or is not a valid algorithm object, no action is taken. See
B_CreateAlgorithmObject.

After this routine is called, all the pointers to information blocks returned by calls to
B_GetAlgorithmInfo will no longer be valid, since the memory associated with those
blocks will have been zeroed and freed.

Return value
There is no return value.

void B_DestroyAlgorithmObject (
 B_ALGORITHM_OBJ *algorithmObject /* pointer to algorithm object */
);
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 8 3

B_DestroyKeyObject
B_DestroyKeyObject

Description
B_DestroyKeyObject destroys keyObject, zeroizing any sensitive information, freeing
the memory the key object occupied, and setting keyObject to (B_KEY_OBJ)NULL_PTR. If
keyObject is already (B_KEY_OBJ)NULL_PTR or is not a valid key object, no action is
taken. See B_CreateKeyObject.

After this routine is called, all the pointers to information blocks returned by calls to
B_GetKeyInfo will no longer be valid, since the memory associated with those blocks
will have been zeroed and freed.

Return value
There is no return value.

void B_DestroyKeyObject (
 B_KEY_OBJ *keyObject /* pointer to key object */
);
2 8 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_DigestFinal
B_DigestFinal

Description
B_DigestFinal finalizes the digesting process for algorithmObject and writes the
message digest to digest, which is a buffer supplied by the caller of at least
maxDigestLen bytes, and sets digestLen to the length of the digest. The surrender
context for processing and canceling during lengthy operations is surrenderContext; if
its value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not use it. algorithmObject
is reset to the state it was in after the call to B_DigestInit, so that another message
digesting process may be performed.

Return value

int B_DigestFinal (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *digest, /* message digest output buffer */
 unsigned int *digestLen, /* length of message digest output */
 unsigned int maxDigestLen, /* size of output buffer */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 8 5

B_DigestInit
B_DigestInit

Description
B_DigestInit initializes algorithmObject for computing a message digest using the
algorithm specified by a previous call to B_SetAlgorithmInfo. The chooser for
selecting the algorithm method is algorithmChooser. The key object for supplying the
key information is keyObject; it should be (B_KEY_OBJ)NULL_PTR for keyless digesting
algorithms. The surrender context for processing and canceling during lengthy
operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C
does not use it.

B_DigestInit only needs to be called once to set up a digest algorithm. The
B_DigestUpdate routine can be called multiple times to process blocks of data, and
B_DigestFinal is called once to process the last block which includes producing the
result. After B_DigestFinal is called, B_DigestUpdate can be called to start digesting
another sequence of blocks. There is no need to call B_DigestInit again.

Return value

int B_DigestInit (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_KEY_OBJ keyObject, /* key object */
 B_ALGORITHM_CHOOSER algorithmChooser, /* algorithm chooser */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, “Crypto-C Error Types”
2 8 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_DigestUpdate
B_DigestUpdate

Description
B_DigestUpdate updates algorithmObject with partInLen bytes from partIn. The
surrender context for processing and canceling during lengthy operations is
surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not
use it. B_DigestUpdate may be called zero or more times to supply the data by parts.
See B_DigestInit.

Return value

int B_DigestUpdate (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partIn, /* input data */
 unsigned int partInLen, /* length of input data */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, “Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 8 7

B_EncodeDigestInfo
B_EncodeDigestInfo

Description
B_EncodeDigestInfo encodes the DER encoding of a PKCS #1 DigestInfo type,
writing the encoding to digestInfo, which is a buffer supplied by the caller of at least
maxDigestInfoLen bytes, and sets digestInfoLen to the length of the encoding.
algorithmID points to an ITEM that gives the DER encoding of the message digest
algorithm. The ITEM type is defined by the KI_Item key info type in Chapter 3.
Typically, algorithmID is the value of info returned by calling B_GetAlgorithmInfo.
digest points to the message digest value of length digestLen. Typically, digest is
returned by B_DigestFinal.

Return value

int B_EncodeDigestInfo (
 unsigned char *digestInfo, /* encoded output buffer */
 unsigned int *digestInfoLen, /* length of encoded output */
 unsigned int maxDigestInfoLen, /* size of digestInfo buffer */
 ITEM *algorithmID, /* message digest algorithm identifier */
 unsigned char *digest, /* message digest value */
 unsigned int digestLen /* length of digest */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
2 8 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_EncodeFinal
B_EncodeFinal

Description
B_EncodeFinal finalizes the encoding process specified by algorithmObject, writing
any remaining encoded output to partOut, which is a buffer supplied by the caller of
at least maxPartOutLen bytes, and setting partOutLen to the number of bytes written to
partOut. algorithmObject is reset to the state it was in after the call to B_EncodeInit, so
that another encoding process may be performed. See B_EncodeInit.

Return value

int B_EncodeFinal (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen /* size of output data buffer */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 8 9

B_EncodeInit
B_EncodeInit

Description
B_EncodeInit initializes algorithmObject for encoding data using the algorithm
specified by a previous call to B_SetAlgorithmInfo. For example, the
AI_RFC1113Recode algorithm provides Base64 encoding and decoding to convert
binary data to and from a printable form suitable for most email systems. Notice that
there are no cryptographic keys for encoding or decoding.

B_EncodeInit only needs to be called once to set up a Encode algorithm. The
B_EncodeUpdate routine can be called multiple times to process blocks of data, and
B_EncodeFinal is called once to process the last block which includes adding any
trailing pad bytes. After B_EncodeFinal is called, B_EncodeUpdate can be called to
start decoding another sequence of blocks. There is no need to call B_EncodeInit
again.

Return value

int B_EncodeInit (
 B_ALGORITHM_OBJ algorithmObject /* algorithm object */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
2 9 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_EncodeUpdate
B_EncodeUpdate

Description
B_EncodeUpdate updates the encoding process specified by algorithmObject with
partInLen bytes from partIn, writing the encoded output to partOut, which is a buffer
supplied by the caller of at least maxPartOutLen bytes, and setting partOutLen to the
number of bytes written to partOut. B_EncodeUpdate may be called zero or more times
to supply the data by parts. See B_EncodeInit.

Return value

int B_EncodeUpdate (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen, /* size of output data buffer */
 unsigned char *partIn, /* input data */
 unsigned int partInLen /* length of input data */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 9 1

B_EncryptFinal
B_EncryptFinal

Description
B_EncryptFinal finalizes the encrypting process specified by algorithmObject, writing
any remaining encrypted output to partOut, which is a buffer supplied by the caller of
at least maxPartOutLen bytes, and setting partOutLen to the number of bytes written to
partOut. The algorithm object for supplying random numbers is randomAlgorithm; it
may be (B_ALGORITHM_OBJ)NULL_PTR for encrypting algorithms that do not need
random numbers. The surrender context for processing and canceling during lengthy
operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR,
Crypto-C does not use it. algorithmObject is reset to the state it was in after the call to
B_EncryptInit, so that another encrypting process may be performed. See
B_EncryptInit.

Return value

int B_EncryptFinal (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen, /* size of output data buffer */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
2 9 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_EncryptInit
B_EncryptInit

Description
B_EncryptInit initializes algorithmObject for encrypting data using the algorithm
specified by a previous call to B_SetAlgorithmInfo. The key object for supplying the
key information is keyObject. The chooser for selecting the algorithm method is
algorithmChooser. The surrender context for processing and canceling during lengthy
operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C
does not use it.

B_EncryptInit only needs to be called once to set up a key. The B_EncryptUpdate
routine can be called multiple times to process blocks of data, and B_EncryptFinal is
called once to process the last block, which includes adding the trailing pad bytes.
After B_EncryptFinal is called, B_EncryptUpdate can be called to start processing
another sequence of blocks. If a different CBC Initialization Vector (IVs) is used with
each sequence of blocks, B_SetAlgorithmInfo can be called with AI_CBC_IV8 to set the
new IV before calling B_EncryptUpdate. There is no need to call B_EncryptInit again
with the same key.

Return value

int B_EncryptInit (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_KEY_OBJ keyObject, /* key object */
 B_ALGORITHM_CHOOSER algorithmChooser, /* algorithm chooser */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, “Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 9 3

B_EncryptUpdate
B_EncryptUpdate

Description
B_EncryptUpdate updates the encrypting process specified by algorithmObject with
partInLen bytes from partIn, writing the encrypted output to partOut, which is a
buffer supplied by the caller of at least maxPartOutLen bytes, and setting partOutLen to
the number of bytes written to partOut. The algorithm object for supplying random
numbers is randomAlgorithm; it may be (B_ALGORITHM_OBJ)NULL_PTR for encrypting
algorithms that do not need random numbers. The surrender context for processing
and canceling during lengthy operations is surrenderContext; if its value is
(A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not use it. B_EncryptUpdate may be
called zero or more times to supply the data by parts.

Return value

int B_EncryptUpdate (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen, /* size of output data buffer */
 unsigned char *partIn, /* input data */
 unsigned int partInLen, /* length of input data */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
2 9 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_FreeSessionChooser
B_FreeSessionChooser

Description
B_FreeSessionChooser frees the memory allocated in the process of creating
sessionChooser and oemTagList. Whenever a non-null information pointer from the
extended AM is encountered, its corresponding Final function is called to destroy it.

Return value

int B_FreeSessionChooser (
 B_ALGORITHM_CHOOSER *sessionChooser, /* Address of runtime chooser */
 /* dynamically bound to available */
 /* hardware-based methods */
 unsigned char ***oemTagList, /* Address of list of OEM */
 /* hardware method tags */
);

Value Description

0 Operation was successful.ful

nonzero unsuccessful, allocation error
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 9 5

B_GenerateInit
B_GenerateInit

Description
B_GenerateInit initializes algorithmObject using the algorithm specified by a
previous call to B_SetAlgorithmInfo. The chooser for selecting the algorithm method
is algorithmChooser. The surrender context for processing and canceling during
lengthy operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR,
Crypto-C does not use it.

This routine is used to initialize several of the toolkit's parameter generation
algorithms like B_GenerateKeypair or B_GenerateParameters. However,
B_RandomInit is used to initialize the generator for B_GenerateRandomBytes.

Return value

int B_GenerateInit (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_ALGORITHM_CHOOSER algorithmChooser, /* algorithm chooser */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
2 9 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_GenerateKeypair
B_GenerateKeypair

Description
B_GenerateKeypair uses algorithmObject to generate a keypair, setting publicKey
and privateKey to the result. The algorithm object for supplying random numbers is
randomAlgorithm. The surrender context for processing and canceling during lengthy
operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C
does not use it. algorithmObject is reset to the state it was in after the call to
B_GenerateInit, so that another keypair generation may be performed. See
B_GenerateInit.

Return value

int B_GenerateKeypair (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_KEY_OBJ publicKey, /* new public key */
 B_KEY_OBJ privateKey, /* new private key */
 B_ALGORITHM_OBJ randomAlgorithm, /* random algorithm */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 9 7

B_GenerateParameters
B_GenerateParameters

Description
B_GenerateParameters uses algorithmObject to generate algorithm parameters,
setting resultAlgorithmObject to the result. The application may then use
B_GetAlgorithmInfo to get the new parameters from resultAlgorithmObject. The
algorithm object for supplying random numbers is randomAlgorithmObject. The
surrender context for processing and canceling during lengthy operations is
surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not
use it. algorithmObject is reset to the state it was in after the call to B_GenerateInit, so
that another parameter generation may be performed. See B_GenerateInit.

Return value

int B_GenerateParameters (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_ALGORITHM_OBJ resultAlgorithmObject, /* result algorithm object */
 B_ALGORITHM_OBJ randomAlgorithmObject, /* random algorithm */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
2 9 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_GenerateRandomBytes
B_GenerateRandomBytes

Description
B_GenerateRandomBytes generates outputLen pseudo-random bytes from
randomAlgorithm, storing the result in output. The randomAlgorithm must have been
seeded. The surrender context for processing and canceling during lengthy operations
is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not
use it. See B_RandomInit.

Return value

int B_GenerateRandomBytes (
 B_ALGORITHM_OBJ randomAlgorithm, /* random algorithm */
 unsigned char *output, /* buffer for output bytes */
 unsigned int outputLen, /* number of bytes to output */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 2 9 9

B_GetAlgorithmInfo
B_GetAlgorithmInfo

Description
B_GetAlgorithmInfo gets the information held by algorithmObject in the format
specified by infoType, storing the result in info. The value of infoType is one of the
algorithm info types with an AI_ prefix listed in Chapter 2. The format of the
information returned by B_GetAlgorithmInfo is the same as the format supplied to
B_SetAlgorithmInfo.

This routine can be used to convert between external representations of information.
For example, an algorithm can be set up to perform encryption using
AI_MD2WithDES_CBCPad, and later the BER representation of that algorithm can be
computed by calling B_GetAlgorithmInfo with AI_MD2WithDES_CBCPadBER. These
external representations of algorithm identifiers are used in RSA Data Security, Inc.'s
PKCS standards and other industry cryptographic standards.

Return value

int B_GetAlgorithmInfo (
 POINTER *info, /* algorithm information */
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_INFO_TYPE infoType /* type of algorithm information */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
3 0 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_GetExtendedErrorInfo
B_GetExtendedErrorInfo

Description
B_GetExtendedErrorInfo sets errorDataItem->data to point at the error data, and
errorDataItem->len to the length in bytes of the error data. AM is set to the address of
the algorithm method that originated the error if any.

Notes:
A NULL extended error is indicated by a length of zero. The error data may in reality be
a data structure that includes pointers to allocated memory. These allocations are
cleaned up using an error destruction routine assigned during the creation of the
extended error data.

Return value
There is no return value.

void B_GetExtendedErrorInfo (
 B_ALGORITHM_OBJ algorithmObj, /* algorithm object */
 ITEM *errorDataItem, /* returns pointer to error data */
 /* and length of data */
 POINTER *AM /* Set to point at method table */
);
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 0 1

B_GetKeyExtendedErrorInfo
B_GetKeyExtendedErrorInfo

Description
B_GetKeyExtendedErrorInfo sets errorDataItem->data to point at the error data, and
errorDataItem->len to the length in bytes of the error data. AM is optionally set by the
hardware manufacturer; consult the documentation supplied by your hardware
vendor for more information.

Notes:
A null extended error is indicated by a length of zero. The error data may in reality be
a data structure that includes pointers to allocated memory. These allocations are
cleaned up using an error destruction routine assigned during the creation of the
extended error data.

Return value
There is no return value.

void B_GetKeyExtendedErrorInfo (
 B_KEY_OBJ keyObject, /* key object */
 ITEM *errorDataItem, /* returns pointer to */
 /* error data and length of data */
 POINTER *AM; /* Set to point at method table */
);
3 0 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_GetKeyInfo
B_GetKeyInfo

Description
B_GetKeyInfo gets the information held by keyObject in the format specified by
infoType, storing the result in info. The value of infoType is one of the key info types
with a KI_ prefix listed in Chapter 3. The format of the information returned by
B_GetKeyInfo is not always identical to the format supplied to B_SetKeyInfo because
B_SetKeyInfo may canonicalize the information before it stores it in the key object.
For example, KI_DES8 sets the DES parity before storing, KI_RSAPublicBER converts a
BER encoding to DER, and KI_RSAPublic strips off leading zeros from the modulus
and exponent integers.

Return value

int B_GetKeyInfo (
 POINTER *info, /* key information */
 B_KEY_OBJ keyObject, /* key object */
 B_INFO_TYPE infoType /* type of key information */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 0 3

B_IntegerBits
B_IntegerBits

Description
B_IntegerBits returns the number of significant bits in an arbitrary-length integer,
where integer points to an unsigned byte array, most significant byte first and
integerLen gives its length. Leading zeroes are ignored. The integer is considered
unsigned; that is, the most-significant bit is counted and is not considered a sign bit. If
integerLen is zero, integer is ignored and B_IntegerBits returns zero. A typical
application uses B_IntegerBits to determine the key size in bits of an RSA key by
passing in the modulus.

This routine can be used to examine the value of a large integer such as the ones
returned by B_GetKeyInfo for KI's like KI_RSAPublic.

Return value
B_IntegerBits returns the number of significant bits in integer.

unsigned int B_IntegerBits (
 unsigned char *integer, /* canonical integer */
 unsigned int integerLen /* length in bytes */
);
3 0 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_KeyAgreeInit
B_KeyAgreeInit

Description
B_KeyAgreeInit initializes algorithmObject for performing key agreement using the
algorithm specified by a previous call to B_SetAlgorithmInfo. The chooser for
selecting the algorithm method is algorithmChooser. The key object for supplying the
key information is keyObject; it should be (B_KEY_OBJ)NULL_PTR for key agreement
algorithms that do not need an input key. The surrender context for processing and
canceling during lengthy operations is surrenderContext; if its value is
(A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not use it.

This routine can be used for Diffie-Hellman key agreement. First B_KeyAgreeInit is
called to setup the algorithm, then each party calls B_KeyAgreePhase1 to generate the
value that is then sent to the other party. Each party then passes the received value to
B_KeyAgreePhase2, which computes the agreed upon key. If several key agreements
are done using the same algorithm, there is no need to call B_KeyAgreeInit again.

Return value

int B_KeyAgreeInit (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_KEY_OBJ keyObject, /* key object */
 B_ALGORITHM_CHOOSER algorithmChooser, /* algorithm chooser */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 0 5

B_KeyAgreePhase1
B_KeyAgreePhase1

Description
B_KeyAgreePhase1 uses algorithmObject to generate the initial value for the other
party, writing it to output, which is a buffer supplied by the caller of at least
maxOutputLen bytes, and setting outputLen to the number of bytes written to output.
The algorithm object for supplying random numbers is randomAlgorithm. The
surrender context for processing and canceling during lengthy operations is
surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not use
it. See B_KeyAgreeInit.

Return value

int B_KeyAgreePhase1 (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *output, /* output data buffer */
 unsigned int *outputLen, /* length of output data */
 unsigned int maxOutputLen, /* size of output data buffer */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
3 0 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_KeyAgreePhase2
B_KeyAgreePhase2

Description
B_KeyAgreePhase2 performs a round of key agreement as specified by
algorithmObject, receiving inputLen bytes from input, which is the other party’s
intermediate value. B_KeyAgreePhase2 writes the output to output, which is a buffer
supplied by the caller of at least maxOutputLen bytes, and sets outputLen to the number
of bytes written to output. If input is the other party’s final intermediate value, output
is the agreed-upon key; otherwise, output is a new intermediate value to send to the
other party. The surrender context for processing and canceling during lengthy
operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR,
Crypto-C does not use it.

B_KeyAgreePhase2 may be called one or more times to process intermediate values,
depending on how many other parties are involved in the key agreement. For an
algorithm like Diffie-Hellman, B_KeyAgreePhase2 is called once.

Return value

int B_KeyAgreePhase2 (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *output, /* output data buffer */
 unsigned int *outputLen, /* length of output data */
 unsigned int maxOutputLen, /* size of output data buffer */
 unsigned char *input, /* input data */
 unsigned int inputLen, /* length of input data */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 0 7

B_RandomInit
B_RandomInit

Description
B_RandomInit initializes randomAlgorithm for generating random bytes using the
algorithm specified by a previous call to B_SetAlgorithmInfo. randomAlgorithm is
ready to generate bytes after the call to B_RandomInit. However, it is necessary to mix
in random seed values with B_RandomUpdate. Otherwise, without seed values, the
bytes generated by the algorithm follow a default unseeded byte sequence. The
chooser for selecting the algorithm method is algorithmChooser. The surrender context
for processing and canceling during lengthy operations is surrenderContext; if its
value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not use it.

B_RandomInit is called once to create the generator, then B_RandomUpdate is called one
or more times to add "seed" bytes (values that are hard for an attacker to predict) to
the generator. After enough seed is added, say at least 128 bytes, then
B_GenerateRandomBytes can be called one or more times to generate blocks of
pseudo-random data. If B_RandomUpdate is only called once before
B_GenerateRandomBytes, then the BSAFE 2 algorithms will be used. Two or more calls
to B_RandomUpdate will cause the improved BSAFE 3 algorithms to be used. It is also
OK to call B_RandomUpdate after calling B_GenerateRandomBytes in order to add more
hard to predict values to the generator. There is no need to call B_RandomInit again.

Return value

int B_RandomInit (
 B_ALGORITHM_OBJ randomAlgorithm, /* random algorithm object */
 B_ALGORITHM_CHOOSER algorithmChooser, * algorithm chooser */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
3 0 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_RandomUpdate
B_RandomUpdate

Description
B_RandomUpdate mixes inputLen bytes from input into randomAlgorithm. The surrender
context for processing and canceling during lengthy operations is surrenderContext; if
its value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not use it. See
B_RandomInit.

Return value

int B_RandomUpdate (
 B_ALGORITHM_OBJ randomAlgorithm, /* random algorithm */
 unsigned char *input, /* block values to mix in */
 unsigned int inputLen, /* length of input block */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 0 9

B_SetAlgorithmInfo
B_SetAlgorithmInfo

Description
B_SetAlgorithmInfo sets the parameters of algorithmObject to the information
pointed to by info. The type of algorithm and the format of the parameters is specified
by infoType, which is one of the algorithm info types with an AI_ prefix listed in
Chapter 2. A separate copy of the information supplied by info is allocated inside the
algorithm object so that info may be changed after the call to B_SetAlgorithmInfo.
B_SetAlgorithmInfo returns BE_WRONG_ALGORITHM_INFO if the algorithm type
encoded in info is not the type expected by infoType.

Once an algorithm object has been set, it should not be reset, that is, do not call
B_SetAlgorithmInfo twice on a single created algorithm object. Either create a new
algorithm object or destroy an existing one and create it again.

Return value

int B_SetAlgorithmInfo (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_INFO_TYPE infoType, /* type of algorithm information */
 POINTER info /* algorithm information */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
3 1 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_SetKeyInfo
B_SetKeyInfo

Description
B_SetKeyInfo sets the value of keyObject to the information pointed to by info. The
format of the information is specified by infoType, which is one of the key info types
with a KI_ prefix listed in Chapter 3. Also, some of the AI algorithm info types listed
in Chapter 2 specify the key info type that should be used to set the key object needed
by the algorithm. A separate copy of the information supplied by info is allocated
inside the key object so that info may be changed after the call to B_SetKeyInfo.
B_SetKeyInfo returns BE_WRONG_KEY_INFO if the key type encoded in info is not the
type expected by infoType.

Once a key object has been set, it should not be reset, that is, do not call B_SetKeyInfo
twice on a single created key object. Either create a new key object or destroy an
existing one and create it again.

Return value

int B_SetKeyInfo (
 B_KEY_OBJ keyObject, /* key object */
 B_INFO_TYPE infoType, /* type of key information */
 POINTER info /* key information */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 1 1

B_SignFinal
B_SignFinal

Description
B_SignFinal finalizes the digesting process for algorithmObject and computes the
digital signature, writing the signature to signature, which is a buffer supplied by the
caller of at least maxSignatureLen bytes, and sets signatureLen to the length of the
signature. The algorithm object for supplying random numbers is randomAlgorithm; it
may be (B_ALGORITHM_OBJ)NULL_PTR for signature algorithms that do not need
random numbers. The surrender context for processing and canceling during lengthy
operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR,
Crypto-C does not use it. algorithmObject is reset to the state it was in after the call to
B_SignInit, so that another signing process may be performed.

Return value

int B_SignFinal (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *signature, /* signature output buffer */
 unsigned int *signatureLen, /* length of signature output */
 unsigned int maxSignatureLen, /* size of output buffer */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
3 1 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_SignInit
B_SignInit

Description
B_SignInit initializes algorithmObject for computing a digital signature using the
algorithm specified by a previous call to B_SetAlgorithmInfo. The chooser for
selecting the algorithm method is algorithmChooser. The key object for supplying the
key information is keyObject, which is typically a private key. The surrender context
for processing and canceling during lengthy operations is surrenderContext; if its
value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not use it.

B_SignInit only needs to be called once to set up a signature algorithm. The
B_SignUpdate routine can be called multiple times to process blocks of data, and
B_SignFinal is called once to process the last block which includes producing the
result. After B_SignFinal is called, B_SignUpdate can be called to start signing
another sequence of blocks. There is no need to call B_SignInit again.

Return value

int B_SignInit (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_KEY_OBJ keyObject, /* key object */
 B_ALGORITHM_CHOOSER algorithmChooser, /* algorithm chooser */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 1 3

B_SignUpdate
B_SignUpdate

Description
B_SignUpdate updates the digesting process for algorithmObject with partInLen
bytes from partIn. The surrender context for processing and canceling during lengthy
operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR,
Crypto-C does not use it. B_SignUpdate may be called zero or more times to supply
the data by parts. See B_SignInit.

Return value

int B_SignUpdate (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partIn, /* input data */
 unsigned int partInLen, /* length of input data */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero Error. See Appendix A, ”Crypto-C Error Types.”
3 1 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_SymmetricKeyGenerate
B_SymmetricKeyGenerate

Description
Creates a symmetric key in accordance with data specified during the
B_SetAlgorithmInfo step. If hardware is present, the key information is stored in a
KI_TOKEN_INFO structure. If no hardware is present, the key information is stored in
KI_EXTENDED_TOKEN_INFO format, which extends the KI_Token base type.

Return value

int B_SymmetricKeyGenerate (
 B_ALGORITHM_OBJ algorithmObject,
 B_KEY_OBJ symmetricKey,
 B_ALGORITHM_OBJ randomObject,
 A_SURRENDER_CTX *surrenderContext;
);

Value Description

0 Operation was successful.

nonzero Error. See Appendix A, ”Crypto-C Error Types.”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 1 5

B_SymmetricKeyGenerateInit
B_SymmetricKeyGenerateInit

Description
Initializes key generation object.

Return value

int B_SymmetricKeyGenerateInit (
 B_ALGORITHM_OBJ algorithmObject,
 B_ALGORITHM_CHOOSER algorithmChooser,
 A_SURRENDER_CTX *surrenderContext
);

Value Description

0 Operation was successful.

nonzero error
3 1 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_VerifyFinal
B_VerifyFinal

Description
B_VerifyFinal finalizes the digesting process for algorithmObject and verifies the
digital signature supplied by signature of signatureLen bytes. The algorithm object for
supplying random numbers is randomAlgorithm; it may be
(B_ALGORITHM_OBJ)NULL_PTR for signature algorithms that do not need random
numbers. The surrender context for processing and canceling during lengthy
operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR,
Crypto-C does not use it. algorithmObject is reset to the state it was in after the call to
B_VerifyInit, so that another verifying process may be performed. See
B_VerifyInit.

Return value

int B_VerifyFinal (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *signature, /* signature to verify */
 unsigned int signatureLen, /* length of signature */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 1 7

B_VerifyInit
B_VerifyInit

Description
B_VerifyInit initializes algorithmObject for verifying a digital signature using the
algorithm specified by a previous call to B_SetAlgorithmInfo. The chooser for
selecting the algorithm method is algorithmChooser. The key object for supplying the
key information is keyObject, which is typically a public key. The surrender context
for processing and canceling during lengthy operations is surrenderContext; if its
value is (A_SURRENDER_CTX *)NULL_PTR, Crypto-C does not use it.

B_VerifyInit only needs to be called once to set up a verification algorithm. The
B_VerifyUpdate routine can be called multiple times to process blocks of data, and
B_VerifyFinal is called once to process the last block which includes checking the
computed signature against the expected signature that is passed to B_VerifyFinal.
After B_VerifyFinal is called, B_VerifyUpdate can be called to start verifying another
sequence of blocks. There is no need to call B_VerifyInit again.

Return value

int B_VerifyInit (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_KEY_OBJ keyObject, /* key object */
 B_ALGORITHM_CHOOSER algorithmChooser, /* algorithm chooser */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
3 1 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

B_VerifyUpdate
B_VerifyUpdate

Description
B_VerifyUpdate updates the digesting process for algorithmObject with partInLen
bytes from partIn. The surrender context for processing and canceling during lengthy
operations is surrenderContext; if its value is (A_SURRENDER_CTX *)NULL_PTR,
Crypto-C does not use it. B_VerifyUpdate may be called zero or more times to supply
the data by parts. See B_VerifyInit.

Return value

int B_VerifyUpdate (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partIn, /* input data */
 unsigned int partInLen, /* length of input data */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

Value Description

0 Operation was successful.

non-zero see Appendix A, ”Crypto-C Error Types”
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 1 9

T_free
T_free

Description
T_free deallocates block. The value of block is allocated with T_malloc or reallocated
with T_realloc, or it is NULL_PTR. If block is NULL_PTR, T_free performs no operation.

Return value
There is no return value.

void T_free (
 POINTER block /* block address */
);
3 2 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

T_malloc
T_malloc

Description
T_malloc allocates a memory block of at least len bytes. The value of len can be zero,
in which case T_malloc returns a valid non-NULL_PTR value.

Return value

POINTER T_malloc (
 unsigned int len /* length of block */
);

Value Description

address of block Operation was successful.

NULL_PTR error
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 2 1

T_memcmp
T_memcmp

Description
T_memcmp compares the first len bytes of firstBlock and secondBlock. The value of len
can be zero, in which case firstBlock and secondBlock are undefined and T_memcmp
returns zero. T_memcmp compares the blocks by scanning the blocks from lowest
address to highest until a difference is found. The smaller-valued block is the one with
the smaller-valued byte at the point of difference. If no difference is found, then the
blocks are equal.

Return value

int T_memcmp (
 POINTER firstBlock, /* first block */
 POINTER secondBlock, /* second block */
 unsigned int len /* length of blocks */
);

Value Description

< 0 firstBlock is smaller.

0 The blocks are equal.

> 0 firstBlock is larger.
3 2 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

T_memcpy
T_memcpy

Description
T_memcpy copies the first len bytes of input to output. The value of len can be zero, in
which case output and input are undefined. The blocks do not overlap.

Return value
There is no return value.

void T_memcpy(
 POINTER output, /* output block */
 POINTER input, /* input block */
 unsigned int len /* length of blocks */
);
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 2 3

T_memmove
T_memmove

Description
T_memmove copies the first len bytes of input to output. The blocks can overlap. The
value of len can be zero, in which case output and input are undefined.

Return value
There is no return value.

void T_memmove (
 POINTER output, /* output block */
 POINTER input, /* input block */
 unsigned int len /* length of blocks */
);
3 2 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

T_memset
T_memset

Description
T_memset sets the first len bytes of output to value. If the value of len is zero, output is
undefined.

Return value
There is no return value.

void T_memset (
 POINTER output, /* output block */
 int value, /* value */
 unsigned int len /* length of block */
);
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 2 5

T_realloc
T_realloc

Description
T_realloc changes the size of block to len. It allocates a memory block of length len
bytes, copies as many bytes as possible from the old memory block to the new one,
and frees the old block. The address of the new block can be different from the
address of the old block. The value of len can be zero, in which case T_realloc returns
a valid non-NULL_PTR value. On error, block is freed. Note that many implementations
of realloc do not free the block on error, so T_realloc must take care to do this. The
value of block is allocated with T_malloc or reallocated with T_realloc, or it is
NULL_PTR. If block is NULL_PTR, T_realloc performs as T_malloc.

Return value

POINTER T_realloc (
 POINTER block, /* block address */
 unsigned int len /* new length */
);

Value Description

address of new block Operation was successful.

NULL_PTR error
3 2 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

T_strcmp
T_strcmp

Description
T_strlen compares two strings. The return value indicates the lexicographic relation
of string1 to string2.

Return Value

int T_strcmp (
 const char *string1, /* first string */
 const char *string2 /* second string */
);

Value Relationship of string1 to string2

< 0 string1 is less than string2

0 string1 is identical to string2

> 0 string1 is greater than string2
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 2 7

T_strcpy
T_strcpy

The T_strcpy function copies strSource, including the terminating NULL character, to
the location specified by strDest.

Return Value
The destination string.

char* T_strcpy (
 char *strDest, /* destination string */
 char *strSource /* source string */
);
3 2 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

T_strlen
T_strlen

Description
T_strlen returns the number of characters in pStr, excluding the terminal NULL.

Return Value
The number of characters in the string.

unsigned int T_strlen (
 char *pStr /* null-terminated string */
);
C h a p t e r 4 D e t a i l s o f C r y p t o - C F u n c t i o n s 3 2 9

T_strlen
3 3 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Appendix A

Crypto-C Error Types
This appendix lists the RSA BSAFE Crypto-C (Crypto-C) error types.

Table A-1 Crypto-C Error Types

Hex Decimal Error Code Description

0x0200 512 BE_ALGORITHM_ALREADY_SET the value of the algorithm object has
already been set by a call to
B_SetAlgorithmInfo or by an
algorithm parameter generation

0x0201 513 BE_ALGORITHM_INFO invalid format for the algorithm
information in the algorithm object

0x0202 514 BE_ALGORITHM_NOT_INITIALIZE
D

algorithm object has not been initialized
by a call to the Init procedure

0x0203 515 BE_ALGORITHM_NOT_SET the algorithm object has not been set
by a call to B_SetAlgorithmInfo

0x0204 516 BE_ALGORITHM_OBJ invalid algorithm object

0x0205 517 BE_ALG_OPERATION_UNKNOWN unknown operation for an algorithm or
algorithm info type

0x0206 518 BE_ALLOC insufficient memory

0x0207 519 BE_CANCEL operation was cancelled by the
surrender function

0x0208 520 BE_DATA generic data error
A p p e n d i x A C r y p t o - C E r r o r Ty p e s 3 3 1

0x0209 521 BE_EXPONENT_EVEN invalid even value for public exponent
in keypair generation

0x020a 522 BE_EXPONENT_LEN invalid exponent length for public
exponent in keypair generation

0x020b 523 BE_HARDWARE cryptographic hardware error

0x020c 524 BE_INPUT_DATA invalid encoding format for input data

0x020d 525 BE_INPUT_LEN invalid total length for input data

0x020e 526 BE_KEY_ALREADY_SET the value of the key object has already
been set by a call to B_SetKeyInfo or
by a key generation

0x020f 527 BE_KEY_INFO invalid format for the key information in
the key object

0x0210 528 BE_KEY_LEN invalid key length

0x0211 529 BE_KEY_NOT_SET the key object has not been set by a call
to B_SetKeyInfo or by a key
generation

0x0212 530 BE_KEY_OBJ invalid key object

0x0213 531 BE_KEY_OPERATION_UNKNOWN unknown operation for a key info type

0x0214 532 BE_MEMORY_OBJ invalid internal memory object

0x0215 533 BE_MODULUS_LEN unsupported modulus length for a key
or for algorithm parameters

0x0216 534 BE_NOT_INITIALIZED algorithm is improperly initialized

0x0217 535 BE_NOT_SUPPORTED the algorithm chooser does not support
the type of key information in the key
object for the specified algorithm

0x0218 536 BE_OUTPUT_LEN the maximum size or the output buffer is
too small to receive the output

0x0219 537 BE_OVER_32K data block exceeds 32,767 bytes

0x021a 538 BE_RANDOM_NOT_INITIALIZED the random algorithm has not been
initialized by a call to B_RandomInit

0x021b 539 BE_RANDOM_OBJ invalid algorithm object for the random
algorithm

0x021c 540 BE_SIGNATURE signature does not verify

Table A-1 Crypto-C Error Types

Hex Decimal Error Code Description
3 3 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

0x021d 541 BE_WRONG_ALGORITHM_INFO the required algorithm information is
not in the algorithm object

0x021e 542 BE_WRONG_KEY_INFO the required key information is not in
the key object

0x021f 543 BE_INPUT_COUNT Update called an invalid number of
times for inputting data

0x0220 544 BE_OUTPUT_COUNT Update called an invalid number of
times for outputting data

0x0221 545 BE_METHOD_NOT_IN_CHOOSER algorithm chooser doesn’t contain the
algorithm method for the algorithm
specified by the previous call to
B_SetAlgorithmInfo

0x0222 546 BE_KEY_WEAK the key data supplied would generate a
known weak key

0x0223 547 BE_EXPONENT_ONE the value of the public exponent can
not be 1

0x0224 548 BE_BAD_POINTER invalid pointer

0x0225 549 BE_BAD_PASSPHRASE invalid password

0x0226 550 BE_AM_DOMESTIC_ONLY an attempt was made to call a function
that is not available in the export
version of Crypto-C

0x0227 551 BE_BAD_SEEDING bad seeding was passed to an
AI_X931Random object

Table A-1 Crypto-C Error Types

Hex Decimal Error Code Description
A p p e n d i x A C r y p t o - C E r r o r Ty p e s 3 3 3

3 3 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Appendix B

Platform-Specific Types and
Constants
This appendix lists the platform-specific types and constants.

Types
Crypto-C requires these platform-specific types: POINTER, UINT2, and UINT4. These can
be found in the file aglobal.h.

POINTER
A POINTER value is a generic pointer to memory to which any other pointer can be
cast.

Example:

UINT2
A UINT2 value is a 16-bit unsigned integer.

 typedef unsigned char *POINTER;
A p p e n d i x B P l a t f o r m - S p e c i f i c Ty p e s a n d C o n s t a n t s 3 3 5

Types
Example:

UINT4
A UINT4 value is a 32-bit unsigned integer.

Example:

typedef unsigned short int UINT2;

 typedef unsigned long int UINT4;
3 3 6 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Constants
Constants
Crypto-C requires one macro: PROTO_LIST.

PROTO_LIST indicates the form that C function prototypes are to take. If function
prototypes specify the types of the arguments, then PROTO_LIST should be defined as:

Otherwise PROTO_LIST should be defined as:

Crypto-C defines one string constant: BSAFE_VERSION:

BSAFE_VERSION is a null-terminated string constant that specifies the release of the
Crypto-C library.

#define PROTO_LIST(list) list

#define PROTO_LIST(list) ()

extern char *BSAFE_VERSION;
A p p e n d i x B P l a t f o r m - S p e c i f i c Ty p e s a n d C o n s t a n t s 3 3 7

3 3 8 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Appendix C

References
FIPS PUB 46-1 National Bureau of Standards. FIPS Publication 46-1: Data
Encryption Standard. January 1988.

FIPS PUB 81 National Bureau of Standards. FIPS Publication 81: DES Modes of
Operation. December 1980.

FIPS PUB 180-1 National Institute of Standards and Technology. FIPS Publication
180-1: Secure Hash Standard. May 1993.

FIPS PUB 186 National Institute of Standards and Technology. FIPS Publication
186: Digital Signature Standard. May 1994.

P1363 Draft D1 IEEE. Standard Specifications for Public Key Cryptography.
December 1997.

RFC 1113 J. Linn. RFC 1113: Privacy Enhancement for Internet Electronic Mail:
Part I Message Encipherment and Authentication Procedures. August
1989.

RFC 1319 B. Kaliski. The MD2 Message-Digest Algorithm. April 1992.

RFC 1321 R. Rivest. The MD5 Message-Digest Algorithm. April 1992.

RFC 1423 D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic
Mail: Part III Algorithms, Modes, and Identifiers. February 1993.

X.208 CCITT. Recommendation X.208: Specification of Basic Encoding Rules
for Abstract Syntax Notation One (ASN.1). 1988.
A p p e n d i x C R e f e r e n c e s 3 3 9

X.209 CCITT. Recommendation X.209: Specification of Abstract Syntax
Notation One (ASN.1). 1988.

X.509 CCITT. Recommendation X.509: The Directory Authentication
Framework. 1988.

X9.31 Draft Digital signatures Using Reversible Public Key Cryptography for the
Financial Services Industry (rDSA). December 1997.

X9.44 Draft Key management using reversible public key cryptography for the
financial services industry. January 1998.

X9.52 Draft Triple Data Encryption Algorithm Modes of Operation. December
1997.

X9.57 Draft ANSI. Certificate Management, N5-95, June 15, 1995.

X9.62 Draft ANSI. The Elliptic Curve Digital Signature Algorithm (ECDSA).
August 29, 1997.

X9.63 Draft Public Key Cryptography for the Financial Services Industry: Elliptic
Curve Key Agreement and Transport Protocols. December 1997.

[NIST91] NIST. Special Publication 500-202: Stable Implementation Agreements
for Open Systems Interconnection Protocols. Version 5, Edition 1,
Part 12. December 1991.

S.C. Kothari. Proceedings of CRYPTO 84: Generalized Linear
Threshold Scheme. 1984.

The following references are from RSA Data Security, Inc.’s Public-Key Cryptography
Standards (PKCS) suite:

PKCS #1 RSA Data Security, Inc. PKCS #1: RSA Encryption Standard.
Version 1.5, November 1993.

PKCS #3 RSA Data Security, Inc. PKCS #3: Diffie-Hellman Key-Agreement
Standard. Version 1.4, November 1993.

PKCS #5 RSA Data Security, Inc. PKCS #5: Password-Based Encryption
Standard. Version 1.5, November 1993.

PKCS #7 RSA Data Security, Inc. PKCS #7: Cryptographic Message Syntax
Standard. Version 1.5, November 1993.

PKCS #8 RSA Data Security, Inc. PKCS #8: Private-Key Information Syntax
Standard. Version 1.2, November 1993.

PKCS documents are available by anonymous FTP from the host ftp.rsa.com in the
files pub/pkcs/pkcs*.ps, or by sending electronic mail to pkcs@rsa.com.
3 4 0 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

Index
A
algorithm chooser 10
algorithm info types

AI_BSSecretSharing 17
AI_CBC_IV8 19
AI_DES_CBC_BSAFE1 20
AI_DES_CBC_IV8 22
AI_DES_CBCPadBER 24
AI_DES_CBCPadIV8 26
AI_DES_CBCPadPEM 28
AI_DES_EDE3_CBC_IV8 30
AI_DES_EDE3_CBCPadBER 32
AI_DES_EDE3_CBCPadIV8 34
AI_DESX_CBC_BSAFE1 36
AI_DESX_CBC_IV8 38
AI_DESX_CBCPadBER 40
AI_DESX_CBCPadIV8 42
AI_DHKeyAgree 44
AI_DHKeyAgreeBER 46
AI_DHParamGen 48
AI_DSA 49
AI_DSAKeyGen 51
AI_DSAParamGen 53
AI_DSAWithSHA1 54
AI_DSAWithSHA1BER 56
AI_EC_DHKeyAgree 63
AI_EC_DSA 65
AI_EC_DSAWithDigest 67
AI_EC_ES 69
AI_ECAcceleratorTable 58
AI_ECBuildAcceleratorTable 59
AI_ECBuildPubKeyAccelTable 61
AI_ECKeyGen 70
AI_ECParameters 72
AI_ECParamGen 73
AI_ECPublic 76
AI_FeedbackCipher 77
AI_HMAC 82
AI_HW_RANDOM 84
AI_HW_Random 84
AI_KeypairTokenGen 85
AI_MAC 87
AI_MD 88
AI_MD2 89

AI_MD2_BER 90
AI_MD2_PEM 92
AI_MD2Random 94
AI_MD2WithDES_CBCPad 95
AI_MD2WithDES_CBCPadBER 97
AI_MD2WithRC2_CBCPad 99
AI_MD2WithRC2_CBCPadBER 101
AI_MD2WithRSAEncryption 103
AI_MD2WithRSAEncryptionBER 105
AI_MD5 107
AI_MD5_BER 108
AI_MD5_PEM 110
AI_MD5Random 112
AI_MD5WithDES_CBCPad 113
AI_MD5WithDES_CBCPadBER 115
AI_MD5WithRC2_CBCPad 117
AI_MD5WithRC2_CBCPadBER 119
AI_MD5WithRSAEncryption 121
AI_MD5WithRSAEncryptionBER 123
AI_MD5WithXOR 125
AI_MD5WithXOR_BER 127
AI_PKCS_OAEP_RSAPrivate 129
AI_PKCS_OAEP_RSAPrivateBER 133
AI_PKCS_OAEP_RSAPublic 137
AI_PKCS_OAEP_RSAPublicBER 141
AI_PKCS_OAEPRecode 146
AI_PKCS_OAEPRecodeBER 150
AI_PKCS_RSAPrivate 155
AI_PKCS_RSAPrivateBER 157
AI_PKCS_RSAPrivatePEM 159
AI_PKCS_RSAPublic 161
AI_PKCS_RSAPublicBER 163
AI_PKCS_RSAPublicPEM 165
AI_RC2_CBC 167
AI_RC2_CBC_BSAFE1 169
AI_RC2_CBCPad 171
AI_RC2_CBCPadBER 173
AI_RC2_CBCPadPEM 175, 176
AI_RC4 177
AI_RC4_BER 180
AI_RC4WithMAC 181
AI_RC4WithMAC_BER 183
AI_RC5_CBC 185
AI_RC5_CBCPad 187
I n d e x 3 4 1

AI_RC5_CBCPadBER 189
AI_RESET_IV 191
AI_RFC1113Recode 192
AI_RSAKeyGen 193
AI_RSAPrivate 195
AI_RSAPrivateBSAFE1 197
AI_RSAPublic 199
AI_RSAPublicBSAFE1 201
AI_RSAStrongKeyGen 203
AI_SET_OAEP_RSAPrivate 205
AI_SET_OAEP_RSAPublic 207
AI_SHA1 209
AI_SHA1_BER 210
AI_SHA1Random 212
AI_SHA1WithDES_CBCPad 213
AI_SHA1WithDES_CBCPadBER 215
AI_SHA1WithRSAEncryption 217
AI_SHA1WithRSAEncryptionBER 219
AI_SignVerify 221, 223
AI_SymKeyTokenGen 223
AI_X92Random_v0 227
AI_X931Random 225
entry format 16

algorithm methods
AM_CBC_DECRYPT 80
AM_CBC_ENCRYPT 79
AM_CBC_INTER_LEAVED_DECRYPT 80
AM_CBC_INTER_LEAVED_ENCRYPT 80
AM_CFB_DECRYPT 80
AM_CFB_ENCRYPT 80
AM_CFB_PIPELINED_DECRYPT 80
AM_CFB_PIPELINED_ENCRYPT 80
AM_DES_CBC_DECRYPT 20, 22, 24, 26, 28, 96,

97, 114, 115, 214, 215
AM_DES_CBC_ENCRYPT 20, 22, 24, 26, 28, 96,

97, 114, 115, 214, 215
AM_DES_DECRYPT 78
AM_DES_EDE_DECRYPT 79
AM_DES_EDE_ENCRYPT 78
AM_DES_EDE3_CBC_DECRYPT 30, 33, 34
AM_DES_EDE3_CBC_ENCRYPT 30, 33, 34
AM_DES_ENCRYPT 78
AM_DESX_CBC_DECRYPT 36, 38, 40, 42
AM_DESX_CBC_ENCRYPT 36, 38, 40, 42
AM_DESX_DECRYPT 79
AM_DESX_ENCRYPT 78
AM_DH_KEY_AGREE 45, 46
AM_DH_PARAM_GEN 48
AM_DSA_KEY_GEN 52
AM_DSA_KEY_TOKEN_GEN 86
AM_DSA_PARAM_GEN 53
AM_DSA_SIGN 49, 54, 56
AM_DSA_VERIFY 49, 54, 56
AM_ECB_DECRYPT 80
AM_ECB_ENCRYPT 80

AM_ECF2POLY_BLD_ACCEL_TABLE 60
AM_ECF2POLY_BLD_PUB_KEY_ACCEL_TABLE

62
AM_ECF2POLY_DECRYPT 69
AM_ECF2POLY_DH_KEY_AGREE 64
AM_ECF2POLY_DSA_SIGN 65, 67
AM_ECF2POLY_DSA_VERIFY 65, 67
AM_ECF2POLY_ENCRYPT 69
AM_ECF2POLY_KEY_GEN 71
AM_ECF2POLY_PARAM_GEN 75
AM_ECFP_BLD_ACCEL_TABLE 60
AM_ECFP_BLD_PUB_KEY_ACCEL_TABLE 62
AM_ECFP_DECRYPT 69
AM_ECFP_DH_KEY_AGREE 64
AM_ECFP_DSA_SIGN 65, 67
AM_ECFP_DSA_VERIFY 65, 67
AM_ECFP_ENCRYPT 69
AM_ECFP_KEY_GEN 71
AM_ECFP_PARAM_GEN 75
AM_HW_RANDOM 84
AM_MAC 87
AM_MD 88
AM_MD2 89, 90, 92, 96, 97, 100, 101, 103, 106,

121, 124, 217, 220
AM_MD2_RANDOM 94
AM_MD5 107, 108, 110, 114, 115, 118, 119, 126,

127
AM_MD5_RANDOM 112, 126, 127
AM_OFB_DECRYPT 80
AM_OFB_ENCRYPT 80
AM_OFB_PIPELINED_DECRYPT 80
AM_OFB_PIPELINED_ENCRYPT 80
AM_RC2_CBC_DECRYPT 100, 101, 118, 119,

168, 169, 172, 173, 175
AM_RC2_CBC_ENCRYPT 100, 101, 118, 119,

168, 169, 172, 173, 175
AM_RC2_DECRYPT 79
AM_RC2_ENCRYPT 78
AM_RC4_DECRYPT 177, 180
AM_RC4_ENCRYPT 177, 180
AM_RC4_WITH_MAC_DECRYPT 182, 184
AM_RC4_WITH_MAC_ENCRYPT 182, 184
AM_RC5_64_ENCRYPT 78
AM_RC5_64DECRYPT 79
AM_RC5_CBC_DECRYPT 186, 188, 189
AM_RC5_CBC_ENCRYPT 186, 188, 189
AM_RC5_DECRYPT 79
AM_RC5_ENCRYPT 78
AM_RSA_CRT_DECRYPT 131, 136, 155, 158,

160, 196, 198, 205
AM_RSA_CRT_DECRYPT_BLIND 131, 136,

155, 158, 160, 196, 198, 205
AM_RSA_CRT_ENCRYPT 103, 106, 121, 124,

155, 157, 160, 195, 198, 205, 217, 220
AM_RSA_CRT_ENCRYPT_BLIND 103, 106,
3 4 2 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

121, 124, 155, 157, 160, 195, 198, 205, 217, 220
AM_RSA_DECRYPT 103, 106, 121, 124, 161,

164, 165, 200, 202, 207, 217, 220
AM_RSA_ENCRYPT 103, 106, 121, 124, 139,

161, 164, 165, 200, 202, 207, 217, 220
AM_RSA_KEY_GEN 194
AM_RSA_KEY_TOKEN_GEN 86
AM_RSA_STRONG_KEY_GEN 204
AM_SHA 54, 68, 82, 131, 136, 139, 148, 153,

209, 210, 214, 215
AM_SHA_RANDOM 228
AM_SHA1 56
AM_TOKEN_DES_CBC_DECRYPT 23
AM_TOKEN_DES_CBC_ENCRYPT 23
AM_TOKEN_DES_EDE3_CBC_DECRYPT 31
AM_TOKEN_DES_EDE3_CBC_ENCRYPT 31
AM_TOKEN_DSA_SIGN 50
AM_TOKEN_DSA_VERIFY 50
AM_TOKEN_RC2_CBC_DECRYPT 168
AM_TOKEN_RC2_CBC_ENCRYPT 168
AM_TOKEN_RC4_DECRYPT 178
AM_TOKEN_RC4_ENCRYPT 178
AM_TOKEN_RC4_WITH_MAC_DECRYPT 182
AM_TOKEN_RC4_WITH_MAC_ENCRYPT 182
AM_TOKEN_RC5_CBC_DECRYPT 186
AM_TOKEN_RC5_CBC_ENCRYPT 186
AM_TOKEN_RSA_CRT_DECRYPT 196
AM_TOKEN_RSA_CRT_ENCRYPT 196
AM_TOKEN_RSA_DECRYPT 200
AM_TOKEN_RSA_ENCRYPT 200
AM_TOKEN_RSA_PUB_DECRYPT 200
AM_X931_RANDOM 226

algorithm object 8
algorithms

3DES 30, 32, 34, 36, 77
Bloom/Shamir 17
DES 20, 22, 24, 26, 28, 77
DESX 40, 77
Diffie-Hellman 44, 46, 48
DSA 49, 51, 53, 54, 56
EC Diffie-Hellman 63
ECAES 69
ECDSA 65, 67
elliptic curve 58, 59, 61, 76

key pair 70
parameters 72, 73

HMAC 82
MD 88
MD2 89, 90, 92
MD5 107, 108, 110
PBE

MD2 with RC2 101
MD2 with RSA 103, 105
MD5 with DES 115

RC2 77, 169

RC5 77
RSA 121, 123

private key 155, 157, 195, 197, 205
public 207
public key 161, 163, 165, 199, 201

SHA-1 209, 210
SHA-1 Random 227

ASCII to binary 192

B
BER encoding 24, 40, 46, 48, 56, 90, 101, 105, 108,

115, 123, 157, 163, 210
BHAPI methods

AM_TOKEN_DES_CBC_DECRYPT 23
AM_TOKEN_DES_CBC_ENCRYPT 23
AM_TOKEN_DES_EDE3_CBC_DECRYPT 31
AM_TOKEN_DES_EDE3_CBC_ENCRYPT 31
AM_TOKEN_DSA_SIGN 50
AM_TOKEN_DSA_VERIFY 50
AM_TOKEN_RC2_CBC_DECRYPT 168
AM_TOKEN_RC2_CBC_ENCRYPT 168
AM_TOKEN_RC4_DECRYPT 178
AM_TOKEN_RC4_ENCRYPT 178
AM_TOKEN_RC4_WITH_MAC_DECRYPT 182
AM_TOKEN_RC4_WITH_MAC_ENCRYPT 182
AM_TOKEN_RC5_CBC_DECRYPT 186
AM_TOKEN_RC5_CBC_ENCRYPT 186
AM_TOKEN_RSA_CRT_DECRYPT 196
AM_TOKEN_RSA_CRT_ENCRYPT 196
AM_TOKEN_RSA_DECRYPT 200
AM_TOKEN_RSA_ENCRYPT 200
AM_TOKEN_RSA_PUB_DECRYPT 200

binary to ASCII 192
BSAFE_VERSION 337

F
functions

B_BuildTableFinal 270
B_BuildTableGetBufSize 271
B_BuildTableInit 272
B_CreateAlgorithmObject 273
B_CreateSessionChooser 275
B_DecodeDigestInfo 276
B_DecodeFinal 277
B_DecodeInit 278
B_DecodeUpdate 279
B_DecryptFinal 280
B_DecryptInit 281
B_DecryptUpdate 282
B_DestroyAlgorithmObject 283
B_DestroyKeyObject 284
B_DigestFinal 285
B_DigestInit 286
B_DigestUpdate 287
I n d e x 3 4 3

B_EncodeDigestInfo 288
B_EncodeFinal 289
B_EncodeInit 290
B_EncodeUpdate 291
B_EncryptFinal 292
B_EncryptInit 293
B_EncryptUpdate 294
B_FreeSessionChooser 295
B_GenerateInit 296
B_GenerateKeypair 297
B_GenerateParameters 298
B_GenerateRandomBytes 299
B_GetAlgorithmInfo 300
B_GetExtendedErrorInfo 301
B_GetKeyExtendedErrorInfo 302
B_GetKeyInfo 303
B_IntegerBits 304
B_KeyAgreeInit 305
B_KeyAgreePhase1 306
B_KeyAgreePhase2 307
B_RandomInit 308
B_RandomUpdate 309
B_SetAlgorithmInfo 310
B_SetKeyInfo 311
B_SignFinal 312
B_SignInit 313
B_SignUpdate 314
B_SymmetricKeyGenerate 315
B_SymmetricKeyGenerateInit 316
B_VerifyFinal 317
B_VerifyInit 318
B_VerifyUpdate 319
T_free 320
T_malloc 321
T_memcmp 322
T_memcpy 323
T_memmove 324
T_memset 325
T_realloc 326
T_strcmp 327
T_strcpy 328
T_strlen 329

I
initialization vector

resetting 19, 191

K
key info types

KI_24Byte 232
KI_8Byte 231
KI_DES_BSAFE1 236
KI_DES24Strong 235
KI_DES8 233

KI_DES8Strong 234
KI_DESX 237
KI_DESX_BSAFE1 238
KI_DSAPrivate 239
KI_DSAPrivateBER 241
KI_DSAPrivateX957BER 242
KI_DSAPublic 243
KI_DSAPublicBER 245
KI_DSAPublicX957BER 246
KI_ECPrivate 247, 256
KI_ECPrivateComponent 248
KI_ECPublic 249
KI_ECPublicComponent 250
KI_ExtendedToken 23, 31, 168, 178, 182, 186,

251
KI_Item 253
KI_KeypairToken 50, 196, 200, 254
KI_PKCS_RSAPrivate 256
KI_PKCS_RSAPrivateBER 257
KI_RC2_BSAFE1 258
KI_RC2WithBSAFE1Params 259
KI_RSA_CRT 260
KI_RSAPrivate 261
KI_RSAPrivateBSAFE1 263
KI_RSAPublic 264
KI_RSAPublicBER 265
KI_RSAPublicBSAFE1 266
KI_Token 23, 31, 50, 168, 178, 182, 186, 196, 200,

267

P
PEM encoding 28, 92, 110, 165
POINTER 335
PROTO_LIST 337

S
standards

FIPS 186 54, 227
FIPS PUB 180-1 209
FIPS PUB 186 49, 51, 53, 56
FIPS PUB 46-1 22, 24, 26, 28
FIPS PUB 81 22, 26, 28
NIST 24
OAEP 205, 207
P1363 73
PKCS #1 103, 105, 121, 123, 155, 157, 161, 163,

165
PKCS #3 44, 46
PKCS #5 24, 26, 32, 115
PKCS #8 241
RFC 1113 192
RFC 1319 89, 90, 92
RFC 1321 108, 110
RFC 1421 192
3 4 4 R S A B S A F E C r y p t o - C L i b r a r y R e f e r e n c e M a n u a l

RFC 1423 28, 110, 165
SET 82, 205, 207
X9.30 245
X9.31 227
X9.52 73, 77
X9.57 54, 56, 242, 246
X9.62 59, 61, 65, 67
X9.63 63, 69
X9.66 227

structures
A_DESX_KEY 237
A_DH_KEY_AGREE_PARAMS 44
A_DH_PARAM_GEN_PARAMS 48
A_DSA_PARAMS 51, 239, 243
A_DSA_PRIVATE_KEY 239
A_DSA_PUBLIC_KEY 243
A_EC_PARAMS 59, 63, 70, 72
A_EC_PRIVATE_KEY 247
A_EC_PUBLIC_KEY 61, 76, 249
A_KEYPAIR_DEFINER 85, 254
A_PKCS_OAEP_PARAMS 130, 138, 147
A_PKCS_RSA_PRIVATE_KEY 256
A_RC2_CBC_PARAMS 167, 171
A_RC2_PARAMS 79
A_RC5_CBC_PARAMS 185, 187
A_RC5_PARAMS 79
A_RSA_CRT_KEY 260
A_RSA_KEY 261, 264
A_RSA_KEY_GEN_PARAMS 193, 203
A_SHA_RANDOM_PARAMS 227
A_SURRENDER_CTX 12
A_SYMMETRIC_KEY_DEFINER 251
A_SYMMETRIC_KEY_SPECIFIER 223
A_X509_ATTRIB_INFO 251
A_X509_KEYPAIR_ATTRIB_INFO 254
A_X931_RANDOM_PARAMS 225
B_BLK_CIPHER_W_FEEDBACK_PARAMS 77
B_BSAFE1_ENCRYPTION_PARAMS 20, 36,

169, 197, 201
B_CFB_PARAMS 80
B_DIGEST_SPECIFIER 67, 82
B_DSA_PARAM_GEN_PARAMS 53
B_EC_PARAM_GEN_PARAMS 73
B_EC_PARAMS 59, 61, 63, 70
B_MAC_PARAMS 87
B_PBE_PARAMS 95, 113, 125, 213
B_RC2_BSAFE1_PARAMS_KEY 259
B_RC2_PBE_PARAMS 99, 118
B_RC4_WITH_MAC_PARAMS 181
B_SECRET_SHARING_PARAMS 17
B_SIGN_VERIFY_PARAMS 221
ITEM 14
KI_EXTENDED_TOKEN_INFO 251
KI_KEYPAIR_TOKEN_INFO 254
KI_TOKEN_INFO 267

surrender function 12

U
UINT2 335
UINT4 336
I n d e x 3 4 5

	Crypto-C
	Contents
	Figures and Tables
	Introduction
	Organization
	The Crypto-C Environment
	Figure 1-1 The Crypto-C environment

	Memory Management
	Code Example
	The Algorithm Object
	The Key Object
	The Algorithm Chooser
	The BDEMO Algorithm Chooser
	Defining an Algorithm Chooser

	The Surrender Function
	Surrender

	The ITEM Structure

	Algorithm Info Types
	Figure 2-1 Sample Algorithm Type
	AI_BSSecretSharing
	AI_CBC_IV8
	AI_DES_CBC_BSAFE1
	AI_DES_CBC_IV8
	AI_DES_CBCPadBER
	AI_DES_CBCPadIV8
	AI_DES_CBCPadPEM
	AI_DES_EDE3_CBC_IV8
	AI_DES_EDE3_CBCPadBER
	AI_DES_EDE3_CBCPadIV8
	AI_DESX_CBC_BSAFE1
	AI_DESX_CBC_IV8
	AI_DESX_CBCPadBER
	AI_DESX_CBCPadIV8
	AI_DHKeyAgree
	AI_DHKeyAgreeBER
	AI_DHParamGen
	AI_DSA
	AI_DSAKeyGen
	AI_DSAParamGen
	AI_DSAWithSHA1
	AI_DSAWithSHA1_BER
	AI_ECAcceleratorTable
	AI_ECBuildAcceleratorTable
	AI_ECBuildPubKeyAccelTable
	AI_EC_DHKeyAgree
	AI_EC_DSA
	AI_EC_DSAWithDigest
	AI_EC_ES
	AI_ECKeyGen
	AI_ECParameters
	AI_ECParamGen
	AI_ECPubKey
	AI_FeedbackCipher
	Table 2-1� Algorithm methods for block ciphers
	Table 2-2� Algorithm methods for feedback modes

	AI_HMAC
	AI_HW_Random
	AI_KeypairTokenGen
	AI_MAC
	AI_MD
	AI_MD2
	AI_MD2_BER
	AI_MD2_PEM
	AI_MD2Random
	AI_MD2WithDES_CBCPad
	AI_MD2WithDES_CBCPadBER
	AI_MD2WithRC2_CBCPad
	AI_MD2WithRC2_CBCPadBER
	AI_MD2WithRSAEncryption
	AI_MD2WithRSAEncryptionBER
	AI_MD5
	AI_MD5_BER
	AI_MD5_PEM
	AI_MD5Random
	AI_MD5WithDES_CBCPad
	AI_MD5WithDES_CBCPadBER
	AI_MD5WithRC2_CBCPad
	AI_MD5WithRC2_CBCPadBER
	AI_MD5WithRSAEncryption
	AI_MD5WithRSAEncryptionBER
	AI_MD5WithXOR
	AI_MD5WithXOR_BER
	AI_PKCS_OAEP_RSAPrivate
	AI_PKCS_OAEP_RSAPrivateBER
	AI_PKCS_OAEP_RSAPublic
	AI_PKCS_OAEP_RSAPublicBER
	AI_PKCS_OAEPRecode
	AI_PKCS_OAEPRecodeBER
	AI_PKCS_RSAPrivate
	AI_PKCS_RSAPrivateBER
	AI_PKCS_RSAPrivatePEM
	AI_PKCS_RSAPublic
	AI_PKCS_RSAPublicBER
	AI_PKCS_RSAPublicPEM
	AI_RC2_CBC
	AI_RC2_CBC_BSAFE1
	AI_RC2_CBCPad
	AI_RC2_CBCPadBER
	AI_RC2_CBCPadPEM
	AI_RC4
	AI_RC4_BER
	AI_RC4WithMAC
	AI_RC4WithMAC_BER
	AI_RC5_CBC
	AI_RC5_CBCPad
	AI_RC5_CBCPadBER
	AI_RESET_IV
	AI_RFC1113Recode
	AI_RSAKeyGen
	AI_RSAPrivate
	AI_RSAPrivateBSAFE1
	AI_RSAPublic
	AI_RSAPublicBSAFE1
	AI_RSAStrongKeyGen
	AI_SET_OAEP_RSAPrivate
	AI_SET_OAEP_RSAPublic
	AI_SHA1
	AI_SHA1_BER
	AI_SHA1Random
	AI_SHA1WithDES_CBCPad
	AI_SHA1WithDES_CBCPadBER
	AI_SHA1WithRSAEncryption
	AI_SHA1WithRSAEncryptionBER
	AI_SignVerify
	AI_SymKeyTokenGen
	AI_X931Random
	AI_X962Random_V0

	Key Info Types
	Figure 3-1 Sample Key Info Type
	KI_8Byte
	KI_24Byte
	KI_DES8
	KI_DES8Strong
	KI_DES24Strong
	KI_DES_BSAFE1
	KI_DESX
	KI_DESX_BSAFE1
	KI_DSAPrivate
	KI_DSAPrivateBER
	KI_DSAPrivateX957BER
	KI_DSAPublic
	KI_DSAPublicBER
	KI_DSAPublicX957BER
	KI_ECPrivate
	KI_ECPrivateComponent
	KI_ECPublic
	KI_ECPublicComponent
	KI_ExtendedToken
	KI_Item
	KI_KeypairToken
	KI_PKCS_RSAPrivate
	KI_PKCS_RSAPrivateBER
	KI_RC2_BSAFE1
	KI_RC2WithBSAFE1Params
	KI_RSA_CRT
	KI_RSAPrivate
	KI_RSAPrivateBSAFE1
	KI_RSAPublic
	KI_RSAPublicBER
	KI_RSAPublicBSAFE1
	KI_Token

	Details of Crypto-C Functions
	B_BuildTableFinal
	B_BuildTableGetBufSize
	B_BuildTableInit
	B_CreateAlgorithmObject
	B_CreateKeyObject
	B_CreateSessionChooser
	B_DecodeDigestInfo
	B_DecodeFinal
	B_DecodeInit
	B_DecodeUpdate
	B_DecryptFinal
	B_DecryptInit
	B_DecryptUpdate
	B_DestroyAlgorithmObject
	B_DestroyKeyObject
	B_DigestFinal
	B_DigestInit
	B_DigestUpdate
	B_EncodeDigestInfo
	B_EncodeFinal
	B_EncodeInit
	B_EncodeUpdate
	B_EncryptFinal
	B_EncryptInit
	B_EncryptUpdate
	B_FreeSessionChooser
	B_GenerateInit
	B_GenerateKeypair
	B_GenerateParameters
	B_GenerateRandomBytes
	B_GetAlgorithmInfo
	B_GetExtendedErrorInfo
	B_GetKeyExtendedErrorInfo
	B_GetKeyInfo
	B_IntegerBits
	B_KeyAgreeInit
	B_KeyAgreePhase1
	B_KeyAgreePhase2
	B_RandomInit
	B_RandomUpdate
	B_SetAlgorithmInfo
	B_SetKeyInfo
	B_SignFinal
	B_SignInit
	B_SignUpdate
	B_SymmetricKeyGenerate
	B_SymmetricKeyGenerateInit
	B_VerifyFinal
	B_VerifyInit
	B_VerifyUpdate
	T_free
	T_malloc
	T_memcmp
	T_memcpy
	T_memmove
	T_memset
	T_realloc
	T_strcmp
	T_strcpy
	T_strlen

	Crypto-C Error Types
	Table A-1� Crypto-C Error Types

	Platform-Specific Types and Constants
	Types
	POINTER
	UINT2
	UINT4

	Constants

	References
	Index

