
RSA BSAFE®

Crypto-C
Cryptographic Components for C
User’s Manual
Version 4.2

Copyright Notice

Copyright © 1995-1999 RSA Data Security, Inc. All rights reserved. This work contains
proprietary information of RSA Data Security, Inc. Distribution is limited to
authorized licensees of RSA Data Security, Inc. Any unauthorized reproduction or
distribution of this document is strictly prohibited.

RSA is a trademark and BSAFE is a registered trademark of RSA Data Security, Inc.

The RSA Public Key Cryptosystem is protected by U.S. Patent #4,405,829.
The RC5 algorithm is protected by U.S. Patents #5,724,428 and #5,835,600.

The DES implementation in this product contains code based on the “libdes” package
written by Eric A. Young (eay@mincom.oz.au) and is included with his permission.

COPYRIGHT © 1995–1999 RSA DATA SECURITY, INC. 001-019003-420-001-000

Contents
Introduction 1
The Crypto-C Toolkit . 2

Cryptographic Standards and Crypto-C . 4

Crypto-C and the Year 2000 . 4

How to Reach RSA Data Security, Inc. . 5
Developer Support . 5
Web Site . 5

Conventions Used in This Manual . 6

Chapter 1 Quick Start 7
Organization . 7

The Six-Step Sequence . 8

Introductory Example . 9
Putting It All Together .22

Decrypting the Introductory Example. 25

Multiple Updates . 28

Summary of the Six Steps . 32

Chapter 2 Cryptography 35
Cryptography Overview . 35

Symmetric-Key Cryptography . 35
Block Ciphers . 36
Stream Ciphers . 45

Message Digests . 46
Message Digests and Pseudo-Random Numbers . 47
Hash-Based Message Authentication Codes (HMAC) . 47

Password-Based Encryption . 48
Public-Key Cryptography . 49
C o n t e n t s i

The RSA Algorithm . 50
Digital Envelopes . 54
Authentication and Digital Signatures . 55
Digital Signature Algorithm (DSA). 58
Digital Certificates. 60
Diffie-Hellman Public Key Agreement. 61

Elliptic Curve Cryptography. 64
Elliptic Curve Parameters . 65

The Finite Field. 66
Elliptic Curve Coefficients . 67
The Point P and its Order . 68
Summary of Elliptic Curve Terminology. 70
Representing Fields of Even Characteristic. 71

Elliptic Curve Key Pair Generation . 72
Creating the Key Pair . 72

ECDSA Signature Scheme . 72
Signing a Message . 72
Verifying a Signature . 73
The Math . 74

Elliptic Curve Authenticated Encryption Scheme (ECAES) . 75
Encrypting a Message Using the Public Key . 75
Decrypting a Message Using the Private Key . 76

Elliptic Curve Diffie-Hellman Key Agreement . 77
Phase 1. 77
Phase 2. 77
The Math . 78

Secret Sharing . 79
Working with Keys . 80

Key Generation . 80
Key Management. 81
Key Escrow. 81

ASCII Encoding and Decoding . 82

Applications of Cryptography. 83
Local Applications. 83
Point-To-Point Applications . 83
Client-Server Applications . 85
Peer-To-Peer Applications. 86

Choosing Algorithms . 87
Public-Key vs. Symmetric-Key Cryptography . 87
Stream vs. Block Symmetric-Key Algorithms . 87
Block Symmetric-Key Algorithms . 88
i i R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Key Agreement vs. Digital Envelopes . 88
Secret Sharing and Key Escrow. 89
Elliptic Curve Algorithms . 89

Interoperability . 90
Elliptic Curve Standards . 91

Security Considerations . 92
Handling Private Keys . 92
Temporary Buffers .92
Pseudo-Random Numbers and Seed Generation . 92
Choosing Passwords . 93
Initialization Vectors and Salts . 94
DES Weak Keys . 94
Stream Ciphers . 95
Timing Attacks and Blinding . 96
Choosing Key Sizes . 97

RSA Keys. 99
Diffie-Hellman Parameters and DSA Keys . 99
RC2 Effective Key Bits . 99
RC4 Key Bits .100
RC5 Key Bits and Rounds . 100
Triple DES Keys . 100
Elliptic Curve Keys . 100

Chapter 3 Using Crypto-C 103
Algorithms In Crypto-C. 103

Information Formats Provided by Crypto-C . 103
Basic Algorithm Info Types . 104
BER-Based Algorithm Info Types . 104
PEM-Based Algorithm Info Types . 104
BSAFE1 Algorithm Info Types . 105

Summary of AIs . 106

Keys In Crypto-C. 115
Summary of KIs . 115

System Considerations In Crypto-C . 118
Algorithm Choosers . 118

An Encryption Algorithm Chooser. 118
An RSA Algorithm Chooser. 119

The Surrender Context. 120
A Sample Surrender Function. 121
C o n t e n t s i i i

When to Allocate Memory . 122
Memory-Management Routines. 123

Memory-Management Routines and Standard C Libraries. 124
Memory Allocation . 124
Binary Data . 125

BER/DER Encoding . 125
Input and Output . 127

Symmetric Block Algorithms . 127
The RSA Algorithm . 128
General Considerations . 129

Key Size. 129
DES Keys . 130
RSA Keys . 130

Using Cryptographic Hardware . 133
Interfacing with a BHAPI Implementation . 133
Hardware Issues . 134

Chapter 4 Non-Cryptographic Operations 137
Message Digests . 138

Creating a Digest . 138
BER-Encoding the Digest . 141

Hash-Based Message Authentication Code (HMAC) . 143

Generating Random Numbers . 147
Generating Random Numbers with SHA1 . 147
Generating Independent Streams of Randomness. 152

Converting Data Between Binary and ASCII . 154
Encoding Binary Data To ASCII . 154
Decoding ASCII-Encoded Data . 156

Chapter 5 Symmetric-Key Operations 159
Block Ciphers . 160

DES with CBC . 160
Decrypting . 165

RC2 . 165
Decrypting . 172

RC5 . 172
Decrypting . 178

Password-Based Encryption . 178
i v R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Decrypting. 183

Chapter 6 Public-Key Operations 185
Performing RSA Operations . 186

Generating a Key Pair . 186
Distributing an RSA Public Key . 189

Crypto-C Format . 189
BER/DER Encoding . 190

RSA Public-Key Encryption . 192
RSA Private-Key Decryption . 195
Raw RSA . 197
RSA Digital Signatures .198

Computing a Digital Signature . 199
Verifying a Digital Signature . 202

ANSI X9.31-Compliant RSA Digital Signatures. 204
Computing A Digital Signature. 205
Verifying A Digital Signature . 207

Performing DSA Operations. 209
Generating DSA Parameters .209
Generating a DSA Key Pair . 211
DSA Signatures . 213

Computing a Digital Signature . 213
Verifying a Digital Signature . 216

Performing Diffie-Hellman Key Agreement . 219
Generating Diffie-Hellman Parameters . 219
Distributing Diffie-Hellman Parameters . 222

Crypto-C Format . 223
BER Format . 224

Diffie-Hellman Key Agreement . 225

Performing Elliptic Curve Operations. 230
Generating Elliptic Curve Parameters . 230
Retrieving Elliptic Curve Parameters . 234
Generating an Elliptic Curve Key Pair . 238
Retrieving an Elliptic Curve Key. 241
Generating Acceleration Tables . 243

Generating a Generic Acceleration Table. 243
Public-Key Acceleration Table . 247

Performing EC Diffie-Hellman Key Agreement . 250
Performing ECDSA . 254
C o n t e n t s v

Generating EC Parameters. 255
Generating an EC Key Pair. 255
Computing a Digital Signature . 256
Verifying a Digital Signature . 258

Using ECAES . 260
Using Elliptic Curve Parameters . 261
Using an EC Key Pair . 261
ECAES Public-Key Encryption . 262
ECAES Private-Key Decryption . 265

Chapter 7 Secret Sharing Operations 267
Secret Sharing . 267

Generating Shares . 267
Reconstructing The Secret . 270

Chapter 8 Cryptographic Hardware 275
Using Hardware Registration. 276

Retrieving Random Numbers . 277

Appendix A Command-Line Demos 281
Overview of the Demos . 281

Command-Line Demo User’s Guide . 283
BDEMO . 283

Starting BDEMO. 283
Specifying User Keys . 283
Using BDEMO . 284

BDEMODSA . 286
Running BDEMODSA . 286
Using BDEMODSA . 287

BDEMOEC . 288
Running BDEMOEC . 288
Using BDEMOEC . 289

File Reference . 290

BSLite . 292
v i R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Appendix B References and Reading Material 293

Index 297
C o n t e n t s v i i

Figures and Tables

Figures
 Figure 2-1 Symmetric-Key Encryption and Decryption . 36

 Figure 2-2 Triple DES encryption as implemented in Crypto-C. 38

 Figure 2-3 Electronic Codebook (ECB) Mode . 41

 Figure 2-4 Cipher-Block Chaining (CBC) Mode . 42

 Figure 2-5 Cipher Feedback (CFB) Mode. 43

 Figure 2-6 Output Feedback Mode (OFB) . 45

 Figure 2-7 RC4 Encryption or Decryption . 46

 Figure 2-8 DES Key and IV Generation for Password Based Encryption 49

 Figure 2-9 Public-Key Cryptography . 50

 Figure 2-10 Digital Envelope. 55

 Figure 2-11 RSA Digital Signature . 58

 Figure 2-12 The Diffie-Hellman Key Agreement Protocol 62

 Figure 2-13 Elliptic Curve Diffie-Hellman Key Agreement 78

 Figure 2-14 Secret Sharing — Key Share Assignment . 80

 Figure 2-15 Secret Sharing — Full Key Generation From Shares 80

 Figure 3-1 Algorithm Object in a Software Implementation 133

 Figure 3-2 Algorithm Object with Hardware. 134

Tables

Table 2-1 Calculation of 827 mod 55. 53

Table 2-2 Elliptic Curve Parameters. 70

Table 2-3 DES weak and semi-weak keys. 94

Table 2-4 Summary of Recommended Key Sizes . 98

Table 3-1 Message Digests . 106

Table 3-2 Message Authentication . 106

Table 3-3 ASCII Encoding. 106
v i i i R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Table 3-4 Pseudo-Random Number Generation . 107

Table 3-5 Symmetric Stream Ciphers . 107

Table 3-6 Symmetric Block Ciphers . 107

Table 3-7 RSA Public-Key Cryptography . 110

Table 3-8 DSA Public-Key Cryptography . 112

Table 3-9 Diffie-Hellman Key Agreement . 112

Table 3-10 Elliptic Curve Public-Key Cryptography . 112

Table 3-11 Bloom-Shamir Secret Sharing . 113

Table 3-12 Hardware Interface . 114

Table 3-13 Generic Keys . 115

Table 3-14 Block Cipher Keys . 115

Table 3-15 RSA Public and Private Keys . 116

Table 3-16 DSA Public and Private Keys . 116

Table 3-17 Elliptic Curve Keys . 116

Table 3-18 Token Keys . 117

Table A-1 Demo Program Source Files . 290
F i g u r e s a n d Ta b l e s ix

x R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Introduction
Dear Crypto-C Developer:

Congratulations on your purchase of RSA BSAFE® Crypto-C 4.2, the state-of-the-art
in cryptographic software toolkits! Crypto-C provides developers with the most
important privacy, authentication, and data integrity routines. Crypto-C contains a
full palette of popular cryptographic algorithms. This toolkit enables you to develop
applications for a wide range of purposes, including electronic commerce, home
banking, Webcasting, and enterprise security.

Crypto-C is written in C and is intended to be completely portable. It is available on a
number of platforms and can be ported to most platforms with a minimum of effort.
Crypto-C is a toolkit, not an application; it is intended to be integrated into operating
systems, communications systems, and other applications. Therefore, you have a
modest amount of work ahead of you. We have tried to make this task as clear as
possible without limiting your alternatives. This User’s Manual, with its code samples
and tutorials, is the best place to start.

Thanks, and welcome to the RSA family.

Sincerely,

The Crypto-C Development Team
RSA Data Security, Inc.
1 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Introduction
The Crypto-C Toolkit
Crypto-C provides developers with a state-of-the-art implementation of the most
important privacy, authentication, and data integrity routines. The following
algorithms are implemented in Crypto-C 4.2:

Symmetric Ciphers
• DES

• Triple-DES

• DESX

• RC2

• RC4

• RC5

Message Digests
• MD

• MD2

• MD5

• SHA1

Message Authentication
• HMAC

Random Number Generation
• MD2

• MD5

• SHA1

Public-Key Algorithms
• RSA Public Key Cryptosystem

• Diffie-Hellman Key Agreement

Digital Signatures
• DSA
2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

The Crypto-C Toolkit
• RSA Digital Signatures

Elliptic Curve Public-Key Algorithms
• Elliptic Curve Digital Signature Algorithm (ECDSA)

• Elliptic Curve Diffie-Hellman Key Agreement

• Elliptic Curve Authenticated Encryption Scheme (ECAES)

Secret Sharing
• Bloom-Shamir Secret Sharing
R S A B S A F E C r y p t o - C U s e r ’s M a n u a l 3

Introduction
Cryptographic Standards and Crypto-C
Crypto-C is a general-purpose programming tool that developers can use to write a
wide variety of applications. Crypto-C was built to permit developers to make use of
the Public-Key Cryptography Standards (PKCS) series of documents, which specify a
standard way of performing basic cryptographic operations. Several higher-level
standards, such as S/MIME, SET, IPSec, and SSL, require implementation of various
PKCS standards. Since Crypto-C complies with PKCS, developers should find
integrating Crypto-C into software implementing these standards to be a fairly easy
task.

To obtain copies of the PKCS electronically on the Internet, see the PKCS section of
RSA Data Security, Inc.’s web site, which is accessible via
http://www.rsa.com/rsalabs. Alternatively, you may contact our sales department
for a diskette.

Crypto-C and the Year 2000
Software applications that rely only on the last two digits of the current date field
might behave erratically in the next century when the date changes to the year 2000.
RSA Data Security, Inc. is frequently asked about how our products will handle the
Year 2000 issue and what assurances we can provide our software development
partners.

Crypto-C does not invoke time and date services, so it does not inherently have any
Year 2000 issues to deal with.

However, Crypto-C accounts for only a portion of any particular application, and
those applications might introduce Year 2000 bugs independent of the Crypto-C code.
In turn, those applications might rely on the underlying platform and operating
system for time and date services, which might introduce their own Year 2000 bugs
into any application that uses our toolkits.
4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

How to Reach RSA Data Security, Inc.
How to Reach RSA Data Security, Inc.

Developer Support
RSA Data Security, Inc. is committed to helping you effectively integrate our security
into your applications. For details on our support plans, please contact a Telesales
Representative at 650-295-7600, or view our support options online at
http://support.rsa.com.

Web Site
In addition, you can reach the RSA Data Security, Inc. Web site at
http://www.rsa.com. RSA Data Security, Inc. has pages for security bulletins, coming
events, free software and publications, and an ftp site. RSA Data Security, Inc. also has
a developer's corner at http://www.rsa.com/rsa/developers/. If you are interested
in cryptography, RSA Data Security, Inc.'s Cryptography FAQ is available at
http://www.rsa.com/rsalabs/faq/.
R S A B S A F E C r y p t o - C U s e r ’s M a n u a l 5

Introduction
Conventions Used in This Manual
Italic is used for:

• new terms where they are introduced

• the names of manuals and books

Lucida Typewriter Sans is used for:

• anything that appears literally in a C program, such as the names of structures
and functions supplied by Crypto-C: for example, B_DecodeInit

Lucida Typewriter Sans Italic Bold is used for:

• function parameters and placeholders that indicate that an item is replaced by
some actual value in your own program: for example, randomAlgorithm

Lucida Typewriter Bold is used for:

• text the user types in command line demos and text that is printed to the screen
by the demos (only)

Structures and routines defined by Crypto-C are boxed:

Application code and samples are displayed in a box with a shaded outline:

Some Crypto-C functions are only available when used with a hardware
application that has a BSAFE Hardware API interface (BHAPI). These
functions are marked with the icon of a hammer.

/* Structures defined by Crypto-C */

/* Application code and samples */
6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Chapter 1

Quick Start
Organization
Chapter 1, the Quick Start, uses a code example to describe the basic encryption and
decryption operations in Crypto-C.

Chapter 2 presents a brief outline of the basic cryptographic principles and
terminology that are used in this manual.

Chapter 3 presents a brief description of the Crypto-C algorithm info types and key
info types by functionality. It also covers system considerations when using Crypto-C.

Chapters 4-7 present sample code for the major Crypto-C operations.

Chapter 8 presents sample code for the BSAFE Hardware API (BHAPI).

 describes the command line demos.

 lists reference documents.
C h a p t e r 1 Q u i c k S t a r t 7

The Six-Step Sequence
The Six-Step Sequence
The Crypto-C model generally follows a six-step sequence:

1. Create
2. Set
3. Init
4. Update
5. Final
6. Destroy

In addition, for every application, you must include the necessary header files; we
will call this Step 0.

The six-step sequence makes it easier to maintain your code. For example, if you have
implemented a message digest routine using MD2 and wish to use SHA1 instead, you
simply need to make changes in Steps 2 and 3, Set and Init. The rest of your code can
be reused. Similarly, if you originally programmed a routine under the assumption
that it would get all the data from a single buffer, and you wish to modify it to take
data from multiple buffers, you can simply change Step 4, Update.

Note: In some cases, an algorithm may not require an Update step.

The sections in this chapter show the following:

• a six-step encryption example

• a six-step decryption example

• using multiple Updates

• a summary of the six-step process
8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Introductory Example
Introductory Example
The CD containing the Crypto-C library distribution also includes sample source code
to accompany this User’s Manual. One of the files on that CD, introex.c, is an
example converting the Introductory Example into a program. Later in this manual
are instructions on writing code for many Crypto-C operations. There are sample
programs on the CD to accompany all the topics covered.

With the Crypto-C Library Reference Manual handy, we will encrypt the sentence,
“Encrypt this sentence.” To do this, we will use what is called a stream cipher, that is,
an encryption method that encrypts data a character at a time, in a single stream. The
cipher we will use is called RC4. This cipher can take a key size from 1 to 256 bytes.
RC4 creates a “key stream” based on the key and XORs the stream of data with the
key stream to create ciphertext.

The example in this section corresponds to the file introex.c.

Step 0: Include Files
You must include the necessary header files and the Crypto-C library in every
application you write using Crypto-C:

When writing a Crypto-C application, include aglobal.h and bsafe.h in that order. If
you wish to use the DEMO_ALGORITHM_CHOOSER (see “Selecting an Algorithm Chooser”
on page 15), include demochos.h after bsafe.h. In addition, you must compile and
link in tstdlib.c, which contains the memory management functions called by the
Crypto-C library.

Note: For backward compatibility, the BSAFE 2.x include file names, global.h and
bsafe2.h, are still valid. If your source code contains the older names, you
should not have any problems.

Step 1: Creating an Algorithm Object
Whatever operation Crypto-C performs, it does so from an algorithm object. An
algorithm object is used to hold information about an algorithm’s parameters and to
keep a context during a cryptographic operation such as encryption or decryption.

#include “aglobal.h”
#include “bsafe.h”
#include “demochos.h”
C h a p t e r 1 Q u i c k S t a r t 9

Introductory Example
For our example, we will build an algorithm object that performs encryption.

You build an algorithm object in Steps 1 to 3. As you go through these steps, you
specify the type of algorithm that is being used, supply any special information or
parameters that the algorithm requires, and generate or supply a key for algorithms
that need one.

In Step 1, we simply create the object. We do this by declaring a variable to be an
algorithm object and calling B_CreateAlgorithmObject.

In this case, we name our algorithm object rc4Encrypter and declare it as follows:

The data type B_ALGORITHM_OBJ is defined in bsafe.h:

typedef POINTER B_ALGORITHM_OBJ;

where POINTER is defined in aglobal.h:

typedef unsigned char *POINTER;

and NULL_PTR is also defined in aglobal.h:

#define NULL_PTR ((POINTER)0)

So our variable, rc4Encrypter, is a pointer. To prevent problems when the algorithm
object is destroyed, it is a good idea to initialize it to NULL_PTR. See Step 6 for details.

To create an algorithm object, we call B_CreateAlgorithmObject. Chapter 4 of the
Library Reference Manual gives the function prototypes and descriptions of all the
Crypto-C calls. For B_CreateAlgorithmObject, we find:

Because B_CreateAlgorithmObject takes a pointer to a B_ALGORITHM_OBJ as its
argument, we have to pass the address of rc4Encrypter. The return value is an int.
Most Crypto-C calls return either a 0 (zero), which indicates success, or a non-zero
error code. After the call, look at the return value: if it is 0, continue; if not, stop. At

B_ALGORITHM_OBJ rc4Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

int B_CreateAlgorithmObject (
 B_ALGORITHM_OBJ *algorithmObject /* new algorithm object */
);
1 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Introductory Example
RSA Data Security, Inc., the tradition is to name the return value status:

Standard RSA Data Security, Inc., coding practices use the above do-while construct
to make it easy to break out of a sequence when encountering an error. If a Crypto-C
function returns a non-zero value, break will exit the do-while, and further code
dependent on the offending call will not be executed. However, any clean-up code,
such as overwriting sensitive memory with zeroes (see Step 6), can follow the do-
while and will always execute, whether or not there was an error.

Step 2: Setting the Algorithm Object
The variable rc4Encrypter is now an algorithm object, but we have not yet determined
what type of operations it can perform. In Step 2, we associate the algorithm object
with an algorithm and supply any special information or parameters the algorithm
requires. We do this with B_SetAlgorithmInfo. Chapter 4 of the Library Reference
Manual gives this function’s prototype and description:

The first argument is rc4Encrypter. But what are the next two? The second argument
is an algorithm info type, or AI. In Crypto-C, you specify the type of operation an
algorithm object performs by setting the object to a particular AI. Chapter 2 of the
Library Reference Manual describes the available AIs. Each AI description also lists the
information that must accompany that AI when setting an algorithm object. That
accompanying information is the third argument of B_SetAlgorithmInfo.

For our example, we want to choose a stream cipher AI. A stream cipher processes
data in a stream of arbitrary length. This is in contrast to another common type of
cipher, the block cipher, which processes data in blocks of a fixed size. In Crypto-C,

int status;
do {
 if ((status = B_CreateAlgorithmObject (&rc4Encrypter)) != 0)
 break;

.

.

.
} while (0);

int B_SetAlgorithmInfo (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_INFO_TYPE infoType, /* type of algorithm information */
 POINTER info /* algorithm information */
);
C h a p t e r 1 Q u i c k S t a r t 11

Introductory Example
there is a single stream cipher, RC4, and a number of AIs that can be used to
implement it. For this example we will use AI_RC4; we pass this as the second
argument to B_SetAlgorithmInfo.

The third argument is information that is specific to the AI we chose. For complex
algorithms, this is input that is required by the algorithm, such as: parameters for
algorithms that require them, “salt” and the desired number of iterations for
password-based encryption, or an “initialization vector” for block ciphers. In our
example, AI_RC4 is a simple algorithm that does not require any parameters; its entry
in Chapter 2 of the Library Reference Manual states that the format of the info supplied
to B_SetAlgorithmInfo is NULL_PTR.

Thus, we can make the call to B_SetAlgorithmInfo:

Note: Once you have set an algorithm object, do not set it again. If you need an
algorithm object to perform another type of operation, create a new one.

Step 3: Init
Now that we have created and set our algorithm object, rc4Encrypter, it is ready to
encrypt. Actually, since we haven’t called B_EncryptInit, it is ready to decrypt as
well. In Step 3, we choose the operations our algorithm object can perform by
supplying the desired function pointers to the Crypto-C library; we also create and set
a key object that will supply the key data the algorithm needs.

Note: An algorithm object can be used for either encryption or decryption, but not
for both. You should create separate algorithm objects to handle each case.

Look at the entry for AI_RC4 in Chapter 2 of the Library Reference Manual:

From this, you can see that AI_RC4 can be used with encryption or decryption
procedures; that is, it can be used to encrypt or to decrypt. We want to encrypt, so in
Step 3, we will call B_EncryptInit to initialize our algorithm object to perform

if ((status = B_SetAlgorithmInfo
 (rc4Encrypter, AI_RC4, NULL_PTR)) != 0)
 break;

Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal;
and B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal.
You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.
1 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Introductory Example
encryption. This call will also associate a key with the algorithm object.

See the description and prototype in Chapter 4 of the Library Reference Manual for
B_EncryptInit:

As in Step 2, the first argument is the algorithm object; once again, we use
rc4Encrypter. The next three arguments are new.

Step 3a: Creating a Key Object
The second argument is a key object, which is used to hold any key-related
information, such as the RC4 key, and to supply this information to functions that
require it. Before we can pass a key object as an argument, we must create and set it.
Creating a key object is similar to creating an algorithm object. We name our key
object rc4Key and declare it as follows:

where B_KEY_OBJ is defined in bsafe.h:

typedef POINTER B_KEY_OBJ;

Chapter 4 of the Library Reference Manual gives the description and prototype of
B_CreateKeyObject:

For our example, we use:

int B_EncryptInit (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 B_KEY_OBJ keyObject, /* key object */
 B_ALGORITHM_CHOOSER algorithmChooser, /* algorithm chooser */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);

B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;

int B_CreateKeyObject (
 B_KEY_OBJ *keyObject /* new key object */
);

if ((status = B_CreateKeyObject (&rc4Key)) != 0)
 break;
C h a p t e r 1 Q u i c k S t a r t 13

Introductory Example
Step 3b: Setting a Key Object
We have a key object, but it is not yet distinguished as an RC4 key. For that we need to
use B_SetKeyInfo. See Chapter 4 of the Library Reference Manual for this function’s
description and prototype:

This function is similar to B_SetAlgorithmInfo. The first argument is the key object
just created, rc4Key. The second argument is a key info type (KI), and the third
argument is information that must accompany the given KI. We want to use a KI
compatible with RC4 encryption, so we return to the entry for our AI, AI_RC4, in
Chapter 2 of the Library Reference Manual:

Key info types are described in Chapter 3 of the Library Reference Manual. Under the
entry for KI_ITEM we find that the format of info supplied to B_SetKeyInfo is a
pointer to an ITEM structure:

len is the length of the key in bytes. RC4 takes key sizes of one to 256 bytes. A ten-byte
key is generally sufficient for most applications. data is the key data. A real
application would use a random number generator to produce ten bytes for the key
(see “Generating Random Numbers” on page 147). For this example, we can simply

int B_SetKeyInfo (
 B_KEY_OBJ keyObject, /* key object */
 B_INFO_TYPE infoType, /* type of key information */
 POINTER info /* key information */
);

Key info types for keyObject in B_EncryptInit or B_DecryptInit:
KI_Item that gives the address and length of the RC4 key.

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;
1 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Introductory Example
use:

Now we can complete the call to B_SetKeyInfo:

As with algorithm objects, once you have set a key object, you should not set it again.
If you need another key object, you should create a new one.

Note: In a real application, for security reasons, you might want to zeroize and free
your key data immediately after setting the key.

Now that we have created and set our key object, rc4Key, we can pass it as the second
argument to B_EncryptInit.

Selecting an Algorithm Chooser
The third argument to B_EncryptInit is an algorithm chooser; this is a structure that
specifies which algorithm methods to link in. An algorithm method (AM) is the
underlying code that actually performs the cryptographic operation. Because many
AIs can perform more than one cryptographic function (for example, AI_RC4 can
perform encryption and decryption), an application often has a choice of which
underlying algorithm method(s) need to be linked in.

An algorithm chooser lists all the AMs the application will use; only these AMs will
be linked in. Crypto-C comes with a demonstration application containing the
algorithm chooser DEMO_ALGORITHM_CHOOSER. You can use this algorithm chooser in
any Crypto-C application as long as the module which defines it (choosc.c) is
compiled and linked in. However, DEMO_ALGORITHM_CHOOSER will link in all the
algorithm methods available, even though an application might use only two or three.

A developer can write an algorithm chooser for the specific application to make the
executable image smaller. See “Algorithm Choosers” on page 118. in this manual for

static unsigned char rc4KeyData[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
};

ITEM rc4KeyItem;
rc4KeyItem.data = rc4KeyData;
rc4KeyItem.len = sizeof(rc4keyData);

if ((status = B_SetKeyInfo
 (rc4Key, KI_Item, (POINTER)&rc4KeyItem)) != 0)
 break;
C h a p t e r 1 Q u i c k S t a r t 15

Introductory Example
instructions on writing an algorithm chooser. For this example, we will use
DEMO_ALGORITHM_CHOOSER as the third argument of B_EncryptInit.

Surrender Context
The fourth argument of B_EncryptInit is a surrender context, which controls when
and how the application surrenders control during time-consuming operations. The
application developer can put together an A_SURRENDER_CTX structure containing a
surrender function and other information. Crypto-C applications call this surrender
function at regular intervals.

The surrender function can simply print out information to the user that indicates that
the Crypto-C operation is currently executing, or it can provide the user with a means
of halting the operation if it is taking too much time. A surrender context is not
required; if none is desired, simply pass a properly cast NULL_PTR. See “The Surrender
Context” on page 120. for a more detailed description of the A_SURRENDER_CTX
structure. For this example, we will use (A_SURRENDER_CTX *)NULL_PTR.

We can now complete our call to B_EncryptInit:

Step 4: Update
In Steps 1 through 3, we created our algorithm object and initialized it with the
information that it needs to perform RC4 encryption. In Step 4, we can enter the data
to encrypt with the B_EncryptUpdate function. Chapter 4 of the Library Reference
Manual provides the following description and prototype:

if ((status = B_EncryptInit
 (rc4Encrypter, rc4Key, DEMO_ALGORITHM_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

int B_EncryptUpdate (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen, /* size of output data buffer */
 unsigned char *partIn, /* input data */
 unsigned int partInLen, /* length of input data */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);
1 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Introductory Example
The first argument is our algorithm object, rc4Encrypter.

The other arguments call for the plaintext input and encrypted output. Because the
output depends on the input, we start with the fifth and sixth arguments, which
describe the input.

We name our input dataToEncrypt and declare it as follows:

Crypto-C needs to know how many bytes our input is, so we use strlen:

If your data is not a string — that is, if it does not end with a NULL terminating
character — do not use strlen to determine its length.

The output is described by the second, third, and fourth arguments.

The second argument is described in the prototype as unsigned char *partOut. This
does not mean you simply declare a variable to be unsigned char * and pass it as the
argument. The output argument that you pass is a pointer to a buffer of allocated
memory. This is an important point; see “Algorithm Choosers” on page 118 for a
detailed discussion of this topic.

For now, we declare:

For a stream cipher, the length of the encrypted (output) data is equal to the length of
the input data. So we allocate dataToEncryptLen bytes with T_malloc:

The code above uses the Crypto-C routine T_malloc. Crypto-C supplies its own
memory management routines to increase code portability and to meet the special
requirements of handling encrypted data. The Crypto-C memory management
routines reside in the file tstdlib.c; make sure this file is compiled and linked in.

static char dataToEncrypt[] = “Encrypt this sentence.”;

unsigned int dataToEncryptLen;
dataToEncryptLen = (unsigned int)strlen (dataToEncrypt) + 1;

unsigned char *encryptedData = NULL_PTR;

encryptedData = T_malloc (dataToEncryptLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
 break;
C h a p t e r 1 Q u i c k S t a r t 17

Introductory Example
These routines are described in Chapter 4 of the Library Reference Manual and in
“Memory-Management Routines” on page 123 of this manual.

In our example, the T_malloc routine from tstdlib.c returns a pointer to the
allocated memory. If, for some reason, it cannot allocate memory (for example, when
there is not enough memory available), T_malloc will return NULL_PTR. It is
imperative to always check the return value of T_malloc, even if you are allocating
only a small number of bytes. T_malloc also sets an unsigned char * variable; it is a
good idea to initialize this variable to NULL_PTR. See “Step 6: Destroy” on page 20. for
more information.

The third argument to B_EncryptUpdate is a pointer to an unsigned int.
B_EncryptUpdate returns a value indicating how many bytes it placed into the output
buffer. It will place this value at the address specified by the pointer to the unsigned
int. Make the proper declaration:

Crypto-C might not encrypt all the input data during a call to B_EncryptUpdate. Any
unprocessed data will be saved in a buffer inside the algorithm object created by
Crypto-C and encrypted during a subsequent call to Update (see “Multiple Updates”
on page 28) or during the call to B_EncryptFinal (see “Step 5: Final” on page 19). This
is why it is important to keep track of how many bytes Crypto-C wrote to the output
buffer.

The fourth argument to B_EncryptUpdate is the size of the output buffer. The Update
function must know the size of the buffer. The Update function will not attempt to
place data into unallocated memory; instead, it returns an error if it needs to place
more bytes into the buffer than are allocated. In our example, we will use
dataToEncryptLen as our output data size.

The seventh argument is a random algorithm. Recall that in Chapter 2 of the Library
Reference Manual, the description of AI_RC4 states:

That is exactly what we will supply in our example.

For the eighth argument, once again, we pass a properly cast NULL_PTR as the

unsigned int outputLenUpdate;

You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.
1 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Introductory Example
surrender context. When we put this all together, our Update call is:

Note the warning in the Library Reference Manual Chapter 2 entry for AI_RC4:

This simply means that you should not use the same key for two different encryption
sessions.

Step 5: Final
B_EncryptFinal finalizes the encryption process by encrypting any data that
B_EncryptUpdate could not. See Chapter 4 of the Library Reference Manual for the
function’s description and prototype:

For our example, the first argument is rc4Encrypter.

The second argument is a pointer to the output buffer that we created for
B_EncryptUpdate. However, B_EncryptUpdate has already placed some data into that
buffer, so we must pass the address of the next byte that is available after the already
filled bytes to B_EncryptFinal. That is the address of the beginning of the buffer plus

if ((status = B_EncryptUpdate
 (rc4Encrypter, encryptedData, &outputLenUpdate,
 dataToEncryptLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

encrypted DataLen = outputLenUpdate + outputLenFinal

Due to the nature of the RC4 algorithm, security is compromised if multiple data
blocks are encrypted with the same RC4 key. Therefore, B_EncryptUpdate cannot be
called after B_EncryptFinal. To begin an encryption operation for a new data block,
you must call B_EncryptInit and supply a new key.

int B_EncryptFinal (
 B_ALGORITHM_OBJ algorithmObject, /* algorithm object */
 unsigned char *partOut, /* output data buffer */
 unsigned int *partOutLen, /* length of output data */
 unsigned int maxPartOutLen, /* size of output data buffer */
 B_ALGORITHM_OBJ randomAlgorithm, /* random byte source */
 A_SURRENDER_CTX *surrenderContext /* surrender context */
);
C h a p t e r 1 Q u i c k S t a r t 19

Introductory Example
the number of bytes that B_EncryptUpdate filled, or encryptedData + outputLenUpdate.

The third argument is a pointer to an unsigned int; B_EncryptFinal will set that
unsigned int to the number of bytes it encrypted.

The fourth argument is the size of the buffer available to B_EncryptFinal. Because
B_EncryptUpdate has already written to part of the buffer, this value will be the total
size of the buffer minus the number of bytes B_EncryptUpdate has used, or
dataToEncryptLen - outputLenUpdate.

Once again, we can pass properly-cast null pointers for the fifth and sixth arguments,
which are the random algorithm and surrender context.

Then, for our example, we have:

Step 6: Destroy
When you are done with an algorithm or key object, you must destroy it. The Destroy
function frees up any memory that was allocated by Crypto-C and zeroizes any
sensitive memory. Because you will always want to destroy the objects, place these
function calls after the do-while construct. That way, even if there is an error
somewhere and the program breaks out of the do-while before executing all the calls
within the do-while, the Destroy functions will execute. In case the error occurs
before an object has been created, it is a good idea to initialize objects to NULL_PTR. If
an object is NULL_PTR, the Destroy function does nothing.

Chapter 4 of the Library Reference Manual gives the description and prototype of the
Destroy functions:

if ((status = B_EncryptFinal
 (rc4Encrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, dataToEncryptLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

void B_DestroyKeyObject (
 B_KEY_OBJ *keyObject /* pointer to key object */
);
void B_DestroyAlgorithmObject (
 B_ALGORITHM_OBJ *algorithmObject /* pointer to algorithm object */
);
2 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Introductory Example
For our example, we use the following:

In addition to destroying any objects that you created, any memory you allocated
must be freed when you are done with it. This means that each T_malloc must have a
corresponding T_free. Placing the T_free after the do-while guarantees that it will be
called even if there is an error somewhere. However, there is a concern that if there is
an error before the T_malloc and the program breaks out of the do-while before
memory is allocated, then T_free will be called without a corresponding T_malloc.
That is why it is important to initialize the pointer to NULL_PTR. If the argument to
T_free is NULL_PTR, the extra call to T_free does nothing.

See Chapter 4 of the Library Reference Manual for the T_free prototype:

For this example, call T_free as follows:

Note: Using T_free means you can no longer access the data at that address. Do not
free a buffer until you no longer need the data it contains. If you will need the
data later, you might want to save it to a file first.

You may want to zeroize any sensitive data before you free it. To do this, duplicate
the following sequence after the do-while. If there is an error inside the do-while
before you zeroize and free, you are still guaranteed to perform this important task:

B_DestroyKeyObject (&rc4Key);
B_DestroyAlgorithmObject (&rc4Encrypter);

void T_free (
 POINTER block /* block address */
);

T_free (encryptedData);

if (rc4KeyItem.data != NULL_PTR) {
 T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
 T_free (rc4KeyItem.data);
 rc4KeyItem.data = NULL_PTR;
 rc4KeyItem.len = 0;
}

C h a p t e r 1 Q u i c k S t a r t 21

Introductory Example
Putting It All Together
Now we can put Steps 0 through 6 into a program. This program can be found in the
file introex.c:

#include "aglobal.h"
#include "bsafe.h"
#include "demochos.h"

void PrintBuf PROTO_LIST ((unsigned char *, unsigned int));

void main()
{
 B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;
 B_ALGORITHM_OBJ rc4Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

 /* The RC4 key is hard-coded in this example. In a real application,
 use a random number generator to produce the key. */
 unsigned char rc4KeyData[10] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
 };

 static char dataToEncryp[] = "Encrypt this sentence.";
 unsigned char *encryptedData = NULL_PTR;
 unsigned int dataToEncryptLen, encryptedDataLen;
 unsigned int outputLenUpdate, outputLenFinal;
 unsigned int status;

 do {
 dataToEncryptLen = strlen (dataToEncrypt) + 1;

 /* Step 1: Create an algorithm object. */
 if ((status = B_CreateAlgorithmObject (&rc4Encrypter)) != 0)
 break;

 /* Step 2: Set the algorithm to a type that does rc4 encryption.
 AI_RC4 will do. */
 if ((status = B_SetAlgorithmInfo
 (rc4Encrypter, AI_RC4, NULL_PTR)) != 0)
 break;

 /* Step 3a: Create a key object. */
 if ((status = B_CreateKeyObject (&rc4Key)) != 0)
 break;
2 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Introductory Example
 /* Step 3b: Set the key object with the 10-byte key. */
 rc4KeyItem.data = rc4KeyData;
 rc4KeyItem.len = rc4KeyDataLen;

 if ((status = B_SetKeyInfo
 (rc4Key, KI_Item, (POINTER)&rc4KeyItem)) != 0)
 break;

 if (rc4KeyItem.data != NULL_PTR) {
 T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
 T_free (rc4KeyItem.data);
 rc4KeyItem.data = NULL_PTR;
 rc4KeyItem.len = 0;
 }

 /* Step 3: Init */
 if ((status = B_EncryptInit
 (rc4Encrypter, rc4Key, DEMO_ALGORITHM_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Step 4: Update */
 encryptedData = T_malloc (dataToEncryptLen);
 if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

 if ((status = B_EncryptUpdate
 (rc4Encrypter, encryptedData, &outputLenUpdate,
 dataToEncryptLen, (unsigned char *)dataToEncrypt,
 dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Step 5: Final */
 if ((status = B_EncryptFinal
 (rc4Encrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, dataToEncryptLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 encryptedDataLen = outputLenUpdate + outputLenFinal;
 printf ("Encrypted data (%u bytes):\n", encryptedDataLen);
 PrintBuf (encryptedData, encryptedDataLen);
C h a p t e r 1 Q u i c k S t a r t 23

Introductory Example
You may find it a useful exercise to compile and link this program. Also, it could also
be instructive to add some print statements. For instance, what are the values of
outputLenUpdate and outputLenFinal?

While it is possible to print the encryptedData, it will not be an ASCII string — it is not
any kind of string, because there is no NULL terminating character. The encrypted data
is binary data, so it may be more useful to print out the result byte-by-byte in hex-
ASCII strings. For an example of a function that does this, see the PrintBuf() routine
in the sample program. In addition, note that when writing Crypto-C output to (and
reading it from) files, it is usually more useful (in some cases, even necessary) to open
the files in binary mode.

To run this exercise, first compile introex.c, tstdlib.c, and choosc.c. Then link the
object files with bsafe.lib or the equivalent platform-specific library.

 } while (0);

 /* Done with the key and algorithm objects, so destroy them. */
 B_DestroyKeyObject (&rc4Key);
 B_DestroyAlgorithmObject (&rc4Encrypter);

 /* Free up any memory allocated, save it to a file or print it out first
 if you need to save it. */
 if (rc4KeyItem.data != NULL_PTR) {
 T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
 T_free (rc4KeyItem.data);
 rc4KeyItem.data = NULL_PTR;
 rc4KeyItem.len = 0;
 }

 if (encryptedData != NULL_PTR){
 T_memset (encryptedData, 0, dataToEncryptLen);
 T_free (encryptedData);
 encryptedData = NULL_PTR;
 }

} /* end main */
2 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Decrypting the Introductory Example
Decrypting the Introductory Example
Decrypting data is similar to encrypting. RC4 is symmetric-key encryption, which
means the key that was used to encrypt will be the key needed for decryption.

The example in this section corresponds to the file dintroex.c.

Step 1: Creating an Algorithm Object

Step 2: Setting the Algorithm Object
Use the same AI and parameters as for encryption:

Step 3: Init
Use the same key data as for encryption. Once again, we must create and set the key
object.

Step 3a: Creating the Key Object
As before, we name our key object rc4Key and declare it as follows:

Then we allocate space for the key object using B_CreateKeyObject:

B_ALGORITHM_OBJ rc4Decrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc4Decrypter)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (rc4Decrypter, AI_RC4, NULL_PTR)) != 0)
 break;

B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&rc4Key)) != 0)
 break;
C h a p t e r 1 Q u i c k S t a r t 25

Decrypting the Introductory Example
Step 3b: Setting the Key Object
We need to fill our key with the same ten bytes of data we used for encryption. We
must make sure that we use the same key as we used to encrypt. For our sample
application, we can simply re-create the key data we had before:

Now we can complete the call to B_SetKeyInfo:

Step 4: Update
Here, we must set the buffer that will store the decrypted data; for RC4, it should be
the same size as the encrypted data’s buffer:

static unsigned char rc4KeyData[] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
};

if ((status = B_SetKeyInfo
 (rc4Key, KI_Item, (POINTER)&rc4KeyData)) != 0)
 break;

unsigned char *decryptedData = NULL_PTR;

decryptedData = T_malloc (encryptedDataLen);
if ((status = (decryptedData == NULL_PTR)) != 0)
 break;

if ((status = B_DecryptUpdate
 (rc4Decrypter, decryptedData, &decryptedLenUpdate,
 encryptedDataLenTotal, encryptedData, outputLenTotal,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Decrypting the Introductory Example
Step 5: Final

In the “Introductory Example” on page 9, the plaintext was a string. Therefore, we can
compute the sum of decryptedLenUpdate and decryptedLenFinal to determine how
many characters make up the decryption.

Note: For some algorithms, the decrypted data may not be a string — for example,
when the NULL terminating character was not encrypted. In these cases, if you
want to print the decrypted data, you will not be able to because the data is in
binary form, not ASCII. You could print the ginary data using PrintBuf(), or
you can convert the decrypted data. Crypto-C offers encoding and decoding
functions to convert between binary and ASCII. See “Converting Data
Between Binary and ASCII” on page 154 for more information.

Step 6: Destroy
Always destroy objects when you no longer need them:

if ((status = B_DecryptFinal
 (rc4Decrypter, decryptedData + decryptedLenUpdate,
 &decryptedLenFinal, encryptedDataLen - decryptedLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyAlgorithmObject (&rc4Decrypter);

if (decryptedData != NULL_PTR) {
 T_memset (decryptedData, 0, encryptedDataLen);
 T_free (decryptedData);
 decryptedData = NULL_PTR;
}

C h a p t e r 1 Q u i c k S t a r t 27

Multiple Updates
Multiple Updates
An application can do multiple Updates before the Final call. For example, suppose
you have data from three different files that you want to encrypt into a single buffer.
You could do this in three steps: read the contents of the first file into a buffer; read
the next file, appending the contents to the end of the existing buffer; then append the
contents of the third. But that would be clumsy if the contents of the three files are
already in three buffers.

You do not have to put data together into a single buffer to encrypt it. Instead, call
B_EncryptUpdate with the first buffer, call it a second time with the second buffer, and
one last time with the third buffer. Then call B_EncryptFinal once, after you have
finished all Updates. Similarly, you can call B_DecryptUpdate more than once with
blocks of encrypted data.

Multiple updates can also be useful for encrypting or decrypting large amounts of
data. If you need to process a one-megabyte file, you could allocate a megabyte of
memory, put the entire file into that memory buffer, and call Update once. But using
such a large amount of memory is impractical or even impossible in some situations.
An application is more robust if it allocates a smaller buffer — say, 64, 128 or 1024
bytes — transfers data from the file in increments, and processes each unit with a
separate call to Update. Then it can call Final once for all Updates.

Crypto-C does not always encrypt or decrypt an entire block during an Update call.
One reason it might not handle the whole block is because of padding. Padding is
used with block ciphers to ensure the data satisfies input restrictions and may add
bytes to the original data. See “Padding” on page 36 for more information. Padding
and pad operations (encrypting or decrypting the padding and/or stripping the pad)
take place in Final, so Crypto-C may keep the last few bytes of any input to an Update
call in a buffer. If there is another call to Update, then the bytes in that buffer were not
the last bytes of input, and Crypto-C continues to encrypt or decrypt. If the next call is
to Final, the bytes in the buffer are the last bytes of input, so Crypto-C adds the pad
and encrypts it, or decrypts the final bytes and strips the pad.

Note: The output of a particular Update may very well be larger than the input,
because Crypto-C may be processing the current input plus some data in the
buffer. Hence, an output buffer of an Update call should always be larger than
the input length. For block ciphers, for example, the size of the output buffer
may be as large as the length of the input plus the block size.

The following example demonstrates multiple Updates. It corresponds to the file
multencr.c; a similar example for decryption is in the file multdecr.c. Assume that
the subroutine GetDataFromFile gets at most a specified number of bytes from a file,
2 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Multiple Updates
places them into the given buffer, and sets a flag indicating whether the bytes
returned are the last ones in the file or not. Assume also that the subroutine
AppendDataToFile appends output data to a file. Finally, assume we have already
called B_CreateAlgorithmObject, B_SetAlgorithmInfo, and B_EncryptInit:

#define UPDATE_SIZE 64
#define UPDATE_OUTPUT_SIZE (UPDATE_SIZE + 16)

 FILE *inputFile = (FILE *)NULL_PTR;
 FILE *outputFile = (FILE *)NULL_PTR;

 unsigned char dataToEncrypt[UPDATE_SIZE];
 unsigned char blockOfEncryptedData[UPDATE_OUTPUT_SIZE];
 unsigned int dataToEncryptLen, totalBytesSoFar;
 unsigned int outputLenUpdate, outputLenFinal;
 unsigned int sizeToUpdate = UPDATE_SIZE;
 int endFlag, status;

 do {

 totalBytesSoFar = 0;

 while ((status = GetDataFromFile
 (inputFile, sizeToUpdate, dataToEncrypt,
 &dataToEncryptLen, &endFlag)) == 0) {
 printf ("dataToEncryptLen = %i \n", dataToEncryptLen);
 PrintBuf (dataToEncrypt, dataToEncryptLen);
 if ((status = B_EncryptUpdate
 (encryptionObject, blockOfEncryptedData,
 &outputLenUpdate, UPDATE_OUTPUT_SIZE, dataToEncrypt,
 dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Save the encrypted data. */
 if ((status = AppendDataToFile
 (outputFile, blockOfEncryptedData,
 outputLenUpdate)) != 0)
 break;

 totalBytesSoFar += outputLenUpdate;
 if (endFlag == 1)
 break;
 } /* end while */
C h a p t e r 1 Q u i c k S t a r t 29

Multiple Updates
In the above code, we took dataToEncryptLen bytes of data to encrypt and passed them
to B_EncryptUpdate. The number of bytes of output may or may not be
dataToEncryptLen; check outputLenUpdate to see. If fewer than dataToEncryptLen bytes
were output, the as-yet-unencrypted input waits in a buffer.

Notice that we did not allocate memory, but used the stack; we did this by declaring
our buffers to be arrays of unsigned char. This means that the operating system will
do the allocating and freeing.

Also notice the call to T_memset, another memory management routine from
tstdlib.c. T_memset sets all the bytes of a buffer to a particular value; in this case, it
wrote a 0 to every byte in dataToEncrypt. T_memset is described in Chapter 4 of the
Library Reference Manual. When memory is freed, whether by a call to T_free or
automatically by the operating system, the data still exists at that location; the
operating system has simply marked that area as available for use. For security,
overwrite any memory that held sensitive data when you are done with it. This

 /* If there was an error in the above while loop, break out of the
 do-while construct. */
 if (status != 0)
 break;

 /* Call B_EncryptFinal once after all Updates. */
 if ((status = B_EncryptFinal
 (encryptionObject, blockOfEncryptedData, &outputLenFinal,
 UPDATE_OUTPUT_SIZE, (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 /* Save the encrypted data. */
 if ((status = AppendDataToFile
 (outputFile, blockOfEncryptedData,
 outputLenFinal)) != 0)
 break;

 totalBytesSoFar += outputLenFinal;

 } while (0);

 /* Free up any memory allocated, save it to a file or print it out first
 if you need to save it. */

 T_memset (dataToEncrypt, 0, sizeof (dataToEncrypt));
3 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Multiple Updates
prevents attackers from reconstructing secrets by examining your computer’s
memory.
C h a p t e r 1 Q u i c k S t a r t 31

Summary of the Six Steps
Summary of the Six Steps
A typical implementation uses the six steps as follows:

Step 0: Include
Include the necessary header files. In addition, make sure that:

• your compiler can locate the Crypto-C header files

• your compiler can locate and link in the Crypto-C library

• you compile and link in the file containing the definitions for the T_ functions; an
example is provided in tstdlib.c.

Step 1: Create
Create an algorithm object by declaring a variable to be an algorithm object and
calling B_CreateAlgorithmObject.

Step 2: Set
Use B_SetAlgorithmInfo to associate the algorithm object with an algorithm and to
supply any special information or parameters the algorithm requires.

Step 3: Init
Choose the operations the algorithm object can perform by supplying the desired
algorithms methods from the Crypto-C library. If the algorithm requires a key, create
and set a key object that will supply the key data that the algorithm needs.

Step 4: Update
Initiate an action. The action depends on the algorithm. Update is the only step that
can be performed more than once on the same object. For example:

• For an encryption or decryption algorithm, an Update step encrypts or decrypts
all or part of the data. You can use multiple Update steps to encrypt or decrypt
data.

• For a message digest, the Update step is used to enter the data to digest.

• For a random number generator, the Update step is used to seed the random
number generation.
3 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Summary of the Six Steps
• For some algorithms, such as generating a public/private key pair, there is no
Update step.

Step 5: Final
Finalize the action initiated in Step 4. Again, the finalization depends on the
algorithm; for some algorithms, Final is replaced by Generate. For example:

• For an encryption or decryption algorithm, the Final step encrypts or decrypts the
final portion of the data. For some algorithms, this data may need special
handling, such as “padding,” that is different from the Update step.

• For a message digest, the digest action takes place during Final.

• For a random number generator, the Final (or Generate) step generates the
random bytes.

• For generating a public/private key pair, the key pair generation takes place in
the Generate step.

Step 6: Destroy
Free any memory allocated in the previous steps and overwrite any sensitive memory
with zeroes. The Destroy step is crucial to the security of an application.
C h a p t e r 1 Q u i c k S t a r t 33

3 4 C h a p t e r 1 Q u i c k S t a r t

Chapter 2

Cryptography
This section presents a brief outline of the basic cryptographic principles and
terminology used throughout this manual. The publications listed in , “References
and Reading Material”, on page 293 provide more comprehensive discussions of
cryptographic functions and operations.

Cryptography Overview

Symmetric-Key Cryptography
In symmetric-key cryptography, as Figure 2-1 shows, the data used to build the
encrypting key is the same data required to build the decrypting key. Using any other
key to decrypt will produce incorrect results. Symmetric-key cryptography is also
sometimes called secret-key cryptography, because the key used to both encrypt and
decrypt must be kept secret.

There are two categories of symmetric encryption algorithms, block ciphers and stream
ciphers. As the name implies, a block cipher processes data in blocks. A stream cipher,
on the other hand, processes a unit of data at a time, where a unit is generally a bit or
byte. This allows a stream cipher to take in a variable length stream of data, encrypt it,
and output a stream of ciphertext the same length as the input. Crypto-C offers DES,
Triple DES, DESX, RC2, and RC5 as block ciphers and RC4 as a stream cipher.
C h a p t e r 2 C r y p t o g r a p h y 35

Cryptography Overview
Figure 2-1 Symmetric-Key Encryption and Decryption

Block Ciphers
Block ciphers encrypt data block-by-block. They can encrypt each block separately as
in ECB mode, or they can use other modes to make the cipher less vulnerable to
attacks based on regular patterns. A mode of operation usually combines the
underlying cipher with feedback and other simple operations. The security remains a
function of the cipher and not of the mode. See “Modes of Operation” on page 40 for
more information.

Padding
When you encrypt a message using a block cipher, usually your message length will
not be a multiple of the block size. Some modes can deal with variable size blocks, but
others require the message be a multiple of the block size. For these modes, padding is
a way to deal with this problem. To pad, you add a regular pattern of bytes to the end
of the last block to make it a complete block. With padding, the actual number of
bytes encrypted can be as much as one block more than the original data.

Ciphers

Crypto-C implements the following block ciphers:

• DES

• Triple DES

Encryption Operation

Original
Message

Encryption
Algorithm

Encrypted
Message

Encrypted
Message

Decryption
Algorithm

Decrypted
Message

Decryption Operation

Key

Key

Key Data
3 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
• RC2

• RC5

• DESX

DES
The Digital Encryption Standard, DES, is a commercial encryption US standard that
has been available for over 15 years. The federal standard document FIPS PUB 46-2
describes the algorithm. DES, in most cases, is not an exportable algorithm.

For DES, the block size is eight bytes. Therefore, the input must be a multiple of eight
bytes, or else it must be padded to be a multiple of eight bytes for DES to operate in
CBC or ECB modes properly. The key consists of 56 random bits and 8 parity bits,
forming a 64-bit, or 8-byte, key.

Triple DES
Triple DES executes DES three times, which triples the number of bits in an
encryption key. A number of different methods achieve this function. The technique
that Crypto-C uses is depicted in Figure 2-2 on page 38.

This technique is known as EDE, or “Encrypt-Decrypt-Encrypt.” The decryption
process in the middle stage of Triple DES encryption provides compatibility with
DES. If the three keys are the same, the Triple DES operation is equivalent to a single
DES encryption. That way, an application that has only DES capabilities can still
communicate with applications that use Triple DES. If the three keys are different, the
decryption in the middle will scramble the message further; it will not decrypt the
first stage. Triple DES decryption is the inverse operation of the above sequence, that
is, DES decryption followed by DES encryption and then another DES decryption.
Triple DES is generally not exportable.
C h a p t e r 2 C r y p t o g r a p h y 37

Cryptography Overview
Figure 2-2 Triple DES encryption as implemented in Crypto-C

DESX
DESX is an RSA Data Security, Inc. proprietary extension of the DES encryption
algorithm that increases the effective number of key bits from 56 to 120 bits. Crypto-C
includes DESX for backward compatibility with BSAFE 1.x versions, or as a faster
alternative to Triple DES.

RC2
RC2 was developed by Ronald Rivest as an alternative to DES encryption; it is
proprietary to RSA Data Security, Inc. RC2 has an eight-byte block size. Therefore, the
input must be a multiple of eight bytes, or be padded to be a multiple of eight bytes,
for RC2 to operate properly in CBC or ECB modes.

The RC2 input key can be of any length from 1 to 128 bytes. The algorithm uses the
input key to generate an effective key that is actually used for encryption purposes.
Internally, the algorithm builds a key table based on the bits of the key data; the
chosen number of effective key bits limits the number of possible key tables. The
effective key size is variable and takes values from one bit up to 1024 bits.

Control over your effective key size benefits you as follows:

• You can generate up to 128 bytes of key data and set the algorithm to use a smaller
number of effective bits, such as 80. Then, in the future, if you want to increase the
effective key bits, you do not have to change the code that generates the key data,
only the effective key bit parameter.

DES
encryption

DES
decryption

DES
encryption

8 byte
message

block

8 byte
message

block

First 8 bytes
of the key

Middle 8 bytes
of the key

Last 8 bytes
of the key

24 byte Triple DES key (including parity bits)
3 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
• In code that is being exported, you only need to modify the number of effective
key bits instead of making extensive modifications to your code. RC2 can
generally be approved for export under a limited key size of 40 – 48 bits;
applications with 40 bits will usually be expedited.

RC5
RC5 was developed by Ronald Rivest as an alternative to DES encryption; it is
proprietary to RSA Data Security, Inc. It is a block cipher with the block being either 4
bytes, 8 bytes, or 16 bytes, depending on the word size. The input must be a multiple
of the block size, or it must be padded to a multiple of the block size for RC5 to
operate properly. RC5’s speed and security are dependent on input parameters
determined by the user. These parameters are:

• word size

• rounds

• key size

Word size generally refers to the size of a hardware register. For hardware
implementations of RC5, developers can take advantage of larger registers to increase
speed. On chips with smaller registers, the word size can be emulated in software.
RC5 version 1.0 accepts word sizes of 16, 32, or 64 bits. Crypto-C accepts a word size
of 32 or 64 bits; however, the 64-bit implementation is an unoptimized evaluation
implementation. The block size is twice the word size. For a word size of 32 bits, the
block size is 64 bits, or 8 bytes, the same as for DES and RC2. For a word size of 64 bits,
the block size is 128 bits, or 16 bytes.

The number of rounds is the number of times the operation employs the inner
encryption function. Varying the number of rounds allows developers to make a
tradeoff between speed and security. The greater the number of rounds, the greater
the security, but the slower the execution. The number of rounds can be anywhere
from 0 (zero) to 255. For RC5 with a 32-bit word size, RSA Data Security, Inc.
recommends at least 12 rounds for applications; while no practical attacks are known
for 12-round RC5-32, recent cryptanalytic work suggests 16 rounds is now a more
conservative choice. For RC5 with a 64-bit word size, RSA Data Security, Inc.
recommends at least 16 rounds; a conservative choice for the 64-bit version is 20
rounds. Note that the Crypto-C implementation of the 64-bit word is for evaluation
purposes only.

The key size can be as little as 0 (zero) and as many as 255 bytes. This variable key size
is intended to make it easier to obtain export permission. RC5 uses the secret key
bytes to generate an expanded key table during the Init phase. The key table is then
used during encryption or decryption. Hence, key length will have no appreciable
C h a p t e r 2 C r y p t o g r a p h y 39

Cryptography Overview
effect on algorithm speed.

RC5 is more formally described as RC5 w/r/b. For instance, RC5 with a 32-bit word,
12 rounds, and a 10 byte key would be described as RC5 32/12/10.

Modes of Operation

When you use a block cipher to encrypt a message of arbitrary length, you can also
choose a mode of operation.

Modes of operation can use techniques such as feedback or chaining to make identical
plaintext blocks encrypt to different ciphertext blocks. Modes are designed so that
they do not weaken the security of the underlying cipher, but they may have
properties in addition to those inherent in the basic cipher.

Most of the modes of operation in Crypto-C are feedback modes. Feedback modes use
the previous block of output to alter the current block of input before encrypting. In
this way, encrypting the same block of plaintext twice will virtually never produce the
same ciphertext.

A feedback algorithm requires an initialization vector, or IV, to alter the first block. The
IV has no cryptographic significance. It is used to alter the first block of data before
any encryption takes place; therefore, it does not need to be secret. It should be
random, though, so that the first block of encrypted data is not predictable. In order to
start the decryption process, it is necessary to use the IV that was employed in the
encryption process.

Four Modes

Crypto-C offers four modes:

• Electronic Codebook (ECB) mode

• Cipher Block Chaining (CBC) mode

• Cipher Feedback (CFB) mode

• Output Feedback (OFB) mode

A brief description of these modes follows. Most cryptography texts, such as Bruce
Schneier’s Applied Cryptography [15], provide full descriptions of the various modes.

Electronic Codebook (ECB) Mode
ECB is not a feedback mode; it encrypts each block of input independently of all other
blocks. Plaintext patterns are not concealed; instead each identical block of plaintext
yields an identical block of ciphertext. This could help an eavesdropper break the
4 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
code. In addition, the plaintext can be easily manipulated by removing, repeating, or
interchanging blocks. The speed of each encryption operation is identical to that of the
block cipher. ECB mode is as secure as the underlying block cipher.

Figure 2-3 Electronic Codebook (ECB) Mode

Cipher Block Chaining (CBC) Mode
With CBC mode, each plaintext block is XORed with the previous ciphertext block,
then encrypted. CBC mode is as secure as the underlying block cipher against
standard attacks. In addition, any patterns in the plaintext are concealed by the
XORing of the previous ciphertext block with the plaintext block.

The decryptor follows the same sequence of steps to decrypt, using the same (secret)
key and IV.

Key (K)

2nd message
block

2nd cipher
blockBlock Cipher

Key (K)

1st message
block

1st cipher
blockBlock Cipher
C h a p t e r 2 C r y p t o g r a p h y 41

Cryptography Overview

Figure 2-4 Cipher-Block Chaining (CBC) Mode

An initialization vector is added to the beginning of the plaintext before encryption.
This gives you something to XOR the first block with and ensures that identical
plaintexts encrypt to different ciphertexts.

Cipher Feedback (CFB) Mode
In cipher feedback (CFB) mode, the cipher object acts as a byte generator. CFB mode
encrypts the previous block of ciphertext, and XORs the plaintext with this block to
produce ciphertext. For the first block, the initialization vector is encrypted. CFB
mode is as secure as the underlying cipher against standard attacks. In addition, any
patterns in the plaintext are concealed by XORing the previous ciphertext block with
the plaintext block.

Key (K)

2nd message
block

2nd cipher
blockBlock Cipher

Initialization
Vector (IV)

1st message
block

1st cipher
blockBlock Cipher

XOR

XOR

Key (K)
4 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview

Figure 2-5 Cipher Feedback (CFB) Mode

To encrypt a plaintext using CFB mode:

1. Generate your key and your IV.
2. Encrypt the IV with the key to get a block of output, B1.

3. XOR B1 with the first block of your plaintext, P1, to get the first block of
ciphertext, C1.

4. Encrypt C1 with the key to get the second block of output, B2.

5. XOR B2 with the second block of your plaintext message, P2, to get the second
block of ciphertext, C2.

6. Repeat Steps 4 and 5 until the entire text is encrypted.

To decrypt the ciphertext, the decryptor uses the same (secret) key and initialization
vector and follows the same sequence of steps.

CFB mode does not require padding. If your data length is not a multiple of the block
size, simply truncate the final block of output to be the same size as the final segment
of the data, and then XOR. You can use CFB to encrypt a stream of data.

2nd message
block

2nd cipher
block

Key (K)

Block Cipher

Initialization
Vector (IV)

1st message
block

1st cipher
blockXORBlock Cipher

Key (K)

XOR
C h a p t e r 2 C r y p t o g r a p h y 43

Cryptography Overview
Output Feedback (OFB) Mode
Output feedback mode is similar to CFB mode, except that the quantity XORed with
each plaintext block is generated independently of both the plaintext and the
ciphertext.

To encrypt a plaintext using OFB, first generate the “output” used for encryption.
This is intermediate data that is used in the encryption process. In OFB, the output
depends only on the key and the initialization vector.

1. Generate your key and your IV.
2. Encrypt the IV with the key to get a block of output, B1.

3. Encrypt B1 with the key to get the second block of output, B2.

4. Continue encrypting recursively: encrypt Bi to get Bi+1.

This process gives you an arbitrarily long sequence of pseudo-random blocks that you
can use to encrypt the data. To use the output to encrypt:

5. XOR your plaintext with the output, block by block. The result of the XOR is the
ciphertext.

OFB does not require padding. If your data length is not a multiple of the block size,
simply truncate the final block of the output to be the same size as the final segment of
the data, and then XOR.

The decryptor can use the same (secret) key and IV to generate the same sequence of
output blocks, and XOR the sequence with the ciphertext to recover the plaintext.
4 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
Figure 2-6 Output Feedback Mode (OFB)

Stream Ciphers
A stream cipher processes the input data a unit at a time. A unit of data is generally a
byte, or sometimes even a bit. In this way, encryption or decryption can execute on a
variable length of input. The algorithm does not have to wait for a specified amount
of data to be input before processing, or append and encrypt extra bytes.

RC4
RC4 is a symmetric stream-encryption algorithm developed by Ronald Rivest and
proprietary to RSA Data Security, Inc. It is actually a keyed pseudo-random sequence.
It uses the provided key to produce a pseudo-random number sequence which is then
XORed with the input data. This means that the encryption and decryption
operations are identical.

The number of key bits is variable and ranges from eight to 2048 bits. An application
that uses RC4 with a key size of 40 – 48 bits is generally exportable; a key size of 40
bits is usually expedited. RC4 with a key size less than 40 bits is not recommended.

Because RC4’s encryption is an XOR between the message bytes and the pseudo-
random byte stream generated from the key, the same key should not be used more
than once. Otherwise, if some of the bytes of one input message are known (or easy to

2nd message
block

2nd cipher
block

Key (K)

Block Cipher

Initialization
Vector (IV)

1st message
block

1st cipher
blockXORBlock Cipher

Key (K)

XOR
C h a p t e r 2 C r y p t o g r a p h y 45

Cryptography Overview
guess), an attacker would be able to determine some of the original message bytes by
XORing two sets of cipher bytes.

Figure 2-7 RC4 Encryption or Decryption

RC4 with MAC
The RC4 with MAC algorithm is an extension of RC4. It provides data integrity by
using a Message Authentication Code (MAC) in conjunction with the RC4 encryption
algorithm. The authentication code does not provide cryptographic authentication;
rather, it provides the equivalent of a checksum that can be used to determine if any
errors were introduced within the cipher bytes. The MAC guards against
transmission or retrieval errors but may not detect deliberate tampering with the
data.

Message Digests
A message digest (also sometimes referred to as a one-way hash function) is a fixed-
length computationally unique identifier corresponding to a set of data. That is, each
unit of data (a file, a string, a buffer, etc.) will map to a particular short block, called a
message digest. It is not random: digesting the same unit of data with the same
message digest algorithm will always produce the same short block.

A good message digest algorithm possesses the following qualities:

• The algorithm accepts any input data length.

• The algorithm produces a fixed length output for any input data.

Nth message
byte

Nth cipher
byte

XOR

Pseudo-
random
bytes

Key Key
Mixing
4 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
• It is computationally infeasible to produce data that has a specific digest. In other
words, given a particular block of the proper size, it will be virtually impossible to
determine a unit of data that will digest to that particular block.

• It is computationally infeasible to produce two different units of data that
produce the same digest. In other words, given some data, it is virtually
impossible to create different data that will digest to the same block as the first.
This quality is also called collision-free.

Message digests have many uses. They can authenticate data, for instance. To create
an digest for authentication, digest the data and save the digest. Later, if you need to
see if the data has been altered, digest it again and compare the new digest to the old.
If the digests are different, the data is different. Although there will exist other sets of
data that will digest to the original value, it is virtually impossible to find them. Minor
changes in data will produce very different digests.

Crypto-C includes the MD, MD2, MD5, and SHA1 message digest algorithms. MD is
included for backward compatibility with BSAFE 1.x. MD, MD2, and MD5 produce a
16-byte digest for any input message; SHA1 produces a 20-byte digest. MD5 is the
fastest message digest algorithm implemented in Crypto-C.

Recent cryptanalytic work has discovered a collision in MD2’s internal compression
function, and there is some chance that the attack on MD2 may be extended to the full
hash function. The same attack applies to MD. Another attack has been applied to the
compression function on MD5, though this has yet to be extended to the full MD5.
RSA Data Security, Inc. recommends that before you use MD, MD2, or MD5, you
should consult the RSA Laboratories web site at http://www.rsa.com/rsalabs to be
sure that their use is consistent with the latest information. One bulletin that discusses
this issue is Recent Results for MD2, MD4, and MD5; it can be found at http://
www.rsa.com/rsalabs/html/bulletins.html.

Message Digests and Pseudo-Random Numbers
Random number generation (for software implementation, usually pseudo-random
number generation) is a key component of cryptographic operations. Random
numbers are usually used as cryptographic keys or as a basis for generating keys.
Crypto-C uses message digest algorithms with a random seed for generating random
numbers. See “Pseudo-Random Numbers and Seed Generation” on page 92 for a
discussion of the security considerations of random number generation.

Hash-Based Message Authentication Codes (HMAC)
A hash-based message authentication code (HMAC) combines a secret key with a
C h a p t e r 2 C r y p t o g r a p h y 47

Cryptography Overview
message digest to create a message authentication code. This method of creating a
MAC makes it possible to update the underlying message digest if a new attack
makes the original message digest unsecure. Crypto-C provides an HMAC
implementation based on SHA1.

Recall that SHA1 produces a 20-byte digest; in addition, we need to know that SHA1
takes input in 64-byte blocks.

Given a message M and a key k, the HMAC of M is computed as follows:

1. Create two different fixed strings that are used in the calculation:
ipad = the byte 0x36 repeated 64 times
opad = the byte 0x5C repeated 64 times

2. Extend k to 64 bytes in length by appending zeros to the end of k. For example, if k
is 25 bytes, append 39 copies of the zero byte 0x00. We will call the extended key
k’.

3. Compute the following:

SHA1(k’ XOR opad || (SHA1(k’ XOR ipad) || M))

where || denotes concatenation.

The same key can be used for multiple authentications, but the key should be replaced
periodically. For security considerations, the key should be at least as long as the
message digest output. For SHA1, this means an HMAC key should be at least 20
bytes. If the key is “weakly random”, that is, if knowing some of the key bits might
help an attacker generate other key bits, then a longer key should be used.

Password-Based Encryption
Password-Based Encryption (PBE) generates a symmetric key from a password, and
encrypts data using that generated key. Usually, though, a password will not have
enough effective random bits to qualify as a candidate for a key or even a random
seed to generate a key. For example, each character of an 8-byte alphanumeric
password that also allows case-sensitive letters has the equivalent of slightly less than
six bits of randomness. For eight-character passwords, this is far less than the required
key size of a block cipher such as DES.

Therefore, a good PBE implementation not only uses the password, but mixes in a
random number, known as a salt, to create the key. Normally, the mixing is a message
digest. This makes the task of getting from password to key very time-consuming for
an attacker. Digesting a password with a salt helps thwart dictionary attacks. An
attacker could put together a “dictionary” of keys generated from likely passwords,
4 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
and try out each key on encrypted data. This would greatly reduce the amount of
work necessary to find the key and may make it feasible to recover encrypted
material. With a salt, the attacker would have to create a dictionary of keys generated
from each password, but each password would then have to have a dictionary of each
possible salt.

Crypto-C uses the methods described in the PKCS document #5 to implement
password-based encryption. The methods use a message digest algorithm with a
specific means of padding to increase the search space for dictionary attacks against
the key.

Figure 2-8 DES Key and IV Generation for Password Based Encryption

Public-Key Cryptography
In 1976, Stanford graduate student Whitfield Diffie and Stanford professor Martin
Hellman invented public-key cryptography. In this system, each person owns a pair of
keys, called the public key and the private key. The key pair’s owner publishes the
public key and keeps the private key secret.

Suppose Alice wants to send a message to Bob. She finds his public key and encrypts
her message using that public key. Unlike symmetric-key cryptography, the key used
for encryption will not decrypt the message. That is, knowledge of Bob’s public key
will not help an eavesdropper. To decrypt a message, Bob uses his private key. If Bob
wants to respond to Alice, he can encrypt his message using her public key.

To get a flavor of this idea, think of taking a number to a power. For instance, given

Password Message digest

Pseudo-random
bytes

Salt

Key

8 bytes

I V

8 bytes
C h a p t e r 2 C r y p t o g r a p h y 49

Cryptography Overview
values x and y, compute z = xy. To recover x, you would not compute zy, but rather
z1/y. You end up with the original x, because z1/y = (xy)1/y = xy·1/y= x1 = x. You need
two values to perform this exercise, a “public key,” y, to compute the encrypted value,
and the inverse of the public key, or a “private key,” 1/y, to recover the original value.

This example, of course, is not practical because if you made y public, anyone could
easily compute 1/y and know your private key. Therefore, a good public-key
cryptosystem relies on a key pair for which it is impossible (or at least intractable) to
derive the private key from the public key.

Figure 2-9 Public-Key Cryptography

In practice, public-key algorithms are slow compared to symmetric-key algorithms.
Therefore, they are more often used for shorter messages, such as encrypting the
symmetric key for a message encrypted with a symmetric cipher, or for encrypting a
digest.

The RSA Algorithm
RSA is a public-key cryptosystem for both encryption and authentication that MIT
professors Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman invented in 1977.
It is actually similar to the example in the previous section that takes numbers to a
power, except that it works in modular math.

 Input
Message

Public Key
Cryptosystem

Encrypted
Message

Public Key

Encryption Operation

Encrypted
Message

Public Key
Cryptosystem

Decrypted
Message

Private Key

Decryption Operation

The decrypted message is equal to the input message
 if the public and private keys form a key pair.
5 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
Modular Math
Modular math uses a positive integer as a modulus; the only numbers under
consideration are the integers from 0 to one less than the modulus. So for mod n, only
the integers from 0 to (n–1) are valid operands and the results of operations will
always be numbers from 0 to (n–1). When an operation such as addition or
multiplication would give a result that is greater than the modulus, the remainder of
the result after division by n is used instead. Therefore, two numbers are equal mod n
if and only if their difference is an even multiple of n.

For example, think of military time where the modulus is 2400. For instance, 2200
hours (10:00 P.M.) plus 4 hours is not 2600, but 0200 hours, or 2:00 in the morning.
Likewise, if we start at 0, or midnight, 6 times 5 hours (say six 5-hour shifts) is not
3000, but 0600, or 6:00 A.M. the following day.

Another aspect of modular math is the concept of an inverse. Two numbers are the
inverse of each other if their product equals 1. For instance, 7·343 = 2401, but if our
modulus is 2400, the result is (7·343) mod 2400 ≡ 2401 – 2400 = 1 mod 2400.

Prime Numbers
The RSA algorithm also employs prime numbers, or primes. A prime number is a
number that is evenly divisible by only 1 and itself. For instance 10 is not prime
because it is evenly divisible by 1, 2, 5, and 10. But 11 is prime, because its only factors
are 1 and 11.

The RSA Algorithm
The RSA algorithm works as follows: take two large primes, p and q, and find their
product n = pq; n will be the modulus. Choose a public value, e (also known as the
public exponent), that is less than n. There are other constraints on e described later. To
compute ciphertext c from a plaintext message m, find

c = m
e
 mod n

To decrypt, determine the private key d, the inverse of e, and compute

m = c
d
 mod n

The relationship between e and d insures that the algorithm correctly recovers the
original message m, because

c
d
 = (m

e
)

d
 = m

ed
 ≡ m

1 = m mod n

Only the entity that knows d can decrypt.
C h a p t e r 2 C r y p t o g r a p h y 51

Cryptography Overview
The security of the system relies on the fact that if you know p, q and e, it is easy to
compute d, but if you know only n and e it is more difficult to determine d. This is due
to the following property of the math: the value d is actually not the inverse of e mod
n, but rather the inverse of e mod (p–1)(q–1). The value you pick for e must be
relatively prime to (p–1)(q–1), which means e and (p–1)(q–1) share no common factors,
so that there exists d such that

ed ≡ 1 mod (p–1)(q–1)

In other words, you find the private value using a modulus of (p–1)(q–1), but when
you apply the RSA algorithm to encryption or decryption, you use a modulus of
n = p·q.

Why, if d is the inverse of e mod (p–1)(q–1), does cd = (me)d = med = m1 = m mod n?
Aren’t we mixing moduluses? That is the quirk of the math; it may seem
counterintuitive, but that “mixing of moduluses” is what makes the algorithm work.
A complete proof of this fact is beyond the scope of this publication, so if you want to
learn more about the underlying mathematical principle, find a math book that
discusses Euler’s phi-function.

Incidentally, in practice you would generally pick e, the public exponent first, then
find the primes p and q which satisfy the requirement that e be relatively prime to (p–
1)(q–1).

Consider the following example with small numbers. Choose public exponent e = 3.
Then, let p = 5 and q = 11, which means n = 55 and (p–1)(q–1) = 40. This is a valid p and
q combination because 3 is relatively prime to 40. The inverse of 3 mod 40 is 27.

(3·27) = 81
81 – (2·40) = 81 – 80 = 1
3·27 = 1 mod 40

Apply the RSA algorithm with these parameters to the “plaintext message” m = 2.

c = m
e

= 23 = 8 mod 55

This yields an encrypted message of 8.

To decrypt, raise the message to the power of the inverse of 3, which is 27.

c
d

= 827 mod 55

Rather than computing 827 directly, a shortcut would be to compute:

816+8+2+1 = 816·88·82·81 = 2 mod 55
5 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
The calculation is shown in Table 2-1:

Summary
Take two large primes, p and q, and find their product n = p · q. Set n to be the
modulus. Choose a public exponent, e, less than n and relatively prime to (p–1)(q–1).
Find d, the inverse of e mod (p–1)(q–1), that is, ed ≡ 1 mod (p–1)(q–1). The pair (n,e) is
the public key; d is the private key (or the private exponent). The primes p and q must
be kept secret or destroyed.

To compute ciphertext c from a plaintext message m, find c = me mod n. To recover the
original message, compute m = cd mod n. Only the entity that knows d can decrypt.

Note: In public-key cryptography, it is also possible to encrypt using a private key.
In this case, the sender takes the plaintext input and the private key and
follows the same steps need to decrypt an encrypted file. This creates a
ciphertext that can be read using the public key; to read it, the recipient
follows the same steps needed to encrypt with the public key and restores it
to the plaintext. This is used in authentication and digital signatures.

Security
The security of the RSA algorithm relies on the difficulty of factoring large numbers.
In theory, it is possible to obtain the private key d from the public key (n,e), by
factoring n into p and q. In order to find d, one must know the product (p–1)(q–1). But
to find that value, one must know p and q. For example, in the earlier example, an

Table 2-1 Calculation of 827 mod 55

80 1 mod 55

81 8 mod 55

82 81 · 81 = 8 · 8 = 64 64 – 55 = 9 9 mod 55

84 82 · 82 = 9 · 9 = 81 81 – 55 = 26 26 mod 55

88 84 · 84 = 26 · 26 = 676 676 – (12 · 55) = 16 16 mod 55

816 88 · 88 = 16 · 16 = 256 256 – (4 · 55) = 36 36 mod 55

81 · 82 8 · 9 = 72 72 – 55 = 17

(81 · 82) · 88 17 · 16 = 272 272 – (4 · 55) = 52 52 mod 55

(81 · 82 · 88) · 816 52 · 36 = 1872 1872 – (34 · 55) = 2 2 mod 55
C h a p t e r 2 C r y p t o g r a p h y 53

Cryptography Overview
eavesdropper would know that p · q = 55, but what is (p–1)(q–1)? Factoring 55 into its
component primes is easy: the answer is 5 and 11.

However, for very large numbers, factoring is very difficult. The RSA Laboratories
publication, Frequently Asked Questions About Today’s Cryptography (the FAQ), describes
the state of the art in factoring. Factoring numbers takes a certain number of steps,
and the number of steps increases exponentially as the size of the number increases.
Even on supercomputers, the time to execute all the steps is so great that for large
numbers it could take years to compute. Within a short period of time, the current
threshold of general numbers that can be factored will probably rise to 155 digits,
approximately the size of a 512-bit RSA modulus. Currently, the limit to the size of an
RSA modulus in Crypto-C is 2048 bits.

Digital Envelopes
A digital envelope is a way of combining the advantages of symmetric- and public-key
cryptography. In general, public-key algorithms are slower than symmetric-key
ciphers, and for some applications may be too slow to be of practical use, while for
symmetric-key ciphers, there is the problem of transmitting the key. A digital
envelope provides a solution to this dilemma. The sender encrypts the message using
a symmetric-key encryption algorithm, then encrypts the symmetric key using the
recipient’s public key. The recipient then decrypts the symmetric key using the
appropriate private key and decrypts the message with the symmetric key. In this
way, a fast encryption method processes large amounts of data, yet secret information
is never transmitted unencrypted.
5 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
Figure 2-10 Digital Envelope

Authentication and Digital Signatures
Suppose Alice and Bob are disputing a contract. Alice says that Bob must uphold
certain obligations because he agreed to them in a contract. Bob says that this is not
the contract he signed. He offers as evidence his copy of the contract and sure enough,
it differs from Alice’s. One of them has altered their copy of the contract, but who? Or
maybe the dispute centers on Bob’s assertion that he never signed a contract, that the
signature at the bottom is not his. In that case, either Bob is not telling the truth or
Alice forged his signature.

If the contract was signed physically, there are ways to determine the truth. Contracts
are often filed with government agencies, so comparing Bob’s and Alice’s copies with
the third party’s copy reveals who made alterations. Witnesses may also sign the
contract and later testify that both parties did sign it, and the signatures are not
forgeries. For electronic documents, there is also a method to determine if a document
has been altered or if someone truly did sign it. This method is the digital signature.

There are two types of signature algorithms. The first is a public-key cryptosystem

Message

Symmetric
Key Data

Recipient’s
Public Key

Public-Key
Encryption

Private Key

Digital
Envelope

Private-Key
Decryption

Encrypted
Message

Symmetric-Key
Encryption

Encrypted
Key

Symmetric-Key
Decryption

Data-Encrypting
Key

Encrypted
Message

Sealing
Operation

Envelope
Open
Operation

Message

Digital
EnvelopeEncrypted

Key

Symmetric Key
C h a p t e r 2 C r y p t o g r a p h y 55

Cryptography Overview
that can perform block encryption, while the second is only capable of digital
signatures. The RSA algorithm is an example of the first type. The Digital Signature
Algorithm, DSA, is an example of an algorithm of the second type. Crypto-C includes
the RSA and DSA signature methods.

A digital signature uses a public/private key pair to sign a document. First the signer
digests the document, as described in “Message Digests” on page 46, then encrypts it
with their private key. A good digital signature algorithm possesses the following
properties:

• Only the owner of a private/public key pair can generate a signature. Knowledge
of the public key does not enable anyone else to forge a signature.

• Knowledge of the public key enables anyone to verify the signature.

• The digital signature guarantees the authenticity of the message and its author.

The digital signature is computationally unique for each message and signer.
While a normal signature can be imitated, a digital signature is immune to
imitation.

• Any altering of the message renders the signature invalid.

Note: If a digital signature is invalid, you cannot be sure it was a deliberate forgery.
Transmission errors will also produce errors in a digital signature.

For example, to create a digital signature on a contract:

1. Alice and Bob compose a contract in digital format. The file can be in any form,
such as a word processing file or an ASCII file.

2. Each party digests the file and encrypts the digest with their private key.
3. That encrypted digest is their digital signature.
4. The contract now consists of the file and the two copies of the encrypted digest,

one using Alice’s private key, the other using Bob’s private key. Everyone gets
copies of this contract.

The digital signature can be used to verify the data at a later time. Suppose that Bob
produces a file that is different from Alice’s. To discover which copy has been altered:

1. Digest the new copy.
2. Decrypt each party’s encrypted digest with the corresponding public key.
3. Compare the new digest to the old one.
4. If one of the new digests does not match the old one, that is the altered file.
5 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
If a file has been altered, it will produce a different digest, because it is virtually
impossible to produce data that will digest to a given value. Even if someone
could manipulate the digest, it would be extremely difficult to produce data that
has value to anyone.

The digital signature can also be used to verify that a message came from a given
person. What if Bob claims Alice forged his digital signature on the original
document? He might say her copy of his encrypted digest is not the true version. That
is very unlikely. To do that, Alice would have had to have encrypted the digest of her
choice with Bob’s private key, to which she has no access.

The following example shows how to verify a message and its signature. Suppose you
have the following information:

• a message

• an entity who claims to have sent the message

• a block of data 96 bytes long that purports to be the encrypted digest

To verify the message and the sender:

1. Request the possible sender’s 768-bit (96-byte) RSA public key from a certification
authority.

2. Use that public key to decrypt the 96-byte block of data.
3. If the decryption process results in a 16-byte output, you can say it is a message

digest. There is a message that will digest to those 16 bytes, but you do not yet
know what it is.

4. Digest the message file.
5. If the digest matches the 16 bytes you obtained from decrypting the original 96-

byte block, the message is verified. That is, you can assume the 96-byte block is
the file’s digest encrypted with the RSA private key associated with the public
key you used. It would have been computationally infeasible to produce that 96-
byte block any other way.

There are other uses for a digital signature. Suppose that Bob wishes to buy
something from Alice over the Internet. He emails her a credit card number. Alice can
easily find out from the credit card issuer that the number she received is valid and
indeed belongs to Bob. But how does she know that it was Bob who sent the number
and not someone posing as Bob? She sends the purchaser a randomly generated
message and asks him to digitally sign it with his private key. She then retrieves his
public key from a certification authority and verifies the signature. Only the person
with access to Bob’s private key will be able to generate a digital signature from the
message she generated in such a way that Bob’s public key will verify it properly. In
C h a p t e r 2 C r y p t o g r a p h y 57

Cryptography Overview
this way, Alice authenticates Bob’s identity.

Figure 2-11 RSA Digital Signature

Digital Signature Algorithm (DSA)
The Digital Signature Algorithm (DSA) is part of the Digital Signature Standard
(DSS), published by the National Institute of Standards and Technology (NIST), a
division of the US Department of Commerce. It is the digital authentication standard
of the US government. The DSS specifies the Secure Hash Algorithm (SHA1) as the
message digest to use with DSA when generating a digital signature.

To generate a DSA key pair:

1. Find a prime, p, at least 512 bits long.
2. Find a second prime, q, exactly 160 bits long, that satisfies the property q|(p–1). q

is called the subprime.
3. Generate a random value, h, the same length as p but less than p.

4. Compute g = h(p-1)/q mod p. g is called the base.
5. Generate another random value, x, 160 bits long. x is the private value.

6. Compute the public value: y ≡ gx mod p.

Message
Digest

RSA Private
Encryption

Signature

Private Key

Signature Operation

Original
Message

Message
Digest

Signature
Valid

Original
Message

RSA Public
Decryption

Signature
Not Valid

Public Key

Verification Operation

Signature

YES

NO

EQUAL?
5 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
Note: The three values p, q, and g above (the prime, subprime, and base,
respectively) are called the DSA parameters. The parameters are public and
must be generated before you can sign a message.

To sign a message using DSA:

1. Digest the message using SHA1. This yields a 20-byte (160-bit) digest.
2. Generate a random value, k, 160 bits long and less than q.

3. Find the following values:

kinv = k
–1

 mod q

r = (g
k
 mod p) mod q

xr = (x · r) mod q
s = [kinv · (digest + xr)] mod q

4. Output the signature (r,s).

To verify a message:

1. Digest the message using SHA1.
2. From the signature (r,s), compute:

sinv = s
–1

 mod q
u1 = (digest · sinv) mod q
u2 = (r · sinv) mod q

a = gu
1 mod p

b = yu
2 mod p

v = (a · b mod p) mod q
3. If v = r, the signature is verified. If v ≠ r, the signature is invalid.

The Math
To see that this is indeed the signature, consider the following. We have the values:

y = g
x
 mod p

and

u
2
 = r · sinv mod q

Make the following algebraic substitutions:

a · b mod p = gu
1 · gx·u

2 mod p

= gu
1
 + x·u

2 mod p
C h a p t e r 2 C r y p t o g r a p h y 59

Cryptography Overview
= gdigest·sinv + x·r·sinv mod p

= gsinv(digest + x·r) mod p

= gk mod p

Recall that:

r = (gk mod p) mod q

This means that:

v = (a · b mod p) mod q

 = (gk mod p) mod q
 = r

Digital Certificates
Suppose you own an RSA public/private key pair. You must make your public key
public, so that others can use it to verify your digital signature or to encrypt session
keys when creating an RSA envelope. How do you publicize your key?

Probably the best way is to register public keys with a trusted authority. Then, this
trusted authority can certify that a particular public key belongs to a particular entity.
Currently, such a public key registration infrastructure exists in the form of digital
certificates.

A certificate connects an entity to a public key. For instance, it can list an individual’s
name, address, and public key. When people want to use a person’s public key, they
look up the certificate associated with that person’s name and address. A certificate
can contain a wide variety of information on its owner, such as the person’s
organization or job title. This helps differentiate between people who have the same
name. The certificate can also contain information on when it was issued or when the
public key expires.

For a certificate system to work, there need to be individuals or organizations that
issue and maintain the certificates. These are known as a certificate authorities, or CAs-.
An individual can request a certificate by presenting a CA with a public key and a
name and any other identifying information. It is then the CA’s responsibility to
verify that the entity making the request is indeed the person identified by the
information or is authorized to be associated with that key. The level of trust users
place in a CA will depend on the level of verification it performs.

When you ask for an individual’s public key, the CA sends the certificate and signs it
with the digest of the certificate encrypted with the CA’s private key. To verify that
the certificate is genuine, you must digest the certificate and decrypt the signature
6 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
using the CA’s public key. Compare the two results: if they are the same, you have a
proper certificate.

If the CA you deal with does not have a certificate for the individual in question, that
CA can communicate with another CA that might have the right certificate. In fact, to
find a particular certificate, a CA may have to go through a chain of CAs until it finds
one that possesses the desired certificate.

Names that uniquely distinguish users are necessary for digital certificates to be of
real use. The CCITT X.500 series of documents offer more discussion regarding
naming conventions and related topics.

Diffie-Hellman Public Key Agreement
The Diffie-Hellman Public Key Agreement, invented by Whitfield Diffie and Martin
Hellman in 1976, was the first true public-key algorithm. It provides a method for key
agreement; that is, it allows two parties to each compute the same secret key without
exchanging secret information. Diffie-Hellman key agreement does not provide
encryption or authentication.

The Algorithm
The Diffie-Hellman algorithm is made up of three parts (see Figure 2-12 on page 62):

• Parameter Generation

• Phase 1

• Phase 2
C h a p t e r 2 C r y p t o g r a p h y 61

Cryptography Overview
Figure 2-12 The Diffie-Hellman Key Agreement Protocol

Parameter Generation
A central authority selects a prime number p of length k bytes, and an integer g greater
than 0 but less than p, called the base. The central authority may optionally select an
integer l, the private-value length in bits, that satisfies 2

l–1
 ≤ p.

Phase 1
Each of the two parties executing the Diffie-Hellman protocol does the following:

1. Each party, i, i = 1 or 2, randomly generates a private value, which is a number, xi,
greater than 0 but less than the prime. If the central authority has specified the

length l, the private value shall satisfy 2
l–1

 ≤ xi < 2
l
.

2. Each party computes a public value yi = gx
i mod p.

3. The two parties exchange the public values.

Parameters

Bob

Private value

Public value

Bob

Alice

Private value

Public value

Alice

Phase 1

Phase 2

Agreed upon
key

Agreed upon
key

=

6 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
These private and public values correspond to the private and public key components
of a key pair. The public value is generated in such a way that computing the private
value from the public number is computationally infeasible.

Phase 2
Each participant computes the agreed-upon secret key, z, using: the other’s public
value, y', their own private value, x, and the prime, p, as follows:

z = (y')
x
 mod p.

Even with knowledge of the parameters and both public keys, an outside individual
will not be able to determine the secret key. You must have one of the private values
to determine the secret key. This means secret information is never sent over unsecure
lines.

The Math
Even though the two parties involved are making computations using different
private values, they will both end up with the same secret key, as illustrated by the
following.

p: prime
g: base
x

1
: 1st party’s private value

x
2
: 2nd party’s private value

y
1
: 1st party’s public value

y
2
: 2nd party’s public value

z: secret key

In Phase 1, each party computes a private value, x
n
, and a public value, y

n
:

y
1
 = gx1 mod p

y
2
 = gx2 mod p

In Phase 2, the parties trade public values and compute the same secret key:

z = y
2
x

1 mod p

z = y
1
x

2 mod p

They both compute the same z, because:
C h a p t e r 2 C r y p t o g r a p h y 63

Cryptography Overview
y
2
x

1 = (gx
2)x1 = (gx

1)x2 = y
1
x

2 mod p

Security
The security of Diffie-Hellman key agreement relies on the difficulty of computing
nth roots modulo a prime number. It takes very little time to exponentiate a number
modulo a prime, but it takes a great deal of time to compute its roots. This problem in
modular arithmetic is called the discrete logarithm problem. (Recall that, in the real
numbers, if you can compute the logarithm of a number, you can easily compute all of
its roots.) The RSA Laboratories publication, Frequently Asked Questions About Today’s
Cryptography, states, “The best discrete log problems have expected running times
similar to that of the best factoring algorithms.” That is, the time it takes to compute
discrete logs modulo a prime of a certain length is approximately equivalent to the
time it takes to factor a number of that same length. See “The RSA Algorithm” on
page 50 for a discussion of factoring.

Multiple-Party Key Agreement
The above protocol can be extended to more than two parties. For a multiple-party
agreement, each individual chooses a private value, then uses the collection of public
values from other parties to generate a common secret key.

Elliptic Curve Cryptography
Elliptic curves are mathematical constructs that have been studied by mathematicians
for over 100 years. The application of elliptic curves to cryptosystems is more recent;
in 1985, Neal Koblitz and Victor Miller independently devised a public-key system
using a group of points on an elliptic curve.

The core of elliptic curve cryptosystems rests on the difficulty of a particular type of
calculation. For some public-key algorithms, such as Diffie-Hellman key agreement,
the security is based in part on the fact that given a modulus n, a number g, and gk
mod n, it is difficult to determine k. This is called the discrete logarithm problem.
Elliptic curve cryptosystems rest on a similar problem: given an elliptic curve E and
two points on the curve, P and Q, such that Q = k · P for some number k, it is difficult
to determine k. This is called the elliptic curve discrete logarithm problem. (See the next
section, “Elliptic Curve Parameters”, for a discussion of these terms.) Many
algorithms that are based on the discrete logarithm problem can be translated to
analogous algorithms based on the elliptic curve discrete log problem.

Elliptic curves can be used for a variety of public-key cryptosystems. Crypto-C
supports the following elliptic curve features:
6 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
• Generation of elliptic curve parameters

• Elliptic curve key pair generation

• Elliptic Curve Signature Schemes (ECDSA)

• Elliptic Curve Authenticated Encryption Scheme (ECAES)

• Elliptic Curve Diffie-Hellman key agreement (ECDH)

Crypto-C also allows you to generate precomputed acceleration tables to speed up
certain elliptic curve operations. For more information, see the example “Public-Key
Acceleration Table” on page 247.

Elliptic Curve Parameters
A number of parameters are necessary for elliptic curve cryptosystems. These
parameters must be generated before you generate a key pair, create an acceleration
table, initiate encryption, or perform key agreement with these systems. You can use
the same parameters to generate more than one key. These parameters include:

• the finite field, Fq, over which the elliptic curve is defined

• two elements of Fq, a and b, which define the elliptic curve; a and b are also called
the coefficients of the curve

• a point P of prime order on the elliptic curve E

• the order, n, of P

• the cofactor h = #E(Fq)/n. Here, E(Fq) means the set of points on the elliptic curve
and #E(Fq) means the number of points in that set. See “The Order of an Elliptic
Curve” on page 69 for more information

Note: In all discussions of elliptic curves, the upper case letters P and Q are used to
denote points on an elliptic curve. The lower case letter p is used to denote a
prime.

The next section discusses these terms in detail. We will try to give enough of the
math to give you a feel for what the underlying concepts are without going too deeply
into the details. A full discussion of elliptic curve cryptography is far beyond the
scope of this manual. For background on elliptic curves, see the book by J. Silverman
and J. Tate, Rational Points on Elliptic Curves [20]. For more information on elliptic
curves in cryptography, see the ANSI X9.62 and X9.63 Draft standards [13], the IEEE
Standard Specifications for Public-Key Cryptography [14], and A. Menezes book, Elliptic
Curve Public Key Cryptosystems [19].
C h a p t e r 2 C r y p t o g r a p h y 65

Cryptography Overview
The Finite Field
The elliptic curves used in cryptography are always defined over a finite field, denoted
Fq. There are two choices for this field:

• An odd prime field, Fp, where p is an odd prime.

• A field of even characteristic, F2m.

For more information about finite fields, see the book by A. Menezes, I. Blake, X. Gao,
R. Mullin, S. Vanstone, and T. Yaghoobian, Applications of Finite Fields [18] and also
Chapter 2 of Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone’ s book,
Handbook of Applied Cryptography [17].

Odd Prime Fields
The odd prime field Fp is simply Zp, the integers mod p. Modular math is described in
the section “The RSA Algorithm” on page 50. Recall that in modular math, we have
addition and multiplication, with the additional twist that the numbers loop around,
so that, for example, p+1 = 1 mod p.

Although you don’t need it to use the cryptosystem, a little background may help.
Because p is prime, Fp has an interesting property that not all modular math systems
have: except for 0, every number in Fp has a multiplicative inverse. That is, given any
number c between 1 and p–1, there is another number d in the same range such that
cd = 1 mod p. This is the crucial property that distinguishes Fp from other modular
math systems and makes it a field.

Not all moduli will give you a field. For instance, our earlier example, arithmetic mod
55, is not a field. You can see this by looking at the number 5 in this system. The first
ten multiples of 5 are: 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. When we multiply 5 by 11,
we get 55, which is just 0 mod 55. Now, when we multiply 5 by 12, we just fall back
down to 60 = 60–55 = 5 mod 55. In fact, no matter what we multiply 5 by, we will just
get a multiple of 5, which will reduce back down to the ten numbers listed above.
There is no way we can get to 1 as a multiple of 5 in this particular modular system.

In fact, the only numbers that will give a field in modular arithmetic are the primes.
So you can see that fields are fairly special. The crucial thing to remember is:

An odd prime field, Fp, is just modular arithmetic, where the modulus p is prime.

Fields of Even Characteristic
The fields of even characteristic, also known as characteristic 2, are more complicated. If
you were looking for a field of that size, you might start with the integers mod 2m.
However, it turns out that integers mod 2m cannot be a field for any m>1.
6 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
Why is this? Remember, we said every element in a field, except 0, has a
multiplicative inverse. But, for example, 2m–1 cannot be invertible in the integers mod
2m (except for m = 1). To see this, consider the product 2·2m–1= 2m ≡ 0 mod 2m. If 2m–1
did have an inverse, I, then we would have:

0 = 0·I

≡ (2·2m–1)·I mod2m

= 2·(2m–1·I)

≡ 2·1 mod 2m

= 2

Instead, we create the field F2m in a completely abstract manner. We start by letting
the elements of the finite field F2m be the bit strings of bit-length m. Mathematicians
have shown that it is possible to create an addition and a multiplication that make
these strings, called m-tuples, into a field.

Addition is easy to define: to add two strings, just XOR them. This is the same as
adding them bit by bit, with no carry. Notice that with this field addition rule, for
every x in F2m, we have that x + x = 0. That is already very different from addition in
the integers mod 2m.

Note: If you look closely, you will see that we are trying to create a system where 2
can equal 0. In fact, it is because of this property — that the number 1 added
to itself two times gives us 0 — that we say this is a field of “characteristic 2”
or “even characteristic”. The amazing thing is that not only can this can be
done, but that we can get something useful out of it.

Multiplication is even more difficult to define. When you multiply two m-tuples, you
can’t just multiply them bit-by-bit, or else you would never be able to invert any
string that had a 0 in it somewhere. Instead, multiplication in F2m is a complicated
operation involving ordinary multiplication and addition of cross terms.

The mathematics underlying the construction of F2m is deep, but it is very well-
understood by mathematicians. For an in-depth discussion of this field, see [18] and
[17].

Elliptic Curve Coefficients
An elliptic curve, E, can be thought of as a particular type of equation. Elliptic curves
look slightly different in the two different cases.

Coefficients Over an Odd Prime Field
An elliptic curve E over an odd prime field Fp is all the pairs of points (x,y) that satisfy
C h a p t e r 2 C r y p t o g r a p h y 67

Cryptography Overview
the equation:

y2 = x3 + ax +b

In this equation, x and y are elements of Fp, and so are a and b. The whole equation is
evaluated over Fp. For computational reasons, there is also a “point at infinity”, Ο,
that is included as well.

The numbers a and b are called the coefficients of the elliptic curve; they are part of the
elliptic curve parameters.

Coefficients Over a Field of Even Characteristic
An elliptic curve E over a field of even characteristic F2m is all the pairs of points (x,y)
that satisfy the equation:

y2 + xy = x3 + ax2 +b

In this equation, x and y are elements of F2m, and so are a and b. The whole equation is
evaluated over F2m. For computational reasons, there is also a “point at infinity”, Ο,
that is included as well.

The numbers a and b are called the coefficients of the elliptic curve; they are part of the
elliptic curve parameters.

Note: Note that the equation over F2m is different from the equation over Fp. Over

F2m there is a quadratic term, ax2, instead of the linear term ax in the odd
prime case, as well as a new cross-term, xy. The differences in the equation
arise because of the differences in arithmetic between the two types of fields.

The Point P and its Order
Obviously, you can’t create a cryptosystem out of just any equation. The elliptic curve
equation is important because it has special properties. One of these properties is that
it is possible to set up an addition system that lets you add one point on the elliptic
curve to another. The addition is complex and non-obvious, but it is possible to set up
a system of equations that determine the sum of two points. Adding two points on an
elliptic curve involves several operations in the underlying field, Fq, including
multiplications, additions, and the computation of inverses. The complexity of the
addition is what makes elliptic curve cryptosystems work — if you add a point P to
itself k times to get kP, there is no known fast way to get k.

To implement an elliptic curve cryptosystem, we need to specify a point P on our
curve that has some special properties. To understand these properties, we need some
6 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
more concepts: the points on a curve, the order of a curve, and the order of a point on
the curve.

The Points of an Elliptic Curve
For our field, Fq, and our elliptic curve E, determined by a and b, we can consider all
the pairs (x,y) in Fq that satisfy the elliptic curve equation. Each such pair is called a
point of the elliptic curve. The collection of all the points that satisfy the equation,
along with the special point Ο mentioned earlier, is called the points of E over Fq; this
is written E(Fq).

The Order of an Elliptic Curve
The addition system that makes the points on the elliptic curve into what is called a
group has a number of properties. The first thing to notice is that there can only be a
finite number of points on the curve. Even if every possible pair (x,y) were on the
curve, there would be only p2 or (2m)2 = 22m possibilities. The total number of points,
including the point Ο, is called the order of the elliptic curve. The order is written as
#E(Fq).

The special point Ο plays the role of the additive identity, zero, in the group of the
elliptic curve.

The Order of a Point
Given any point on the curve, P, the addition rule lets you add that point to itself.
Then you can add your new point to the old point, and so on. When you add a point
to itself a number of times, it is called scalar multiplication. Although this is not
multiplication in the usual sense — it is an iteration of point addition k times — it still
has the usual math properties like commutativity and associativity over addition.
Adding a point P to itself k times gives another point denoted kP.

No matter what P is, there is always some n such that nP = Ο. The smallest n that
works for a given P is called the order of P. Not only does n exist, but it is always true
that n evenly divides the order of the elliptic curve, #E(Fq).

The order n of P is important because it means that when we use P as the starting
point of our calculations, we can apply the rules of arithmetic modulo n. That is, we
have the following important fact:

r = r ’ mod n if and only if rP = r ’P

A Point of Prime Order
Now we have those concepts, we can go on to the next parameter. Given our elliptic
C h a p t e r 2 C r y p t o g r a p h y 69

Cryptography Overview
curve, E, defined over our finite field, Fq, we want to fix a special point that will be
used to mask the private key in a public/private key pair. The properties of P are
important to the security of our system. Not just any point will do: we need a point P
whose order n is prime; the larger the prime, the more secure the cryptosystem.

Remember, P is of the form P = (x,y) where x and y satisfy the elliptic curve equation.
To show that x and y are specific to P, we usually write them as xP and yP. Therefore,
the special point P gives us two parameters:

• A point P = (xP,yP) of prime order

• The order n of P

P is sometimes called the base point.

The Cofactor
We mentioned above that the prime number n that is the order of P must evenly
divide the order of the elliptic curve. That is, we know that the number h = #E(Fq)/n is
an integer. We call h the cofactor, and set it as our last parameter:

• The cofactor h = #E(Fq)/n

Summary of Elliptic Curve Terminology
Table 2-2 lists the elliptic curve parameters and gives a short description of each
parameter. For a brief description, see above; for a detailed discussion, see [13], [14],
and [19] in the list of references.

Table 2-2 Elliptic Curve Parameters

Notation Name Description

Fq base field Either:

Fp : {0,1,...,p–1} with arithmetic mod p
or
F2m : strings of m bits. Addition is bitwise XOR,
multiplication exists, but has no quick description

a, b coefficients of the curve a and b are elements of Fq. They determine an
equation, which depends on the base field:

For Fp:y2 = x3 + ax +b

For F2m:y2 + xy = x3 + ax2 +b
7 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
Representing Fields of Even Characteristic
For fields of even characteristic (fields of the form F2m), Crypto-C allows you to choose
how you want the field to be represented. The representation you choose is internal to
Crypto-C and affects how field arithmetic is performed. The choice of representation
is also one of the formal elliptic curve parameters that must be transmitted along with
the public key. Some representations lead to more efficient implementations in
hardware or software.

When we talk about representations of F2m, we use the term basis to reflect the original
mathematics underlying the construction of F2m. From our point of view, it is most
important to know that a different basis corresponds to a different representation in
Crypto-C. Crypto-C offers two types of representation for fields of even characteristic:

• Polynomial basis: this representation closely reflects how the field was originally
constructed by mathematicians. Every field of even characteristic has a
polynomial basis representation.

• Optimal normal basis (ONB): this representation is constructed to optimize certain
multiplicative operations. Not all fields have an ONB representation; it can be
constructed only for certain values of m.

The difference in the choice of basis shows up most clearly in how multiplication is
defined. For example, for any polynomial basis representation, the multiplicative
identity is represented as (000…01). For any optimal normal basis, the multiplicative
identity is (111…11).

Note: Although arithmetic looks different when you choose a different
representation, the field is still the same. Just as you can represent “normal”

P point of prime order
or
base point

(xP,yP)

The pair xP, yP satisfies the curve equation.

n order of P The smallest nonzero number such that P added
to itself n times is the zero point, Ο, on the curve.

n is prime.

h cofactor The order of the curve divided by the order of P:

#E(Fq)/n

Table 2-2 Elliptic Curve Parameters

Notation Name Description
C h a p t e r 2 C r y p t o g r a p h y 71

Cryptography Overview
arithmetic using a hexadecimal or a decimal system, you can represent F2m in
more than one way.

Elliptic Curve Key Pair Generation
Elliptic curve parameters can be used to generate a public/private key pair. Elliptic
curve parameters can either be common to several key pairs or specific to one key
pair. The elliptic curve parameters can be public; the security of the system does not
rely on these parameters being secret.

Creating the Key Pair
To compute a public/private key pair:

1. Generate a random value, d, between 1 and n–1.
2. Compute the elliptic curve point dP, that is, P added to itself d times. Call this

point Q; it is a pair of field elements (xQ,yQ).

The key pair is (Q,d): Q is the public key, d is the private key. As mentioned above,
even if you know P and Q, you cannot easily calculate d.

ECDSA Signature Scheme
Once you have generated elliptic curve parameters and created a public/private key
pair, you can use this information to create an elliptic curve analogue of the Digital
Signature Algorithm (DSA).

Signing a Message
The holder of the private key can sign a message as follows:

1. Digest the outgoing message using SHA1. This yields a 20-byte (160-bit) digest, e.
2. Compute a random value, k, between 1 and n–1.
3. Compute the elliptic curve point kP = (x1,y1).

4. Currently, the first coordinate, x1, is an element of the finite field. To perform

further calculations, we must convert x1 to an integer, called . We do this as

follows:

x1
7 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
For Fp, x1 is an integer α in the range 0 to p–1. Let = α. (Essentially, no

conversion is required.)

For F2m, x1 is a bit string of length m bits: s1s2...sm. Because F2m has a very strange
arithmetic, we need a way to think of its elements as integers. To do this, let the

integer be a weighted sum of the bits of x1:

In either case, once you have calculated , set r = .

Note: Although this lets you take a member of the field F2m and represent it as an
integer, it has some limitations. If you perform any arithmetic operations on

, you will be using regular arithmetic. This is so different from arithmetic in

F2m that, for example, . However, if you convert two field

elements and perform operations on them that show they are equal after
conversion, then they were equal before conversion.

5. Compute s = k–1(e+dr) mod n. Again, you must check that s is nonzero.

The signature for this message is the pair r and s. Notice that, as with DSA, the
signature depends on both the message and the private key. This means no one can
substitute a different message for the same signature.

Note: The above equation is merely an outline. For cryptographic purposes, it is
necessary to verify that certain numbers are nonzero, or that they satisfy other
conditions. Crypto-C makes the appropriate verifications when it generates
your key pair.

Verifying a Signature
When a message is received, the recipient can verify the signature using the received
signature values and the signer’s public key, Q. Because the pair (r,s) that has been
received may not actually be a valid signature pair, it is customary to call the received
pair (r’,s’) instead.

To verify a signature:

x1

x1

x1 2 m i–() si⋅

i 1=

m

∑=

x1 x1

x1

x1 x2+ x1 x2+≠
C h a p t e r 2 C r y p t o g r a p h y 73

Cryptography Overview
1. First verify that r’ and s’ are between 1 and n-1. If they are not, the output is
invalid.

2. Digest the received message using SHA1. This yields a 20-byte (160-bit) digest, e.

3. Compute c = (s’)-1. Remember, s’ is an integer mod n, so its inverse is also an
integer mod n.

4. Compute u1 = ec mod n and u2 = r’c mod n.

5. Compute the elliptic curve point (x1,y1) = u1P +u2Q.

6. Convert x1 to an integer, . See Step 5 on page 73 for details.

7. Compute v = mod n

If v = r’, the signature is verified. If they are different, the signature is invalid.

The Math
The ECDSA algorithm depends in part on the fact that if r = r’ mod n, then rP = r’P.
(See “The Point P and its Order” on page 68.)

The following calculations are really just a series of substitutions that can be made by
looking back at the definition. You may find it more convincing to go through the
substitution steps yourself, by glancing back at the sections “Creating the Key Pair”,
“Signing a Message”, and “Verifying a Signature” immediately above.

If the message has been signed correctly, then s = s’. Expanding the elliptic curve
point (x1,y1) = u1P +u2Q calculated by the recipient, we see that:

u1P +u2Q = es–1P + rs-1Q

=s–1(eP + rQ)

Recall that Q = dP, so:

u1P +u2Q = s–1(eP + rQ)

= s–1(eP + rdP)

= s–1(e + rd)P

= s–1(e + dr)P

Now recall that s = k–1(e+dr) mod n, so:

u1P +u2Q = s–1(e + dr)P

= [k–1(e+dr)]-1(e + dr)P

x1

x1
7 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
= (k–1)–1(e+dr)–1(e+dr)P
= kP

This is the point calculated by the recipient. But this is also the point generated by the
sender. The recipient then checks that the x-coordinate of the calculated point is in fact
the x-coordinate that was received.

Elliptic Curve Authenticated Encryption Scheme
(ECAES)
You can use elliptic curves to create an authenticated encryption scheme with a
public/private key pair.

As always with elliptic curves, we assume that the elliptic curve parameters have
been defined in advance. Suppose Bob has a key pair based on these parameters. The
pair is (Q,k2), where Q = k2P, where P is the base point of prime order specified in the
elliptic curve parameters. The point Q is the public value and the number k2 is the
private value.

Encrypting a Message Using the Public Key
Anyone who wishes to send Bob an encrypted message can do so using the elliptic
curve parameters and Q. To encrypt a message M, where the length (in bytes) of the
message is f, another party follows these steps:

1. Compute a random value, k1, between 1 and n – 1.

2. Compute the elliptic curve point Q1 = k1P. This will be transmitted along with the
encrypted message.

3. Compute the elliptic curve point S1 = k1Q. S1 is a pair (x1,y1). This is the secret
information the sender uses to encode the message.

4. Compute a one time pad, otp, of length f, from x1 using a key derivation function
(KDF). otp is a concatenation of a series of hashes; it is constructed using f, x1, and
SHA1. otp is described below. The description uses the following notation: (1) ||
denotes the concatenation of two numbers, (2) for a number a, [a] denotes the
integer part of a. In particular, [f/160] denotes the integer part of f/160.
a. Initiate a 32-bit, big-endian bit string counter. In hex, counter is intialized to

0000000116.

b. For i = 1 to [f/160], create a series of hashes, as follows:
C h a p t e r 2 C r y p t o g r a p h y 75

Cryptography Overview
Compute Hashi = SHA1(x1 || counter), that is, the SHA1 hash of the
concatentation of x1 and counter.

Increment counter.
Increment i.

c. We want the length of the pad to be exactly the same as the length, f, of the
message M. If f/160 is not an integer, we need to truncate the last hash to
make the lengths equal. Therefore, we define Hash’[f/160] as follows:

d. Set otp to be the concatenation of the series of hashes:

otp = Hash1 || Hash2 ||…|| Hash[f/160]-1 || Hash’[f/160]

5. Compute M’ = otp XOR M.

6. Compute an authentication tag, tag = SHA1 (x1 || M’). That is, tag is the SHA1
hash of concatenation of the x-coordinate of the secret point k1Q and the message
M’. Since tag is an SHA1 hash, tag is 20 bytes long.

7. Transmit the ciphertext c = (Q1,M’,tag). The total length of c in bytes is: 21+2 · (the
length of a field element in bytes) + f.

Decrypting a Message Using the Private Key
A message that has been encrypted as above can be decrypted using the private key,
as follows:

1. Parse the received ciphertext c = (Q1,M’,tag) into its components, Q1, M’, and tag.

2. Use the private key k2 to compute the elliptic curve point S2 = k2Q1. S2 is a pair
(x2,y2). If the message was transmitted correctly and encoded with the correct
public key, S2 is equal to S1.

3. To verify that S2 is equal to S1, compute tag' = SHA1 (x2 || M'). If tag' is different
from tag, output an error and stop.

4. Compute a one time pad, otp’, of length f, from x2 using the key derivation
function outlined in Step 4 on page 75. Use x2 instead of x1. Since x1 = x2,
otp’ = otp.

Hash’[f/160] = { Hash[f/160] if f/160 is an integer

the [f/160] – (160 × [f/160])
leftmost bits of Hash[f/160]

if f/160 is not an integer
7 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
5. Compute M = otp XOR M’.

Elliptic Curve Diffie-Hellman Key Agreement
It is possible to construct a version of the Diffie-Hellman key agreement that uses
elliptic curves. (For more information on Diffie-Hellman key agreement, see “Diffie-
Hellman Public Key Agreement” on page 61.) Like Diffie-Hellman, EC Diffie-
Hellman provides for key agreement, but not encryption or authentication.

The elliptic curve Diffie-Hellman key agreement algorithm provides a method for two
parties to each compute the same secret key without exchanging secret information.
The algorithm is made up of two parts: Phase 1 and Phase 2. Before they begin, the
two parties must agree on the elliptic curve parameters: a base field, an elliptic curve
over the base field, and point P of prime order, along with its order n. See the section
“Elliptic Curve Parameters” on page 65 for details.

Phase 1
The first party randomly generates a private value, a number k1, greater than 0 but
less than n. Similarly, the second party generates a random private value, k2.

Each party then computes a public value. To do this, they each compute Ri = kiP. For
each party, this is an elliptic curve point. The two parties exchange their public values.

These private and public values correspond to the private and public key components
of a key pair. The public value is generated in such a way that computing the private
value from the public value is computationally infeasible.

Phase 2
Each participant computes the agreed-upon secret key, z, from the other’s public
value, Rj, and their own private value, ki. The parties compute kiRj to get the elliptic
curve point S. This is a pair, (xS,yS). They then use the first coordinate of S, xS, as their
secret value.

Even with knowledge of the parameters and both public keys, an outside individual
will not be able to determine the secret key. One must have one of the private values
to determine the secret key. This means secret information is never sent over unsecure
lines.
C h a p t e r 2 C r y p t o g r a p h y 77

Cryptography Overview
Figure 2-13 Elliptic Curve Diffie-Hellman Key Agreement

The Math
Even though the two parties involved are making computations using different
private values, they will both end up with the same secret key, as illustrated by the
following.

P: point on the elliptic curve
k1: 1st party’s private value
k2: 2nd party’s private value
R1: 1st party’s public value

Parameters

Bob

Private value

Public value

Bob

Alice

Private value

Public value

Alice

Phase 1

Phase 2

Agreed upon
key

Agreed upon
key

=

7 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
R2: 2nd party’s public value
xS: secret key

In phase 1, each party computes a private value, ki, and then a public value, Ri:

R1 = k1P

R2 = k2P

In phase 2, the parties trade public values and compute the same elliptic curve point
S:

S = k1R2 = k1k2P

S = k2R1 = k2k1P

The first coordinate of S, xS, is their agreed-upon secret key.

Secret Sharing
Secret sharing, also known as a threshold scheme, takes a message or other data and
divides it up into pieces in such a way that while each piece means nothing
individually, some or all of the pieces can be assembled to retrieve the secret.
Typically, the secret is a key used for encrypting sensitive data.

A good secret-sharing algorithm allows an application to share the secret among a
variable number of shares. It should also be possible to set how many of the shares are
needed to recover the secret. That is, if the total number of shares is N, you should be
able to decide in advance that any K of them can recover the secret. The number K, the
required number of shares, is known as the threshold.

With secret sharing, access can be split among several individuals, with
reconstruction requiring a threshold number of shares. In this way, if one or more of
the individuals are not available, it is still possible to recover the data. In addition,
secret sharing contains some level of checks and balances: no one can recover data
without at least one other individual knowing about it.

The algorithm used in Crypto-C is Bloom-Shamir secret sharing.

Figure 2-14 and Figure 2-15 show the schema for secret sharing and recovery.
C h a p t e r 2 C r y p t o g r a p h y 79

Cryptography Overview
Figure 2-14 Secret Sharing — Key Share Assignment

Figure 2-15 Secret Sharing — Full Key Generation From Shares

Working with Keys

Key Generation
The techniques for generating public/private key pairs and symmetric keys are quite
different. Symmetric-key algorithms generally require an arbitrary random-byte
sequence, while a public/private key pair must satisfy a mathematical formula. Key
generation depends on the availability of a good random number generator, and the
security of a random number generator depends on the seed. See “Pseudo-Random
Numbers and Seed Generation” on page 92 for more information.

Share #1

A Secret
Value

Share # N

Secret
Splitting

N Shares.
.
.

The
Original
Secret

Secret
Reconstruction.

.

.

Any K
out of the
N shares
8 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Cryptography Overview
Key Management
The term key management refers to the collection of processes and methods for
assigning the right keys to communication sessions, providing the right keys to the
right persons, and making sure unauthorized personnel cannot gain access to keys.
Key management is the most difficult security problem. To manage keys properly, an
application must address the following issues.

• Generating keys

• Choosing appropriate values for the keys

• Guarding the privacy of keys transmitted between nodes

• Verifying the authenticity of keys transmitted between nodes

• Using keys in a software environment in an open system

• Keeping backup keys

• Dealing with compromised keys

• Destroying old keys

• Changing keys

Often, the bulk of a security application’s focus will be on key management. Crypto-C
provides a rich suite of cryptographically secure algorithms, but it is up to the
application designer to carefully consider how to manage the keys.

Key Escrow
Key escrow allows a designated authority or authorities to recover keys belonging to
someone else. This can be a desirable feature when users lose access to their keys
because they leave an organization or simply forget a password. Key escrow can be
implemented through secret sharing or by encrypting keys with a security officer’s
RSA public key and storing the encrypted copy. To recover the escrowed key, you
must either assemble the necessary shares or have the security officer decrypt the
encrypted key using the appropriate RSA private key.

Key escrow is never automatic with Crypto-C. There is no Crypto-C encryption
method that offers key escrow as part of the algorithm; the developer must make key
escrow part of the application. Crypto-C offers the techniques to implement key
escrow, but it is the developer’s responsibility to decide whether it will be part of the
application, and if so, how it will be executed.
C h a p t e r 2 C r y p t o g r a p h y 81

Cryptography Overview
ASCII Encoding and Decoding
ASCII encoding and decoding is required when you need to send encrypted or signed
data using communication protocols that allow transmission of printable characters
only. In this case, the application must convert the encrypted 8-bit values to a string of
printable characters. Crypto-C uses the Internet RFC1113 method for implementing
ASCII-encoding. The Internet Draft RFC1113 is a publication that describes this
system.
8 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Applications of Cryptography
Applications of Cryptography
Crypto-C offers application developers the tools to add privacy and authentication
features to software and hardware systems. This section discusses a number of areas
where such features are useful.

Historically, privacy has been the main use of cryptographic techniques. In these
applications, cryptography is used to hide critical information from eavesdroppers or
unauthorized personnel. Crypto-C provides algorithms and methods for encrypting
data in a variety of applications.

Authentication is a cornerstone of the forever-pursued paperless office. Authentication
enables users to prove authenticity and authorship of messages and non-tampering of
data.

Cryptography can be useful in any of the following situations:

• Local applications, to control access and prevent tampering.

• Point-to-point applications, to protect the privacy of communications.

• Client-server applications, to control access and provide authentication.

• Peer-to-peer applications, to protect privacy between nodes.

Local Applications
One of the most basic applications of cryptography is local file encryption. There are
many reasons why one would find it useful to encrypt files even if they are not being
transmitted. For example, you can use cryptographic techniques to:

• Save files in encrypted form to protect against unauthorized access.

• Ensure file integrity and protect against tampering. Cryptographic techniques can
be used to guarantee that only authorized personnel can modify or install certain
files.

• Archive important data so that it can be accessed only by authorized personnel.

• Protect intellectual property.

Point-To-Point Applications
Applications that require establishing a secure link between two nodes are very
common and may have different topologies. However, their similarities allow them to
C h a p t e r 2 C r y p t o g r a p h y 83

Applications of Cryptography
be treated in a comparable manner. Secure point-to-point communication is needed if:

• Communication takes place between exactly two nodes.

• The primary security consideration is to allow the two nodes to communicate
privately and to prevent others from eavesdropping on the traffic.

Here are some applications that require secure point-to-point data communication:

• Computer hardware links connecting two nodes

• Satellite or cellular communications

• A single transaction between two nodes in a larger network

Here is a typical scenario for implementing applications in this class, using key
agreement with stream-cipher encryption.

1. Compute the Diffie-Hellman parameters for both nodes. This must be done before
a communication session is established. When a link is requested, the parameters
should be waiting for the nodes.
A new Diffie-Hellman parameter set is not necessary each time you generate a
session key; it is safe to use one set of Diffie-Hellman parameters for many key-
agreement sessions. In addition, either of the nodes can generate the parameters
and transmit the values over any channel.

2. Establish an agreed-upon secret value using Phase 1 and Phase 2 of the Diffie-
Hellman key-agreement protocol. See “Diffie-Hellman Public Key Agreement” on
page 61 for an overview of this process.

3. Compute an RC4 key for the session using the agreed-upon secret value. The RC4
key may be shorter than a Diffie-Hellman secret value. The application must
determine the procedure for extracting the required bits. A single Diffie-Hellman
agreement may also be used to generate multiple RC4 keys.

4. Perform the encryption and decryption using RC4 with the established key. If the
application requires multiple session keys, use a message digest on the agreed-
upon secret value and a counter to generate a new key.

There is an attack against this kind of protocol known as “man-in-the-middle.”
Someone could intercept all messages between the two parties and pose as each
individual’s other participant. For example, if Alice wants to communicate with Bob,
she sends a message to initiate a session. The man-in-the-middle intercepts Alice’s
message, builds a secure session with Alice, and initiates his own session with Bob.
Now, all messages Alice sends to Bob go through the attacker. The man-in-the-middle
decrypts Alice’s messages based on the session he created with Alice and saves the
results to examine later. He then reencrypts the message based on the session he
created with Bob. If a particular application is vulnerable to such an attack, it is
8 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Applications of Cryptography
advisable to use a peer-to-peer protocol (see page 86) instead.

Client-Server Applications
A client-server application is distinguished by one central server node that provides
services to several client nodes. Many client-server applications have a need for
cryptographic tools. For example:

• Network applications: Any network that connects several computer nodes to one
central server, such as a local or wide area network, can use cryptography to
establish secure communications between the clients and the server. The network
can also employ authentication to guarantee that intruders do not have access to
the network.

• Database applications: Multiple clients — in this case, database queries — need
access to a server — the database. To ensure that not all fields in the database are
accessible to all clients, restricted fields can be encrypted or signed. In addition,
by distributing secret shares among authorized personnel, you can ensure that
very sensitive data can be accessed only according to the security rules.

• Cryptographic smart cards: Here, you must authenticate users to service providers
such as banks. A smart card holds the individual private keys and includes a
processor that runs the cryptographic algorithms needed to achieve the
appropriate authentication level.

In all these applications, the server generates a public/private key pair for use with all
clients requiring secure communications. The server uses the private key to sign
digital certificates for all nodes that require access to the server and its resources.

It also starts a public key table to register client RSA public keys. Each client computes
an RSA public/private key pair when it is first established as a secure client. The
public key is communicated to the server and an entry is made in the table maintained
by the server for the public keys.

As an alternative, the server can certify the public keys of the client nodes by
generating a digital certificate to be signed by the server’s private key. In this case, the
server only trusts messages from previously-certified keys. There is no table to
maintain because the digital certificate can be used to verify the identity of a node
each time a connection or request is needed.

There are two approaches to establishing a link between a client and the server.

In the first approach, the server and a client determine a session key using a Diffie-
Hellman key agreement protocol. The Diffie-Hellman parameters are established
C h a p t e r 2 C r y p t o g r a p h y 85

Applications of Cryptography
once at the initial setup of the server, and communicated publicly to each client when
a secure connection is requested. The session key is used for bulk-data encryption; the
established client RSA key pair is used for authentication or for envelope
communications. Any block or stream cipher can be used for encryption with the
session key. For stream ciphers, a new key should be computed for each session; this
prevents attacks that compare blocks of data encrypted with the same key.

In the second approach, the server uses the client’s RSA public key (contained in the
digital certificate) to generate a digital envelope for the encrypted data sent from the
server to the client. Likewise, the client uses the server’s public key (known to all
nodes) to create a digital envelope. In addition, each message contains digital
signatures to authenticate the originator.

Peer-To-Peer Applications
Unlike a client-server application, a peer-to-peer network application provides each
node with access to any other node in the network. For example, users may wish to
communicate privately with other known or unknown users through secure email. In
the peer-to-peer situation, there is no single node capable of authenticating other
client nodes.

Digital signatures can be used to provide proof of authorship to any recipient. Each
node must generate its public/private key pair and obtain a digital certificate from
some approved central authority. VeriSign can provide details about how to obtain a
digital certificate.

Each message between any two or more nodes can be authenticated by attaching the
originator’s digital certificate to the message. The recipient can verify the authenticity
of the message and the originator by verifying the validity of the certificate.

Nodes on peer-to-peer applications can encrypt using digital envelopes. To do so, the
sender obtains the digital certificate of each recipient and extracts the public key.
8 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Choosing Algorithms
Choosing Algorithms
In some cases, an application’s constraints determine the algorithm. In other cases, the
developer can choose among a number of options and still produce a viable solution.
This section presents suggestions to help you determine the best choice.

Public-Key vs. Symmetric-Key Cryptography
Because symmetric-key encryption algorithms are much faster than public-key
algorithms, they are most suited for bulk data encryption.

Public-key encryption should not be used for encrypting large amounts of data. It is
best used to encrypt keys for either a digital envelope method or for key escrow
applications.

Stream vs. Block Symmetric-Key Algorithms
Crypto-C has only one stream encryption algorithm, RC4. RC4 produces an
encrypted output the same size as the original input message and is significantly
faster than block-encryption algorithms. However, once a key has been used to
encrypt a particular message, it should not be used again. Hence, employing RC4
requires using many keys. If managing many keys is difficult, RC4 may not provide
the easiest solution.

Some applications do not save keys outside of the session. For these applications, RC4
will generally be a good choice. For instance, in encrypted phone conversations, the
symmetric key is a session key. It encrypts for one call; once the session is over, the
key is discarded. Another example would be an email application where the session
key is encrypted with an RSA public key and is a part of the data package.

RC4 has a variable length key. If you set the key to be long enough, RC4 offers greater
security than DES. The key can also be set to a level low enough to obtain export
approval.

Block-encryption algorithms are best used for applications that require repeated
encryptions without changing the value of the key. In addition, DES is a standard
used by many applications. If an application must be able to communicate with other
applications, DES is a safe choice for universal support.
C h a p t e r 2 C r y p t o g r a p h y 87

Choosing Algorithms
Block Symmetric-Key Algorithms
The following considerations may help when choosing between DES, DESX, Triple
DES, RC2, and RC5 block algorithms.

DES is a standard algorithm in use by many applications. Using DES ensures wide-
spread connectivity. However, DES is limited to an effective key size of 56 bits. The
cryptography community expects that, because of the continued increase in
computing power, within a few years, DES will not be strong enough to withstand
attacks. Triple DES is gaining in acceptance as a substitute for DES to counter this
problem.

DESX is viewed as a cheap and secure alternative to Triple DES.

RC2 is faster in software than DES and Triple DES and has gained momentum in the
marketplace, although it is not as widely implemented as DES. In addition, RC2
employs a variable key size, which allows you to increase the security beyond that
supplied by DES or Triple DES, or to decrease security to the level necessary to obtain
export permission.

RC5 is even faster than RC2; its speed and security can be increased or decreased
through the word size, rounds, and key length parameters. It is a new algorithm, so
does not have a history of withstanding attacks and analysis. Although the early
reports are that it is just as secure, if not more so, than RC2, some developers may shy
away from using it because of its youth.

If communication with other applications is not an issue, RC2 and RC5 offer greater
security and are much faster in software than DES. RC2 is exportable, and RC5 is
likely to receive export permission as well.

Key Agreement vs. Digital Envelopes
Both key agreement and digital envelopes allow two nodes communicating over an
unsecure medium to establish a secret symmetric-encryption key.

Key agreement is easier and faster when the two nodes are in current contact, such as
in a phone conversation. Crypto-C employs the Diffie-Hellman key agreement
algorithm and the implementation requires an interactive session.

Digital envelopes are more convenient when the contact between nodes is not
interactive, such as email. One node can send a message to another without waiting
for the other node to respond.

To thwart man-in-the-middle attacks, authentication by digital signatures should be
8 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Choosing Algorithms
built into any communication system.

Secret Sharing and Key Escrow
Also known as emergency access, secret sharing and key escrow both allow for
recovery of keys by parties other than the owner. Without some form of emergency
access, data that is encrypted using a session key that is itself protected by password-
based encryption is inaccessible or even lost if the owner forgets the password or is
unavailable.

To enable recovery using key escrow, you can encrypt all session keys with a security
officer’s RSA public key. Any time access is required, the officer can decrypt the
session key with the appropriate RSA private key. This method is the easiest to
implement and execute. However, it requires trust in the security officer not to abuse
this power, and it requires that a single individual be available.

With secret sharing, access can be split among several individuals, with
reconstruction requiring a threshold number of shares. In this way, if one or more of
the individuals are not available, it is still possible to recover the data. In addition,
secret sharing contains some level of checks and balances: no one can recover data
without at least one other individual knowing about it.

Elliptic Curve Algorithms
Elliptic curve cryptosystems have recently come into strong consideration,
particularly by standards developers, as alternatives to established standard
cryptosystems such as the RSA cryptosystem, Diffie-Hellman, and DSS. Elliptic curve
cryptosystems have a number of interesting properties, which may make them
appropriate tools for meeting security requirements in some cases, and not in others.

From a cryptographic perspective, the primary motivation for development of elliptic
curve cryptosystems is that they are based on a different hard mathematical problem
than established systems, and appear to have a reasonable expectation of security,
without significant additional cost. In particular, in certain applications, elliptic curve
cryptosystems can provide security where other systems currently do not fit.
However, the range of applications where they make a significant difference is
limited. In typical applications of cryptography, public-key operations are employed
in combination with other techniques. In particular, public-key operations often
represent only a minor overhead in the total processing, whether in storage or in
computation time. A “faster” or “smaller” public-key technique thus may have little
overall impact in many applications.
C h a p t e r 2 C r y p t o g r a p h y 89

Choosing Algorithms
Elliptic curve cryptosystems have, at this point, relatively fewer cryptanalytic results
than established systems. It could be that the systems are stronger, or it could be that
they are just not that well understood. In either case, this is an observation that calls
for further study.

In conclusion, RSA Data Security, Inc., is currently recommending that elliptic curve
cryptosystems continue to be studied as additional tools in the public-key repertoire,
and that they be considered as near-term solutions in the particular cases where the
alternative would be to have no security at all.

For more information about elliptic curve cryptosystems, see the RSA Laboratories
technical note, Recommendations on Elliptic Curve Cryptosystems, at http://
www.rsa.com/ecc/html/recommendations.html.

Interoperability
Elliptic curve public-key methods can be constructed in a number of ways.
Parameters can be chosen over odd prime fields or fields of even characteristic. The
underlying mathematics of these implementations is different enough that a
successful implementation of only one of these approaches could not handle another
implementation. In essence, this means that one could build two different
cryptosystems, both using elliptic curve cryptography, but unable to interoperate
with each other.

The two main interoperability issues for elliptic curve cryptosystems are:

• the choice of finite field over which the elliptic curve is defined

• the representation of elements in the finite field.

There are two types of finite fields: finite fields with p elements, where p is an odd
prime, denoted Fp, and called “odd prime fields,” and a finite field with 2m elements
for some integer m, denoted Fm, and called “even characteristic.” It is not possible to
convert between the two types of finite field, so the choice of finite field is critical to
interoperability.

The even characteristic implementations offer greater gains in hardware
implementation. However, the odd prime implementations can use the same special-
purpose circuitry that is available for implementations such as RSA. This can make
the odd characteristic a better choice for situations where RSA hardware is already in
place, or where a hardware developer wants to be able to provide a platform that
supports both RSA and elliptic curve encryption.

For the even characteristic finite field, F2m, there is also a choice of representation. For
these fields, elements can be represented using a polynomial basis, a normal basis, or
9 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Choosing Algorithms
some other basis. For some values of m, elements can also be represented in an
optimal normal basis, which is generally more efficient than an ordinary normal basis.
In order for systems that use different bases to communicate, they need to convert
from one representation to another. Each representation has advantages and
disadvantages, including efficiency and potential patent coverage, so in current
elliptic curve standards the choice is typically left to the implementation.

Elliptic Curve Standards
The elliptic curve algorithms in Crypto-C are based on a number of draft standards.
Several standards bodies are already working on various elliptic curve cryptographic
standards. These include the IEEE P1363, the ANSI X9 Financial Standards, and ISO/
IEC SC27.
C h a p t e r 2 C r y p t o g r a p h y 91

Security Considerations
Security Considerations

Handling Private Keys
In public-key cryptography, only the owner of a private key can create a digital
signature or open digital envelopes. However, if someone other than the owner is able
to obtain the private key, the security fails. To ensure that no one other than the owner
has access to a private key, it should be stored encrypted, generally with a password-
based encryption method. An application will decrypt the private key when it is
needed. Always overwrite the memory that held a private key with zeroes or random
bytes immediately after the key has performed its function.

Operating systems will frequently use the hard disk space as virtual memory and so
an unencrypted private key may, through no intention of a user, end up on a hard
disk. Hence, for key buffers, an application should use the operating system’s
mechanisms that ensure allocation of core memory, and not virtual memory.

It is a good idea to generate new public/private key pairs every so often to thwart
long-term factoring attacks. Material encrypted using the old key pair should be re-
encrypted with the new. However, an application may not have access to all material
protected by an old key pair, so it may be necessary to retain old key pairs in a secure
environment.

Temporary Buffers
Even though a temporary buffer may not contain a private key, it still may hold
sensitive data, such as a message to be encrypted or a symmetric key. Such temporary
buffers require the same security as private-key buffers. After using the data,
overwrite the buffer with zeroes or random bytes. Make sure the operating system
uses core memory and not hard disk virtual memory.

Pseudo-Random Numbers and Seed Generation
Crypto-C uses pseudo-random number algorithms for generating both symmetric
keys and public/private key pairs. The random number generation algorithms are the
same as the message digest algorithms, and are verified to have very high degree of
randomness.

Any method that is employed to generate random values begins with a random seed.
9 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Security Considerations
The security issue then becomes one of making sure that an attacker cannot determine
the seed. Generally, any random number generator will produce pseudo-random
numbers, given any seed. Therefore, to generate random number, you do not need to
start with a seed that is itself random. However, the seed should be “unrepeatable.”
That is, no one should be able to apply some sort of algorithm which can “guess” the
seed in a reasonable amount of time.

For instance, suppose that a message was encrypted using RC2 with 80 effective key
bits from 10 bytes of key data, but that the key data was generated using an MD5
random byte generating algorithm with a 4-byte seed. An attacker could try every
possible 10-byte key combination to crack the message, or could try every 4-byte seed
combination to generate 10 bytes of key data. Further, suppose that 4-byte seed was
the time of day. Now the attacker has an even smaller range of possible seeds to test
before finding the right one.

The seed should contain at least as many unrepeatable bits as the key. If the seed is
based on a user’s typing a series of letters and characters on the keyboard, then an
attacker can predict two or three of the bits in each seed byte. Bit 7, for instance, will
always be 0. Furthermore, many of the keystrokes can be predicted: they will
probably be lower-case letters that alternate between the left and right hand. Analysis
of this issue has determined that there is only one bit of entropy from each keystroke
(think of the term “entropy” as “unrepeatability”). When using keystrokes, use at
least one for each bit of key size.

There are other schemes for finding seed bytes, including tracking mouse movements,
timing keystrokes, “listening” to hardware noise, or capturing machine state
information. Many schemes will provide more than one bit of entropy per byte of
seed; however, it is an easy-to-remember rule of thumb to use as many bytes of seed
data as bits of key.

Whatever the scheme, it may seem unusual to expend more effort to produce a seed
than it will take to produce the random key data itself. Why not simply use the seed
data in the key? The strength of cryptography relies on key data that is random or
pseudo-random. If an attacker knows that the key data is not random, cracking the
cipher becomes easier. The seed will almost certainly not be random. The
eavesdropper may not be able to repeat the seed gathering process exactly, but non-
random key data leaves a cipher algorithm as a whole open to various attacks. Hence,
use a large unrepeatable seed to generate pseudo-random data.

Choosing Passwords
In almost any security application, users are required to have passwords that indicate
C h a p t e r 2 C r y p t o g r a p h y 93

Security Considerations
authorized access to the system. Often, when given a choice, users choose the same
password for various applications. For instance, they may use their login password to
encrypt a private key. Many times, users will choose passwords an attacker can easily
deduce. Therefore, it is a good idea for developers to build good password protocols
into their applications. The following are a list of possible guidelines in choosing
passwords.

• Enforce a minimum password length, generally eight characters.

• Inform users to avoid “easy to guess” passwords, such as common names or
birthday dates.

• Check an entered password against a dictionary.

• Require a combination of numeric, special, and upper- and lower-case alphabetic
characters.

• Include support for password expiration dates to limit the available searching
time an attacker has to break into the system.

Initialization Vectors and Salts
Although IVs and salts are not secret information, it is still a good idea to use random
values. If a salt is not random, an attacker will have much fewer precomputations to
make in generating keys from possible password/salt combinations.

An IV should also be used for only one message. Using the same IV with the same key
on two separate messages may provide an attacker with useful information.

DES Weak Keys
Researchers over the years have found that some DES keys are more susceptible to
attack than others. Some of these keys are known as “weak,” others, when used in
pairs, as “semi-weak.” Using a weak key or a semi-weak pair may not necessarily
pose a security risk; it could depend on the mode of DES. However, it is simply easier
to avoid these keys (listed in Table 2-3) altogether.

Table 2-3 DES weak and semi-weak keys

0101010101010101

FEFEFEFEFEFEFEFE

1F1F1F1F1F1F1F1F

E0E0E0E0E0E0E0E0
9 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Security Considerations
Stream Ciphers
A stream cipher (such as RC4) will create a stream of pseudo-random bytes based on
the secret key; this is known as the key stream. To encrypt, you XOR the plaintext
with the key stream, byte by byte. The XOR operation has the property that the
ciphertext XORed with the same key stream decrypts, restoring the plaintext. This
also means that an XOR operation between the plaintext and the ciphertext will
reproduce the key stream. Hence, knowing or guessing part of the plaintext allows an
attacker to determine the corresponding part of the key stream. This still will not
enable the attacker to deduce the entire key or any more of the key stream, but this
does pose a threat if the same key is used in two different messages.

The same key always produces the same key stream. Therefore, if two messages use
the same key, knowing part of the key stream in one message means knowing the
same part of the key stream in the second message. An attacker can thus determine
some of the plaintext in the second message. That is why you should never use the
same stream cipher key twice.

Incidentally, this attack does not work on block ciphers. Knowledge of part of the
plaintext does not automatically grant to the attacker knowledge of the key.

Another stream cipher attack involves a dictionary of key streams. Suppose you had
an application you wanted to export and so kept the key size to 40 bits. An attacker
could create a dictionary of the first eight bytes of the key stream from every possible
40-bit (5-byte) key. Then, the attacker “decrypts” the first eight bytes of an intercepted

01FE01FE01FE01FE

1FE01FE00EF10EF1

01E001E001F101F1

1FFE1FFE0EFE0EFE

011F011F010E010E

E0FEE0FEF1FEF1FE

FE01FE01FE01FE01

E01FE01FF10EF10E

E001E001F101F101

FE1FFE1FFE0EFE0E

1F011F010E010E01

FEE0FEE0FEF1FEF1

Table 2-3 DES weak and semi-weak keys
C h a p t e r 2 C r y p t o g r a p h y 95

Security Considerations
message with each possible key stream, until one produces a reasonable result. The
key that generated the stream that worked is the right one.

To thwart this attack, you can implement salting. Design the application to use an 80-
bit (10-byte) key, but send 40 bits in the clear. That 40 bits in the clear is known as a
salt. For example, in an email application, encrypt the message using RC4 with a 10-
byte key. Then encrypt the first five bytes of the key using the recipient’s RSA public
key. Now the RSA digital envelope consists of the public-key-encrypted five secret
bytes, five salt bytes sent in the clear and the RC4-encrypted message. In this way the
attacker’s dictionary is rendered useless. That dictionary is valid for 40-bit keys, but
the message used an 80-bit key. Still, only 40 bits are kept secret to comply with export
regulations. A dictionary of 80-bit key streams is not feasible — it would require 280
entries. That is about 1.2 · 1024, or 1.2 times one trillion times one trillion.

Timing Attacks and Blinding
If the time it takes to execute a cryptographic operation varies based on the input
parameters, then in theory, an attacker with access to accurate timings can determine
unknown values. This is the case for RSA, Diffie-Hellman, and DSA operations. For
instance, in an RSA signing operation, purportedly an attacker who knows the
message being signed and exactly how long it takes to create the digital signature can
determine the signer’s RSA private key.

Currently, there is no known successful implementation of such a procedure.
Proposed algorithms under scrutiny either require several absolutely exact timings or
thousands of inexact (but still accurate to the millisecond) timings to succeed.
However, there are two simple ways to guard against this attack. One is to “equalize”
private key operations, by padding shorter transactions with a few extra milliseconds
to make sure that all times are the same. The second method is known as blinding.

For a timing attack to succeed, the eavesdropper must know that the input being
processed is only altered before the operation is performed and that the true answer is
recovered after the operation by reversing the alteration procedure.

For example, in an RSA signature operation, the input is the BER-encoding of the
digest of the data to sign and some pad bytes. To blind the attacker, that input is
modular multiplied by a secret random number. Then the product, not the input, is
modular exponentiated. To produce the actual signature, the result is modular
multiplied by the inverse of the random number.

In mathematical terms, instead of performing the usual RSA encryption process:

sig = md mod n
9 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Security Considerations
pick a random value r and compute:

m' = mre mod n

where e is the public exponent. Now find:

s = (m')d mod n

Then to compute the actual signature, find:

sig = (r-1) · s mod n

In this way, the timing attack fails because the attacker does not know what value was
exponentiated.

To see that the signature is the same in both cases, note that:

r(mre)d mod n = (r–1)(m)d(re)d

 = (r)(red)(md)

 = (r-1)(r)(md)

 = (1)(md) mod n

Crypto-C offers both blinding and non-blinding RSA private operations through
separate algorithm methods. It currently offers no blinding technique in Diffie-
Hellman or DSA operations.

Crypto-C uses MD5 random number generation to produce the random value r. The
seed is the following digest:

MD5(p || padP || MD5(q || padQ || m))

where p and q are the two primes, padP and padQ are paddings of zeros to make sure
the length is a multiple of 64 bytes, and the symbol || means concatenation. An
attacker will not know what r is without knowing what the seed is, and will not know
what the seed is without knowing what p and q are. An attacker who knows p and q is
not going to implement a timing attack to determine the private key, because
knowledge of p and q is equivalent to knowledge of the private key already.

Choosing Key Sizes
In cryptography, security is measured in key size: the bigger the key, the greater the
security. Key size, in turn, is measured in bits. However, that bit number might not
describe the entire key.

For instance, a DES key is 56 bits. However, that size refers to its cryptographic size,
C h a p t e r 2 C r y p t o g r a p h y 97

Security Considerations
not its “physical” size. To build a DES key, you need 64 bits, but because eight of
those bits are “parity bits,” that is, bits that are known, out of the 64, you really only
get 56 secret bits. Hence, a DES key, while consisting of 64 bits of data, is only 56
cryptographic bits large.

An RSA key pair measurement describes the modulus length. When cryptographers
talk about a “768-bit RSA key pair,” what they really mean is that the modulus is 768
bits long. The security of an RSA key pair is tied up in how big the modulus is; hence,
the measurement used is the bit size of the modulus. The actual keys themselves will
contain more information than the modulus, so the “physical” size will be much
larger.

In choosing a key size, if larger keys offer greater security, why not simply always
choose the largest possible key? Larger RSA, Diffie-Hellman, DSA, and elliptic curve
keys can slow down cryptographic operations. In addition, there are restrictions on
key size for applications seeking export.

For RC2, RC4, and RC5, larger keys generally do not significantly degrade
performance. However, larger keys do require more management.

Table 2-4 gives a summary of the recommended key sizes for the algorithms
supported in Crypto-C. These recommendations were current at the time this manual
went to press. Please note, however, that such recommendations are always
provisional and can be affected by changes in the cryptographic state of the art.

Table 2-4 Summary of Recommended Key Sizes

Algorithm User Key
Organizational or
Long-Term Key Root Key

Diffie-Hellman 768-bit prime 1024-bit prime 2048-bit prime

DSA 768-bit prime 1024-bit prime 2048-bit prime

ECAES 160-170-bit modulus Not recommended
at this time

EC Diffie-Hellman 160-170-bit modulus Not recommended
at this time

ECDSA 160-170-bit modulus Not recommended
at this time

RC2 8-128 effective key bits

RC4 8-128 effective key bits
9 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Security Considerations
RSA Keys
The security of the RSA algorithm is based on the difficulty of factoring large integers.
Therefore, the choice for the key size depends on the efficiency of integer-factoring
algorithms. Because users will probably want a key pair to last a few years, it is
advisable to choose a size that will not only remain secure against current state of the
art factoring, but will probably defeat improved factoring attempts of the future. The
RSA Laboratories publication, “Frequently Asked Questions About Today’s Cryptography”
describes current factoring capabilities.

For normal user data, RSA Data Security, Inc. recommends a modulus size of 768 bits.
For organization keys or for long-term applications, a 1024-bit modulus is advisable.
For root keys, RSA Data Security, Inc. recommends a 2048-bit modulus. This
safeguards against progress in factoring algorithms and improvements in computing
power.

Diffie-Hellman Parameters and DSA Keys
The security of the Diffie-Hellman algorithm and DSA are both dependent on the
complexity of computing logarithms modulo a prime number. Generally, this is
equivalent to the complexity of the factoring problem, because modern factoring
algorithms generally apply to the discrete logarithm problem. Therefore, the designer
is advised to use similar sizes for the Diffie-Hellman parameters and DSA keys as for
RSA operations: a 768-bit prime for user keys, 1024-bit prime for organizational keys
and a 2048-bit prime for root keys.

Note: The Digital Signature Standard lists a maximum of 1024 bits for DSA, but the
algorithm does not have an inherent limit. Crypto-C’s implementation allows
up to 2048-bit DSA keys.

RC2 Effective Key Bits
A key with 80 to 128 effective key bits is sufficient for most applications using the RC2
algorithm. Export regulations may limit the size to 48 effective bits. A key size of 40

RC5 8-128 effective key bits with
16 rounds for 32-bit word or 20 rounds for 64-bit word

RSA 768-bit modulus 1024-bit modulus 2048-bit modulus

Table 2-4 Summary of Recommended Key Sizes

Algorithm User Key
Organizational or
Long-Term Key Root Key
C h a p t e r 2 C r y p t o g r a p h y 99

Security Considerations
bits generally expedites the export permission.

RC4 Key Bits
An 80- to 128-bit key is sufficient for most applications using the RC4 algorithm.
Export regulations may limit the size to 48 bits. A key size of 40 bits generally
expedites the export permission.

RC5 Key Bits and Rounds
An 80- to 128-bit key is sufficient for most applications using the RC5 algorithm. Note
also that the security of the RC5 algorithm is dependent on the number of rounds. For
RC5 with a 32-bit word size, RSA Data Security, Inc. recommends at least 12 rounds
for applications; while no practical attacks are known for 12-round RC5-32, recent
cryptanalytic work suggests 16 rounds is now a more conservative choice. For RC5
with a 64-bit word size, RSA Data Security, Inc. recommends at least 16 rounds; a
conservative choice for the 64-bit version is 20 rounds. Note that the Crypto-C
implementation of the 64-bit word is for evaluation purposes only.

Triple DES Keys
It is possible to implement Triple DES with one, two, or three keys. One key in EDE
mode (encrypt-decrypt-encrypt) is equivalent to DES, and is used to provide
compatibility with applications that only understand DES. There are known attacks
against Triple DES using two keys, so RSA Data Security, Inc. recommends using
three keys.

Elliptic Curve Keys
For prototyping and evaluation, RSA Data Security, Inc. recommends setting the
order of the base point to be between 160 and 170 bits. Currently, RSA Data Security,
Inc. does not recommend using elliptic curve cryptography for long-term
applications.
1 0 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Security Considerations
C h a p t e r 2 C r y p t o g r a p h y 1 0 1

1 0 2 C h a p t e r 2 C r y p t o g r a p h y

Chapter 3

Using Crypto-C
Algorithms In Crypto-C
Whatever algorithm Crypto-C performs, it does so from an algorithm object. An
algorithm object is used to hold information about an algorithm’s parameters and to
keep a context during cryptographic operations.

To build an algorithm object, create an empty object with B_CreateAlgorithmObject.
Then, use B_SetAlgorithmInfo to fill the object with the information necessary to
distinguish it as an object performing the desired operation. The information for
B_SetAlgorithmInfo consists of two elements: an Algorithm Info Type, or AI, and its
specific accompanying info. This chapter gives a brief summary of the AIs categorized
by function.

Chapter 2 of the Crypto-C Library Reference Manual (LRM) gives a complete listing of
AIs in alphabetical order. Each entry in the Library Reference Manual contains a
description of information that must accompany the AI, including keys and algorithm
methods.

Information Formats Provided by Crypto-C
There are four types of AIs in Crypto-C. These AIs differ in the format in which they
provide information:
C h a p t e r 3 U s i n g C r y p t o - C 1 0 3

Algorithms In Crypto-C
• Basic algorithm info types, which provide information in Crypto-C’s internal
format.

• BER-based algorithm info types, which provide information in a format that
complies with Open Systems Interconnection’s Basic Encoding Rules.

• PEM based algorithm info types, which provide information in a format that
complies with the Privacy Enhanced Mail draft standard.

• BSAFE1 algorithm info types, which provide information in a format that is
backward compatible with BSAFE 1.x.

Basic Algorithm Info Types
The basic algorithm is used to start a new process because its info (the accompanying
information specific to the AI) is the simplest to format.

BER-Based Algorithm Info Types
BER-based algorithms are algorithms that comply with Basic Encoding Rules, as
defined in ANSI X.690. BER-based algorithms are necessary because the format of the
info in a basic AI is not standard. Much of the data in cryptography is passed between
two or more individuals. Not every cryptographic application uses Crypto-C, and
other packages may not organize the necessary information the same way. When one
person needs to tell another person which algorithm was used to encrypt, for
instance, there needs to be a standard way to present the information. The standard
description of information is known as Basic Encoding Rules, or BER, which is a
product of Open Systems Interconnection and is defined in ANSI X.690.

BER-based algorithms end with the letters BER. Such AIs will read in or output
information according to the BER.

Unfortunately, BER is often complicated and it is difficult to determine the proper
BER encoding without a translator. Therefore, it is simpler to use
B_SetAlgorithmInfo to define algorithm objects with the basic algorithm AI, get the
information in BER format using B_GetAlgorithmInfo, and send the BER-encoding to
those who need the information. The recipient will translate the BER information into
something they can understand.

When a Crypto-C application receives information in BER format, it can set using the
BER AI and build an algorithm object to match that information.

PEM-Based Algorithm Info Types
The Privacy Enhanced Mail (PEM) draft standard is a product of the Internet
1 0 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Algorithms In Crypto-C
Activities Board, Network Working Group (see RFC 1421-1424). It defines the proper
formatting of information passed between entities in electronic mail. Formatting
information to follow this standard is fairly simple.

BSAFE1 Algorithm Info Types
The fourth kind of AI ends with BSAFE1. These algorithm info types are only for
backward compatibility with applications using the BSAFE 1.x formats.
C h a p t e r 3 U s i n g C r y p t o - C 1 0 5

Algorithms In Crypto-C
Summary of AIs
Table 3-1 Message Digests
Not all message digests are recommended. See “Message Digests” on page 46 for details.

Algorithm Info Type Description Standards BER PEM

AI_MD2 MD2 message digest RFC 1319

AI_MD2_BER MD2 message digest; BER-encoded
algorithm identifier

RFC 1319 ✓

AI_MD2_PEM MD2 message digest with PEM RFC 1423 ✓

AI_MD5 MD5 message digest RFC 1321

AI_MD5_BER MD5 message digest; BER-encoded
algorithm identifier

RFC 1321 ✓

AI_MD5_PEM MD5 message digest, PEM-encoded
algorithm identifier

RFC 1423 ✓

AI_MD Supplied for backwards
compatibility with the BSAFE 1.x
message digest algorithm

none

AI_SHA1 SHA1 message digest FIPS PUB 180-1

AI_SHA1_BER SHA1 message digest; BER-
encoded algorithm identifier

FIPS PUB 180-1

Table 3-2 Message Authentication

Algorithm Info Type Description Standards

AI_MAC BSAFE 1.x message authentication code; supplied for
backwards compatibility with BSAFE 1.x

AI_HMAC Hashed-based Message Authentication Code SET Draft

Table 3-3 ASCII Encoding

Algorithm Info Type Description Standards

AI_RFC1113Recode ASCII/binary conversion RFC1113/RFC1421; RFC1521; MIME Base64
1 0 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Algorithms In Crypto-C
Table 3-4 Pseudo-Random Number Generation

Algorithm Info Type Description

AI_MD2Random MD2 pseudo-random number generator

AI_MD5Random MD5 pseudo-random number generator

AI_SHA1Random Identical to AI_X962Random_V0. For forward compatibility,
we recommend that you use AI_X962Random_V0.

AI_X931_Random Generates pseudo-random numbers for RSA key generation in
conformance with ANSI X9.31 standard. This AI is intended for
use with AI_RSAStrongKeyGen only.

AI_X962Random_V0 SHA1 pseudo-random number generator based on X9.62 Draft

Table 3-5 Symmetric Stream Ciphers
Some stream ciphers include message authentication codes to detect tampering with the data stream.

Algorithm Info Type Description BER MAC

AI_RC4 RC4

AI_RC4_BER RC4 3

AI_RC4WithMAC RC4 with message authentication code 3

AI_RC4WithMAC_BER RC4 with message authentication code;
BER-encoded algorithm identifier

3 3

Table 3-6 Symmetric Block Ciphers

Algorithm Info Type Description Padding BER PEM

General Purpose

AI_FeedbackCipher DES, Triple DES, DESX, RC2, or RC5 in
ECB, CBC, CFB, or OFB feedback modes

DES

AI_DES_CBC_IV8 DES-CBC, 8-byte IV none

AI_DES_CBCPadIV8 DES-CBC, 8-byte IV PKCS #5
C h a p t e r 3 U s i n g C r y p t o - C 1 0 7

Algorithms In Crypto-C
AI_DES_CBCPadBER DES-CBC, 8-byte IV, BER-encoded
algorithm identifier

PKCS #5 ✓

AI_DES_CBCPadPEM DES-CBC, 8-byte IV, PEM-encoded
algorithm identifier

RFC 1423 ✓

AI_DES_CBC_BSAFE1 DES-CBC, 8-byte IV, padding optional;
backward compatibility with BSAFE 1.x

Triple DES

All 3DES algorithms in Crypto-C use the encrypt-decrypt-encrypt (EDE) sequence.

AI_DES_EDE3_CBC_IV8 3DES-CBC

AI_DES_EDE3_CBCPadIV8 3DES-CBC, 8-byte IV PKCS #5

AI_DES_EDE3_CBCPadBER 3DES-CBC, 8-byte IV, BER-encoded
algorithm identifier

PKCS #5 ✓

DESX

AI_DESX_CBC_IV8 DESX-CBC, 8-byte IV

AI_DESX_CBCPadIV8 DESX-CBC, 8-byte IV PKCS #5

AI_DESX_CBCPadBER DESX-CBC, 8-byte IV, BER-encoded
algorithm identifier

PKCS #5 ✓

AI_DESX_CBC_BSAFE1 DESX-CBC, 8-byte IV, padding optional;
backward compatibility with BSAFE 1.x

RC2

AI_RC2_CBC RC2-CBC, 8-byte IV

AI_RC2_CBCPad RC2-CBC, 8-byte IV PKCS #5

AI_RC2_CBCPadBER RC2-CBC, 8-byte IV, BER-encoded
algorithm identifier

PKCS #5 ✓

AI_RC2_CBCPadPEM RC2-CBC, 8-byte IV, PEM-encoded
algorithm identifier

RFC 1423 ✓

AI_RC2_CBC_BSAFE1 RC2-CBC, 8-byte IV, padding optional;
backward compatibility with BSAFE 1.x

RC5

AI_RC5_CBC RC5-CBC, 8-byte IV

AI_RC5_CBCPad RC5-CBC, 8-byte IV PKCS #5

Table 3-6 Symmetric Block Ciphers (Continued)

Algorithm Info Type Description Padding BER PEM
1 0 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Algorithms In Crypto-C
Initialization Vector

AI_CBC_IV8 Resets the IV in a CBC algorithm during
an Update or a Final for all CBC AIs
except AI_FeedbackCipher

AI_RESET_IV Resets the IV in a CBC algorithm during
an Update or a Final for all CBC
implementations of AI_FeedbackCipher

Password-Based Encryption

These composite algorithms generate a symmetric key by digesting a password with a salt, then use the
key for block cipher encryption.

Not all message digests are recommended. See “Message Digests” on page 46 for details.

AI_MD2WithDES_CBCPad MD2 digest followed by DES-CBC PKCS #5

AI_MD2WithDES_CBCPadBER MD2 digest followed by DES-CBC,
BER-encoded algorithm identifier

PKCS #5 ✓

AI_MD2WithRC2_CBCPad MD2 digest followed by RC2-CBC PKCS #5

AI_MD2WithRC2_CBCPadBER MD2 digest followed by RC2-CBC,
BER-encoded algorithm identifier

PKCS #5 ✓

AI_MD5WithDES_CBCPad MD5 digest followed by DES-CBC PKCS #5

AI_MD5WithDES_CBCPadBER MD5 digest followed by DES-CBC,
BER-encoded algorithm identifier

PKCS #5 ✓

AI_MD5WithRC2_CBCPad MD5 digest followed by RC2-CBC PKCS #5

AI_MD5WithRC2_CBCPadBER MD5 digest followed by RC2-CBC,
BER-encoded algorithm identifier

PKCS #5 ✓

AI_MD5WithXOR MD5 digest followed by XOR for
encryption

not
needed

AI_MD5WithXOR_BER MD5 digest followed by XOR for
encryption, BER-encoded algorithm
identifier

not
needed

✓

AI_SHA1WithDES_CBCPad SHA1 digest followed by DES-CBC PKCS #5

AI_SHA1WithDES_CBCPadBER SHA1 digest followed by DES-CBC,
BER-encoded algorithm identifier

PKCS #5 ✓

Table 3-6 Symmetric Block Ciphers (Continued)

Algorithm Info Type Description Padding BER PEM
C h a p t e r 3 U s i n g C r y p t o - C 1 0 9

Algorithms In Crypto-C
Table 3-7 RSA Public-Key Cryptography

Algorithm Info Type Description Pad BER PEM

Key Generation

AI_RSAKeyGen Key generation for RSA key pair

AI_RSAStrongKeyGen Key generation for RSA key pair; the
generated moduli are in accordance with
the strength criteria of the FIPS X9.31
standard

Encryption and Decryption

AI_PKCS_OAEP_RSAPrivate RSA private-key encryption/decryption
with OAEP in accordance with PKCS #1 v2

PKCS #1
v2 OAEP

AI_PKCS_OAEP_RSAPrivateBER RSA private-key encryption/decryption
with OAEP in accordance with PKCS #1 v2,
BER-encoded algorithm identifier

PKCS #1
v2 OAEP

✓

AI_PKCS_OAEP_RSAPublic RSA public-key encryption/decryption with
OAEP in accordance with PKCS #1 v2

PKCS #1
v2 OAEP

AI_PKCS_OAEP_RSAPublicBER RSA public-key encryption/decryption with
OAEP in accordance with PKCS #1 v2,
BER-encoded algorithm identifier

PKCS #1
v2 OAEP

✓

AI_SET_OAEP_RSAPrivate RSA private-key encryption with OAEP in
accordance with the SET v1 protocol

SET v1
OAEP

AI_SET_OAEP_RSAPublic RSA public-key encryption with OAEP in
accordance with the SET v1 protocol

SET v1
OAEP

AI_PKCS_RSAPrivate RSA private-key encryption/decryption
according to PKCS #1

PKCS #1
v1.5

AI_PKCS_RSAPrivateBER RSA private-key encryption/decryption
according to PKCS #1, BER-encoded
algorithm identifier

PKCS #1
v1.5

✓

AI_PKCS_RSAPrivatePEM RSA private-key encryption/decryption
according to PKCS #1, PEM-encoded
algorithm identifier

PKCS #1
v1.5

✓

AI_PKCS_RSAPublic RSA public-key encryption/decryption
according to PKCS #1

PKCS #1
v1.5
1 1 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Algorithms In Crypto-C
AI_PKCS_RSAPublicBER RSA public-key encryption/decryption
according to PKCS #1, BER-encoded
algorithm identifier

PKCS #1
v1.5

✓

AI_PKCS_RSAPublicPEM RSA public-key encryption/decryption
according to PKCS #1, PEM-encoded
algorithm identifier

PKCS #1
v1.5

✓

AI_RSAPrivate Raw RSA private-key encryption;
input must be a multiple of word size

none

AI_RSAPublic Raw RSA public-key encryption;
input must be a multiple of word size

none

AI_RSAPrivateBSAFE1 BSAFE 1.x RSA private-key encryption,
padding optional

AI_RSAPublicBSAFE1 BSAFE 1.x RSA public-key encryption

Digital Signatures

Composite operations for signing data: digest the data, then encrypt the BER-encoding of the digest with
RSA.

BER-encoded digest is 34 bytes for 16-bit digests (MD2, MD5); min RSA modulus is 45 bytes long;
BER-encoded digest is 35 bytes for 20-bytes digests (SHA1); min RSA modules is 46 bytes long.

AI_MD2WithRSAEncryption MD2 digest with RSA encryption PKCS #1

AI_MD2WithRSAEncryptionBER MD2 digest with RSA encryption,
BER-encoded algorithm identifier

PKCS #1 ✓

AI_MD5WithRSAEncryption MD5 digest with RSA encryption PKCS #1

AI_MD5WithRSAEncryptionBER MD5 digest with RSA encryption,
BER-encoded algorithm identifier

PKCS #1 ✓

AI_SHA1WithRSAEncryption SHA1 digest with RSA encryption PKCS #1

AI_SHA1WithRSAEncryptionBER SHA1 digest with RSA encryption,
BER-encoded algorithm identifier

PKCS #1 ✓

Table 3-7 RSA Public-Key Cryptography (Continued)

Algorithm Info Type Description Pad BER PEM
C h a p t e r 3 U s i n g C r y p t o - C 1 1 1

Algorithms In Crypto-C
Table 3-8 DSA Public-Key Cryptography

Algorithm Info Type Description BER

Parameter Generation

AI_DSAParamGen DSA parameter generation

Key Generation

AI_DSAKeyGen DSA key generation

Digital Signatures

AI_DSA DSA sign/verify a 20-byte input

AI_DSAWithSHA1 SHA1 digest with DSA sign/verify

AI_DSAWithSHA1_BER SHA1 digest with DSA sign/verify,
BER-encoded algorithm identifier

3

Table 3-9 Diffie-Hellman Key Agreement

Algorithm Info Type Description BER

Parameter Generation

AI_DHParamGen Diffie-Hellman parameter generation

Key Agreement

AI_DHKeyAgree Diffie-Hellman key agreement

AI_DHKeyAgreeBER Diffie-Hellman key agreement, BER-encoded
algorithm identifier

✓

Table 3-10 Elliptic Curve Public-Key Cryptography

Algorithm Info Type Description

Parameter Generation

AI_ECParamGen EC parameter generation

AI_ECParameters EC parameter use and access
1 1 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Algorithms In Crypto-C
Acceleration Tables

AI_ECAcceleratorTable Acceleration table use and access

AI_ECBuildAcceleratorTable Generates auxiliary data to speed EC operations

AI_ECBuildPubKeyAccelTable Generates auxiliary data to speed EC operations, including
ECDH-specific operations

AI_ECPubKey Generates auxiliary data to speed EC operations for a
specific public-key

Key Generation

AI_ECKeyGen EC key pair generation

Elliptic Curve Diffie-Hellman

AI_EC_DHKeyAgree Two-phase EC Diffie-Hellman key agreement

Elliptic Curve DSA

AI_EC_DSA Raw ECDSA signature/verification

AI_EC_DSAWithDigest SHA1 digest followed by ECDSA signature/verification

Elliptic Curve Authenticated Encryption System

AI_EC_ES EC Authenticated Encryption System

Table 3-11 Bloom-Shamir Secret Sharing

Algorithm Info Type Description

AI_BSSecretSharing Bloom-Shamir secret sharing

Table 3-10 Elliptic Curve Public-Key Cryptography (Continued)

Algorithm Info Type Description
C h a p t e r 3 U s i n g C r y p t o - C 1 1 3

Algorithms In Crypto-C
Table 3-12 Hardware Interface
For use with hardware devices, when present.

Algorithm Info Type Description

AI_HW_Random Provides access to random bytes generated by a hardware
device

AI_KeypairTokenGen Generates the token form of an RSA or DSA public/private
key pair

AI_SymKeyTokenGen Generates the token form of a DES, RC2, RC4, RC5, or TDES
symmetric key

AI_PKCS_OAEPRecode RSA raw or hardware encryption/decryption with OAEP
according to PKCS #1 v2

AI_PKCS_OAEPRecodeBER RSA raw or hardware encryption/decryption with OAEP
according to PKCS #1 v2,
BER-encoded algorithm identifier
1 1 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Keys In Crypto-C
Keys In Crypto-C
The key object is used to hold any key-related information and to supply this
information to functions that require it. To build a key, create an empty key object
with B_CreateKeyObject. Then, use B_SetKeyInfo to fill it with the information
necessary to distinguish it as the desired key. That information for B_SetKeyInfo is
made up of two items, a Key Info Type (KI) and its specific accompanying info.

Chapter 3 of the Crypto-C Library Reference Manual (LRM) gives a complete listing of
KIs in alphabetical order. Each entry in the Library Reference Manual contains a
description of the information that must accompany the KI.

Summary of KIs
Table 3-13 Generic Keys

Key Information Type Description

KI_8Byte Generic 8-byte key

KI_Item Generic variable-length key

Table 3-14 Block Cipher Keys

Key Information Type Description

KI_DES8 8-byte DES key satisfying DES parity requirement

KI_DES8Strong 8-byte DES key satisfying DES parity requirement;
checks for weak DES keys

KI_24Byte 24-byte 3DES key

KI_DES24Strong 24-byte 3DES key; checks for weak 3DES keys

KI_DES_BSAFE1 8-byte DES in BSAFE1.x format

KI_DESX DESX key

KI_DESX_BSAFE1 DESX key in BSAFE 1.x format

KI_RC2_BSAFE1 RC2 key in BSAFE 1.x format

KI_RC2WithBSAFE1Params RC2 key with additional parameters in BSAFE 1.x
format
C h a p t e r 3 U s i n g C r y p t o - C 1 1 5

Keys In Crypto-C
Table 3-15 RSA Public and Private Keys

Key Information Type Description BER

KI_PKCS_RSA_Private PKCS #1-compatible RSA private key

KI_PKCS_RSA_PrivateBER BER encoding of an RSA private key of type PKCS #8
PrivateKeyInfo

✓

KI_RSAPrivate RSA private key

KI_RSAPrivateBSAFE1 RSA private key in BSAFE 1.x format

KI_RSA_CRT RSA key with Chinese Remainder Theorem (CRT)
parameters

KI_RSAPublic RSA public key

KI_RSAPublicBER BER encoding of an RSA public key of type X.509
SubjectPublicKeyInfo

✓

KI_RSAPublicBSAFE1 RSA public key in BSAFE 1.x format

Table 3-16 DSA Public and Private Keys

Key Information Type Description BER

KI_DSA_Private DSA private key

KI_DSA_PrivateBER BER-encoding of a DSA private key of type PKCS #8 ✓

KI_DSA_Public DSA public key

KI_DSA_PublicBER BER-encoding of a DSA private key of type X.509
SubjectPublicKeyInfo

✓

KI_DSAPrivateX957BER BER encoding of a DSA private key of type ANSI
X9.57 PrivateKeyInfo that contains an RSA Data
Security, Inc. DSAPrivateKey type

✓

KI_DSAPublicX957BER the encoding of a DSA public key that is encoded as
ANSI X9.57 SubjectPublicKeyInfo type.

✓

Table 3-17 Elliptic Curve Keys

Key Information Type Description

KI_ECPrivate EC private key and underlying EC parameters

KI_ECPrivateComponent Private component of an EC private key

KI_ECPublic EC public key and underlying EC parameters

KI_ECPublicComponent Public component of an EC public key
1 1 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Keys In Crypto-C
Table 3-18 Token Keys
For use with hardware devices, when present.

Key Information Type Description

KI_ExtendedToken Software-based token form of symmetric keys

KI_KeypairToken Software-based token forms of RSA or DSA public and private
keys

KI_Token Hardware-based token forms of symmetric and public/private
keys
C h a p t e r 3 U s i n g C r y p t o - C 1 1 7

System Considerations In Crypto-C
System Considerations In Crypto-C

Algorithm Choosers
When you use an AI, it in turn calls one or more algorithm methods. An algorithm
method (or AM) is the underlying code that will actually perform the cryptography.
Because many AIs can perform more than one cryptographic function (for instance,
both encryption and decryption, as with AI_FeedbackCipher), an application will
often have a choice of which underlying cryptographic code to link in. An algorithm
chooser lists all the AMs the application can use. That is, it chooses in advance which
AMs to link in.

Crypto-C comes with a demonstration application containing the algorithm chooser
DEMO_ALGORITHM_CHOOSER. You can use this algorithm chooser in any Crypto-C
application as long as the module that defines it (choosc.c) is compiled and linked in.
However, DEMO_ALGORITHM_CHOOSER will link in all the algorithm methods available,
even though an application may use only two or three. A developer can write an
algorithm chooser tailored for the specific application to make the executable image
smaller.

The section “Defining an Algorithm Chooser” in the Library Reference Manual says:

From this we see that an algorithm chooser is a pointer to an array. This array
contains pointers to algorithm methods, which are the AMs the application will use.

To determine which AMs to include in your algorithm chooser, you need to know
which AIs you will use in your application. Then, for each AI, find the Chapter 2 entry
in the Library Reference Manual and look at the AMs listed under “Algorithm methods
to include in application’s algorithm chooser.” Then, based on how your application
uses the given AI, decide which of those AMs you need to include in your algorithm
chooser.

An Encryption Algorithm Chooser
The section “Introductory Example” on page 9 describes a program that encrypted
data and did nothing else. It did not decrypt data, generate random numbers, execute
the Diffie-Hellman key agreement protocols, or use elliptic curve cryptography.

An algorithm chooser is an array of pointers to B_ALGORITHM_METHOD values.
The last element of the array must be (B_ALGORITHM_METHOD *)NULL_PTR.
1 1 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

System Considerations In Crypto-C
Therefore, the only cryptographic tools the program needed was encryption code.
And the only kind of encryption code it needed was RC4 encryption, not DES, RC2,
RC5, or RSA encryption. So we could have built an algorithm chooser that included
only one AM, the one we used for RC4 encryption.

To find the AM we need, look at the Library Reference Manual, Chapter 2, for the entry
on the AI in use. We used AI_RC4. The Library Reference Manual states that for this AI,
the possible AMs are AM_RC4_ENCRYPT for encrypting and AM_RC4_DECRYPT for
decrypting. Because we did not decrypt, our algorithm chooser only needs to include
AM_RC4_ENCRYPT:

The last entry of an algorithm chooser must be (B_ALGORITHM_METHOD *)NULL_PTR.

As an argument in a Crypto-C function call, it would look like this.

An RSA Algorithm Chooser
In this example, we will build an algorithm chooser for the example in “Performing
RSA Operations” on page 186. We want to include all the AMs for generating an RSA
key pair, encrypting, and decrypting. We need: a random number generator, a key
pair generator, an RSA public encryption algorithm, and an RSA private decryption
algorithm. (Although the example doesn’t directly include a random-number
generator, it calls on the one from “Generating Random Numbers” on page 147.)

The AIs used in the example are: AI_X962Random_V0 (also known as AI_SHA1Random),
AI_RSAKeyGen, AI_PKCS_RSAPublic, and AI_PKCS_RSAPrivate.

Note: AI_SHA1Random is identical to AI_X962Random_V0. The name
AI_SHA1Random is used in the demo applications; however, AI_SHA1Random
may change in future versions of Crypto-C. For forward compatibility, we
recommend that you do not use the name AI_SHA1Random in your
applications; use AI_X962Random_V0 instead.

B_ALGORITHM_METHOD *INTRODUCTORY_CHOOSER[] = {
 &AM_RC4_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_<function> (
 <arguments>, INTRODUCTORY_CHOOSER,
 <other arguments>)) != 0)
 break;
C h a p t e r 3 U s i n g C r y p t o - C 1 1 9

System Considerations In Crypto-C
From the corresponding entries in Chapter 2 of the Library Reference Manual, you can
construct the following algorithm chooser. Note that you should reference the
description of AI_X962Random_V0 instead of AI_SHA1Random:

Note: The above algorithm chooser lists AM_RSA_CRT_DECRYPT. This AM will not
perform blinding (see “Timing Attacks and Blinding” on page 96). If you
want your application to perform blinding, use AM_RSA_CRT_ENCRYPT_BLIND
or AM_RSA_CRT_DECRYPT_BLIND.

The Surrender Context
Some Crypto-C functions are time-consuming. When an application calls one of these
functions, it can appear as if the computer has crashed or frozen. A lengthy Crypto-C
function can tie up the computer, forcing other applications or programs to wait until
the Crypto-C function is finished to continue their execution. The surrender context is
a way for an application to allow Crypto-C to surrender control.

In general, it is a good idea to include a surrender context whenever a function takes
several seconds to execute. The following functions are extremely time-consuming:

• functions for parameter generation

• functions for key generation

• functions for creating acceleration tables

Other functions are less time-consuming and might not need a surrender context in
your application. These include many of the block- and stream-cipher symmetric-key
operations as well as message digests.

The surrender context information is contained in an A_SURRENDER_CTX structure.
aglobal.h gives the definition; this is described in Chapter 1 of the Library Reference

B_ALGORITHM_METHOD *RSA_SAMPLE_CHOOSER[] = {
 &AM_SHA_RANDOM,
 &AM_RSA_KEY_GEN,
 &AM_RSA_ENCRYPT,
 &AM_RSA_CRT_DECRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
1 2 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

System Considerations In Crypto-C
Manual:

Chapter 1 also gives the form that a surrender function must have:

If you define a surrender function within the surrender context, Crypto-C functions
will call it at regular intervals during execution. Depending on the application, the
surrender function can perform one of a number of operations.

For example, a surrender function can:

• Notify the user of the current status of execution, either once at the beginning or
once every second, for instance.

• Allow the user to cancel the operation.

• Suspend the Crypto-C function to allow other operations to execute.

Even when you do not need a surrender function to manage lengthy function calls,
you can create one to perform other tasks. For example, you could use a surrender
function to allow other applications to cut into a Crypto-C routine, no matter how
quickly it executed. A surrender context can be a potent tool in debugging as well.

A Sample Surrender Function
As an example, we will construct a surrender function that announces the start of a
Crypto-C function, and prints out a dot on the screen every second.

typedef struct {
 int (*Surrender) (POINTER); /* surrender function callback */
 POINTER handle; /* application-specific information */
 POINTER reserved; /* reserved for future use */
} A_SURRENDER_CTX;

int (*Surrender) (
 POINTER handle /* application-specific information */
);

#include <time.h>

int GeneralSurrenderFunction (handle)
POINTER handle;
{
 static time_t currentTime;
 time_t getTime;
C h a p t e r 3 U s i n g C r y p t o - C 1 2 1

System Considerations In Crypto-C
A routine that calls Crypto-C functions would use the above surrender function as
follows:

For this surrender function, the handle contains a flag passed from the user. If handle
is 0, this is the first time the surrender function has been called by the particular
Crypto-C routine currently executing. Then the surrender function will reset the flag
and the next time it is called, it will skip the if clause and execute the else clause.

The coding examples in this manual use the example in this section as their surrender
context. The examples also note when a routine is lengthy enough to warrant use of a
surrender context. When a surrender context is not necessary, you can pass a properly
cast NULL_PTR.

When to Allocate Memory
Whenever you use Crypto-C, you will produce output. The output might be

 if ((int)*handle == 0) {
 printf (“\nSurrender function ...\n”);
 *handle = 1;
 time (¤tTime);
 }
 else {
 time (&getTime);
 if (currentTime != getTime) {
 printf “ .");
 currentTime = getTime;
 }
 }
 return (0);
}

A_SURRENDER_CTX generalSurrenderContext;
int generalFlag;
generalSurrenderContext.Surrender = GeneralSurrenderFunction;
generalSurrenderContext.handle = (POINTER)&generalFlag;
generalSurrenderContext.reserved = NULL_PTR;
generalFlag = 0;

if ((status = B_<function>
 (<other arguments>, &generalSurrenderContext)) != 0)
 break;
1 2 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

System Considerations In Crypto-C
encrypted or decrypted data, or information you are retrieving concerning keys or
algorithms. This output must go somewhere; there must be memory that is allocated
to hold it. If memory is not allocated for a particular output, the computer will still try
to put the output somewhere, possibly in a location that already contains other data
or programs. When is it the application’s responsibility to allocate memory and when
will Crypto-C do the allocating?

The application must allocate memory whenever a Crypto-C function produces
output and the prototype indicates that the output argument is a pointer (for instance,
POINTER or unsigned char *). In this situation, Crypto-C asks for a pointer and places
the output at the address indicated by the pointer. It is the application’s responsibility
to make sure that the pointer points to allocated memory.

Crypto-C allocates memory whenever a function produces output and the prototype
indicates the output argument is a pointer to a pointer (for instance, POINTER *). Here,
Crypto-C asks for the address of a pointer. Crypto-C goes to that address and deposits
a pointer there. If the application goes to where the pointer points, it will find the
information it is looking for. This information, though, belongs to Crypto-C;
subsequent Crypto-C calls can alter or erase it. If an application needs to save the
information, it should copy it into its own buffer or allocated space. See “Distributing
Diffie-Hellman Parameters” on page 222 for an example.

Note: Crypto-C will sometimes call for an unsigned int argument and other times
an unsigned int *. For unsigned int, Crypto-C is expecting a number; for
unsigned int *, Crypto-C will supply the number, so you just supply the
address of an int variable.

Memory-Management Routines
Crypto-C uses the following memory-management routines:

• T_malloc

• T_realloc

• T_free

• T_memset

• T_memcpy

• T_memmove

• T_memcmp

Sample implementations of these routines reside in the memory management file,
tstdlib.c, supplied with Crypto-C. See the final section of Chapter 4 in the Library
C h a p t e r 3 U s i n g C r y p t o - C 1 2 3

System Considerations In Crypto-C
Reference Manual for descriptions and prototypes of these routines. You can also write
your own versions of these routines to satisfy the needs of your operating system or
application. It is a good idea to examine tstdlib.c before writing your own code.

Supplying memory management routines with Crypto-C provides several
advantages:

• Reduced dependency on standard C libraries

• Increased control over memory allocation

• Increased ability to handle binary data

Memory-Management Routines and Standard C Libraries
The memory-management routines in tstdlib.c organize the arguments to the
standard call to best suit Crypto-C’s purposes. They do type checking and verify that
the arguments follow the Crypto-C conventions. This helps you to keep your code
portable, because any call to these routines will behave uniformly, regardless of
platform. This uniform behavior best suits the needs of Crypto-C.

Some applications may need to be completely autonomous; that is, they should have
no need to link in any external libraries. As far as possible, the Crypto-C library is
autonomous, but Crypto-C does need the functionality of certain standard C library
routines, such as malloc. In order for Crypto-C to remain autonomous, the user must
supply these routines.

The routines in tstdlib.c do call the standard C library routines, so to use tstdlib.c
you must still link in the standard C library. If your application does not need to be
autonomous, you can use these supplied versions of the T_ routines. If, however, your
application will eventually require autonomy, you can supply versions of the T_
routines that do not call the standard C library.

If a particular platform and compiler offers an optimized version or simply a
platform-specific version of one or more of the memory management routines,
Crypto-C can call that routine without requiring a change in the source code. You
only have to modify the module containing the memory management routines.

Memory Allocation
For security reasons, it is often important that space be allocated from core memory,
not a hard disk virtual memory. If an application makes a call to the standard malloc
or alloc, the operating system may decide to use virtual memory. The T_malloc call
can be made to guarantee core memory allocation and never virtual memory.
1 2 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

System Considerations In Crypto-C
Binary Data
Remember that the C calls beginning with “str”, such as strlen and strcpy, operate
on strings. Length is not a necessary input argument; instead, the function acts on
everything from the beginning of the string to the NULL terminating character.
However, the output from a Crypto-C call is a block of memory, not a string. Even if
the data to encrypt is a string, the encrypted data is not. Similarly, data that has been
decrypted will not be a properly terminated string unless the NULL terminating
character was encrypted as well.

The “mem” routines supplied with Crypto-C, such as T_memcpy and T_memset, address
this problem. They operate on blocks of memory and need to know how many bytes
to act on. Whether or not there is a NULL terminating character in the block of memory
does not matter.

BER/DER Encoding
Much of the data in cryptographic applications needs to be passed between two or
more individuals. For example, users may need to transmit a public key, elliptic curve
parameters, or an algorithm name. Not everyone uses Crypto-C, and how
information is processed in Crypto-C may be different from another company’s
package. There needs to be a standard for describing certain information. BER/DER is
such a standard.

Open Systems Interconnection (OSI, described in ANSI’s X.200) is an internationally
standardized architecture that governs the interconnection of computers from the
physical layer up to the user-application layer. OSI’s method of specifying abstract
objects is called ASN.1 (Abstract Syntax Notation One, defined in X.680), and one set
of rules for representing such objects as strings of ones and zeros is called BER (Basic
Encoding Rules, defined in X.680). There is generally more than one way to BER-
encode a given value, so another set of rules, called the Distinguished Encoding Rules
(DER), which is a subset of BER, gives a unique encoding to each ASN.1 value. The
PKCS document includes “A Layman’s Guide to a Subset of ASN.1, BER and DER”
which is more accessible than the actual standard.

If your application must transfer information to another computer or software
package, you may need to convert the data into BER-encoded format before you send
it. Crypto-C offers a way to get information into DER format, using
B_GetAlgorithmInfo or B_GetKeyInfo with the BER version of the AI or KI used to set
the algorithm or key object.

The following example corresponds to the file berder.c.
C h a p t e r 3 U s i n g C r y p t o - C 1 2 5

System Considerations In Crypto-C
In the “Introductory Example” on page 9, we set the algorithm object to AI_RC4. The
Library Reference Manual Chapter 2 entry on this AI reports that a compatible
representation is AI_RC4BER. That AI provides the BER-encoded algorithm identifier
for the RC4 algorithm. Look up the Library Reference Manual Chapter 4 entry for
B_GetAlgorithmInfo. This function takes three arguments: an address for Crypto-C to
deposit a pointer to the info, the algorithm object from which we are getting the info
and the info type.

The Library Reference Manual Chapter 2 entry on AI_RC4BER tells us that the info
returned by B_GetAlgorithmInfo is a pointer to an ITEM. The type ITEM is defined in
aglobal.h as:

We will declare a variable to be a pointer to an ITEM and use its address as the info
argument. The prototype calls for the address of a POINTER, not the address of a
pointer to an ITEM, so type casting is necessary.

Crypto-C returns a pointer to the location where we can find the info, not the info
itself. When we destroy the object, that info will disappear. If we want to save it, we
have to copy it over into our own buffer, the memory for which we must allocate.

Remember to use T_free to free any memory you allocated with T_malloc when you

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;

ITEM *getInfoBER;
ITEM infoBER;

infoBER.data = NULL_PTR;

if ((status = B_GetAlgorithmInfo
 ((POINTER *)&getInfoBER, encryptionObject,
 AI_RC4_BER)) != 0)
 break;

infoBER.len = getInfoBER–>len;
infoBER.data = T_malloc (infoBER.len);
if ((status = (infoBER.data == NULL_PTR)) != 0)
 break;

T_memcpy (infoBER.data, getInfoBER->data, infoBER.len);
1 2 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

System Considerations In Crypto-C
are done with it.

Now, if we need to let anyone know what algorithm we used to encrypt, we can send
the BER-encoded algorithm identifier.

For additional examples that use BER, see “Distributing an RSA Public Key” on
page 189 and “Distributing Diffie-Hellman Parameters” on page 222.

Note: BER-encoding does not put data into an ASCII string; it is simply a standard
way of describing certain universal objects. To convert binary data to and
from an ASCII string (to email it, for example) see “Converting Data Between
Binary and ASCII” on page 154.

Note: Conversion into BER or DER is known as BER-encoding or DER-encoding;
the conversion between binary and ASCII is known as encoding and
decoding. This may get confusing, but the word encoding without a BER in
front of it generally means binary to ASCII. If the encoding is BER- or DER-
encoding, the BER or DER should be explicitly stated.

Input and Output
Some of the AI entries in the Library Reference Manual include the categories “Input
Constraints” and “Output Considerations”:

• Input constraints generally describe the input requirements of the algorithm
specified by the AI.

• Output considerations warn you that there may be more (or fewer) output bytes
than input bytes.

Two algorithm types that typically have input constraints or output considerations
are symmetric block algorithms and the RSA algorithm.

Symmetric Block Algorithms
Symmetric block algorithms may have both input constraints and output
considerations.

Input constraints
• In symmetric block-encryption algorithms, the total number of input bytes must

be a multiple of the block size. That does not mean the input to each call to an
Update function must be a multiple of the block size, just the total.
C h a p t e r 3 U s i n g C r y p t o - C 1 2 7

System Considerations In Crypto-C
For instance, with RC2, the block size is eight bytes. You can pass 23 bytes in the
first call to Update, then 18, then 7, for a total of 48.

Output considerations
• For a symmetric block-encryption algorithm, the output from each Update call

may be different from the input size.

In the above example, RC2 was able to process 16 of the first 23 bytes, but saved 7
in a buffer. The input was 23, but the output was 16. During the second call to
Update, Crypto-C had the 18 new input bytes plus the old 7, or 25 bytes to work
with. It could process 24 (and save 1). Hence the input was 18 but the output was
24 bytes long. The last 7 input bytes combined with the saved 1 byte make up the
final 8 byte block. It is important to allow for this difference in length between
output and input in your application.

• In addition to the difference in size during Updates, the overall data size can
differ between input and output.
Crypto-C offers padding for the symmetric block-encryption algorithms, which
have no restrictions on the total input length. Padding means that the total length
of the encrypted data can be as many as eight bytes more than the total length of
the input.

Note: For algorithm info types that supply padding, Crypto-C will pad even if the
input is a multiple of the block size. This way, when decrypting, Crypto-C
knows that the last byte is guaranteed to be a pad byte. For AIs that use PKCS
#5 padding, the last byte, when decrypted, will be a number: the number of
pad bytes Crypto-C should strip.

The RSA Algorithm
The second common area of input constraints is the RSA algorithm. Recall that this
algorithm uses modular math.

Input constraints
The following input restrictions apply:

• Whenever modular math is used a calculation, the values passed must be less
than the RSA modulus n. For example, if the modulus is 55, the input must be
from zero to 54; the number 57 is invalid.
1 2 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

System Considerations In Crypto-C
• For PKCS-compatible RSA, the input to encryption or decryption must be no
more than k – 11 bytes long, where k is the modulus length in bytes. For example,
with a 768-bit modulus, the input can be no more than 85, or 96 – 11, bytes. This is
because the padding scheme needs at least an 11-byte area to work.
The output will be the same size as the modulus.

• For raw RSA, the application must divide the input to encryption or decryption
into blocks. Each block must have the same number of bits as the RSA modulus
and, when interpreted as an integer with the most significant byte first, must be
numerically less than the modulus. In addition, the size of the total input must be
a multiple of the size of the modulus. That is, if the modulus is k bits long, each
block of input must be k bits long, and the total input must be a multiple of k bits.
For example, if the modulus is 768 bits (96 bytes) long, the input must be divided
into blocks of 96 bytes and the total input must be a multiple of 96 bytes. See
“Raw RSA” on page 197 for more information on how to pass data properly.
The output of raw RSA is the same size as the input.
In general, there should be no need for raw RSA encryption or decryption. We do
not recommend using raw RSA unless you are familiar with the issues involved.

General Considerations
In general, Crypto-C has mechanisms to keep you aware of input constraints and
output considerations.

If your input does not meet the constraints, Crypto-C will return an error message.

For output, Crypto-C requires that you pass the size of the output buffer. In this way,
Crypto-C will determine whether there is enough space available before trying to
store output. If your buffer is not big enough, Crypto-C will return an error.

Most important of all, when it comes to output, Crypto-C tells you how many bytes it
placed into the output buffer. That argument is unsigned int *partOutLen in the
Update and Final function prototypes. Pass an address to an unsigned int and
Crypto-C will go to that address and drop a value there. That value is the number of
bytes Crypto-C placed into the output buffer. After the call to Crypto-C, you can look
at that value to determine how many bytes were processed. It may not be the same
number as the input length. It might be more, it might be less. It may even be zero.

Key Size
In cryptography, security is measured in key size: the bigger the key, the greater the
C h a p t e r 3 U s i n g C r y p t o - C 1 2 9

System Considerations In Crypto-C
security. Key size, in turn, is measured in bits. However, a bit number does not
necessarily describe the entire key.

DES Keys
A DES key is 56 bits. However, that size refers to its cryptographic size, not its
physical size. To build a DES key, you need 64 bits, but because eight of those bits are
“parity bits,” which are known, you really only get 56 secret bits. Hence, a DES key,
while consisting of 64 bits of data, is only 56 cryptographic bits large.

RSA Keys
An RSA key-pair measurement describes the modulus length. When cryptographers
talk about a “768-bit RSA key pair,” what they really mean is that the modulus is 768
bits long. Because the security of an RSA key pair depends on how big the modulus is,
the measurement used is the bit-size of the modulus. However, the actual keys
themselves contain more information than the modulus, so the physical size is much
larger.

Public Key Size
A public key consists of a modulus and a public exponent. To store that public key
requires space for both of those components; so for a 768-bit public key, you need
more than 768 bits of storage space.

Almost everyone who uses the RSA algorithm uses F4 as the public exponent. F4 is
short for Fermat 4, one of a sequence of numbers with special properties first
described by the 17th-century mathematician Pierre de Fermat. F4 = 01 00 01 in
hexadecimal notation (65,537 in decimal), and it is 17 bits long. If you use F4, you need
785 bits of space to store a 768-bit public key and its public exponent. Of course,
storage space comes only in bytes, so you actually need 99 bytes of space.

In addition, when you access the public key, you need to know where the modulus
ends and the public exponent begins. It would be a good idea to put identifying
marks on the data to make it easier to parse. BER/DER encoding standardizes such
identifying marks as an industry standard so that people using different software
packages can still trade information. Hence, with Crypto-C, the user has the option of
storing a 768-bit public key simply as a modulus and public exponent (99 bytes), or in
its DER encoded format, which requires 126 bytes.

Private Key Size
At its most basic form, the private key consists of a modulus and a private exponent.
1 3 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

System Considerations In Crypto-C
The modulus for the private key is the same as the modulus for the public key. The
private exponent is the truly private part of the private key. The private value is
usually the same size as the modulus, or 1 bit smaller. Therefore, to store a 768-bit
private key, one needs at least 1536 bits (192 bytes) of storage space.

To perform private key operations, you require only the modulus and private
exponent. However, the computations can be much faster if you have access to more
information.

Recall that, in RSA, the modulus is actually the product of two prime numbers. The
private exponent is derived from the two primes and the public exponent. Given only
the modulus and the public exponent, an attacker cannot deduce the private
exponent.

When computing the key pair, you can find two suitable primes, multiply them
together to get the modulus, use the primes to determine the private exponent, and
then throw the primes away. Or you can use the primes to compute two prime
exponents and a Chinese Remainder Theorem (CRT) coefficient, and save all this
information. Then, when executing private key operations with the extra information,
you can use the Chinese Remainder Theorem to make the appropriate computations
much more quickly.

So when saving a 768-bit private key, you actually need to save the following:

• the modulus: 96 bytes

• the public exponent — it is small and there are advantages to having it saved with
the private key: 3 bytes

• the private exponent: 96 bytes

• two primes: 2 × 48 bytes

• two prime exponents: 2 × 48 bytes

• a CRT coefficient: 48 bytes.

• The identifying marks for DER encoding

This adds up to 484 bytes!

In addition, when the most significant bit of the most significant byte of a value is set,
DER calls for a prepended 0 byte, so that it is not interpreted as a negative 2’s
complement number.

For example, converting the decimal number 3,260,571,825 into hex yields
0xC25860B1. As a byte string, it would be:

C2 58 60 B1
C h a p t e r 3 U s i n g C r y p t o - C 1 3 1

System Considerations In Crypto-C
which is four bytes long. But is that a negative or positive number? Is the sign bit set,
or is this an unsigned value? To avoid confusion, we prepend a 0 byte, as follows:

00 C2 58 60 B1

Our string is now five bytes long.

For a 768-bit key pair, the most significant bit of the most significant byte of the
modulus and both primes should always be set. So three of the private key’s values
will have a prepended 0 byte. This increases the total key size to 487 bytes. Sometimes
the most significant bit of the most significant byte of the private exponent, prime
exponents and CRT coefficient will be set, sometimes not. So the total bytes could be
as many as 491.

Note: If the public exponent is F4 (01 00 01), that value does not need a prepended 0
byte.

All of this means that when you generate your RSA key pair, you do not know in
advance how big it is going to be when you store it in DER format. You know the
approximate size, but not the exact length.

Crypto-C has the tools to let you know the exact length of your encoded key. When
you call B_GetKeyInfo, you pass the address of a pointer. Crypto-C drops off a pointer
at that address. If you go to the address indicated by the pointer, you will find the key
information, which includes the key’s length. Use that value to find out exactly how
long your key is.
1 3 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Using Cryptographic Hardware
Using Cryptographic Hardware

Interfacing with a BHAPI Implementation
Crypto-C lets you enhance the security and speed of cryptographic operations by
exploiting cryptographic hardware that supplies an interface to Crypto-C via the
BSAFE Hardware Application Programming Interface (BHAPI). Capabilities include
a hardware algorithm method for random number generation and key token types
that encapsulate RSA, DSA, and symmetric keys inside of hardware.

When you Create, Set, and Init an algorithm object in a Crypto-C software
application, you set an algorithm info type (AI) and the parameters required by the
AI. You also choose which algorithm methods to use via the software chooser. The AI
itself doesn’t perform any cryptographic operations; rather, it is used to store
information, allocate space, and to create the necessary points of contact with the
underlying Crypto-C functions. Figure 3-1 shows the relation between the algorithm
object and the Crypto-C software library.

Figure 3-1 Algorithm Object in a Software Implementation

A hardware manufacturer can associate a hardware function with a Crypto-C AM
and provide these methods to the software developer. You then access the hardware
by using B_CreateSessionChooser to create a hardware-based chooser, e.g.,
FIXED_HARDWARE_CHOOSER, that lists the available required hardware methods. This
substitution is made at link time, and does not change once the application has been
compiled.

If more than one hardware method is present for the same AM — for example, if the
application includes hardware methods implementing RSA encryption from two

Functions

Alg Object

Type (AI)

Parameters

BSAFE Software Library
C h a p t e r 3 U s i n g C r y p t o - C 1 3 3

Using Cryptographic Hardware
different manufacturers — B_CreateSessionChooser includes all available hardware
methods. When an object’s methods are instantiated at initialization, Crypto-C loads
the object with the first compatible method from the session chooser. Figure 3-2
shows how an algorithm object operates with a hardware interface.

Figure 3-2 Algorithm Object with Hardware

During the call to B_CreateSessionChooser, Crypto-C tests for the presence of the
hardware; if hardware is present, the hardware method is included in the session
chooser. If no hardware is present, then the application defaults to the Crypto-C
software AM or to a software emulation if one is included in the chooser.

To extend the functionality of the BHAPI interface to include key-token operations,
Crypto-C supplies some AIs that are only available when B_CreateSessionchooser is
used. These AIs have software-emulated versions, but can only be accessed via
inclusion in the hardware chooser.

Hardware Issues
Working with hardware devices introduces new issues that must be addressed. A
cryptographic key on a hardware device might never leave the device; this is part of

Functions

Algorithm Object

Type (AI)

Parameters

BSAFE Software Library

Hardware Methods
1 3 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Using Cryptographic Hardware
the security. For instance, suppose you want to produce a digital envelope. You might
use an hardware accelerator to perform DES encryption of the bulk data, then want to
encrypt the DES key with the recipient’s public key. However, when you make the
call to retrieve the key, the hardware might return a handle to the key, rather than the
key itself. This enhances security, because the key never appears “in public.”

To implement this, the hardware accelerator might require you to call its key-
wrapping routines to build a digital envelope. When you request the key in order to
store it for later use, the hardware could return a handle to the key. But if you give
that data to another cryptographic package, the key will mean nothing.

In other words, once you build a key (symmetric or private) on a hardware device, it
is possible that only that hardware device will be able to use the key. Therefore, you
should use hardware accelerators only when you thoroughly understand their use.
C h a p t e r 3 U s i n g C r y p t o - C 1 3 5

1 3 6 C h a p t e r 3 U s i n g C r y p t o - C

Chapter 4

Non-Cryptographic Operations
Crypto-C supplies a number of non-cryptographic algorithms that are necessary for
cryptographic applications. These include:

• Message digests

• Random number generators

• ASCII-to-binary and binary-to-ASCII encoding
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 3 7

Message Digests
Message Digests
A message digest is a fixed-length statistically-unique identifier that corresponds to a
set of data. That is, each unit of data — such as a file, string, or buffer — maps to a
particular byte sequence (usually 16 or 20 bytes long). A digest is not random:
digesting the same unit of data with the same message-digest algorithm will always
produce the same byte sequence.

Digests are used in random-number generation, password-based encryption, and
digital signatures.

Creating a Digest
The example in this section corresponds to the file mdigest.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Crypto-C offers four message digest algorithms: MD, MD2, MD5, and SHA1.

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal
compression function, and there is some chance that the attack on MD2 may
be extended to the full hash function. The same attack applies to MD. Another
attack has been applied to the compression function on MD5, though this has
yet to be extended to the full MD5. RSA Data Security, Inc., recommends that
before you use MD, MD2, or MD5, you should consult the RSA Laboratories
web site to be sure that their use is consistent with the latest information.

The AI for SHA1 is AI_SHA1; the Library Reference Manual Chapter 2 entry for this AI

B_ALGORITHM_OBJ digester = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&digester)) != 0)
 break;
1 3 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Message Digests
states that the format of info supplied to B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
To initialize a message digest, call B_DigestInit. The Library Reference Manual
Chapter 4 entry on B_DigestInit shows that it requires four arguments. The first
argument is the algorithm object. The second is a key object. All Crypto-C message
digest AIs call for a properly cast NULL_PTR as the key object; Crypto-C provides this
argument for algorithms, like HMAC, that require keys. The third argument is an
algorithm chooser. The fourth is a surrender context; this is a fast function, so it is
reasonable to pass a properly cast NULL_PTR:

Step 4: Update
Use B_DigestUpdate to enter the data to digest. If you have separate units of data (for
example, two or more files or several strings), make a call to B_DigestUpdate for each
unit. Message digesting is quick, so unless you are digesting an extremely large
amount of data (a megabyte or more), it is reasonable to pass a properly cast NULL_PTR
for the surrender context.

if ((status = B_SetAlgorithmInfo
 (digester, AI_SHA1, NULL_PTR)) != 0)
 break;

B_ALGORITHM_METHOD *DIGEST_CHOOSER[] = {
 &AM_SHA,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_DigestInit
 (digester, (B_KEY_OBJ)NULL_PTR, DIGEST_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 3 9

Message Digests
Your call will be the following:

Step 5: Final
An MD2 or MD5 digest is always 16 bytes; an SHA1 digest is always 20 bytes. Because
you are using SHA1, create a 20-byte buffer to hold the output and call
B_DigestFinal. The Library Reference Manual gives the prototype for this function in
Chapter 4.

The first argument is the algorithm object. The second is the buffer where Crypto-C
will deposit the digest. The third is an address for Crypto-C to return the number of
bytes in the digest. Because this value should always be 20, you can use this as a check
on the algorithm if you like. The fourth argument is the size of the output buffer. If
Crypto-C needs a bigger buffer, this function will return an error. The fifth argument
is the surrender context; this is a fast function, so there should be no problem with
using a properly cast NULL_PTR:

/* The variable dataToDigest should already point to allocated
 memory and contain the data, dataToDigestLen should
 already be set to the number of bytes to digest. */

unsigned char *dataToDigest;
unsigned int dataToDigestLen;

if ((status = B_DigestUpdate
 (digester, dataToDigest, dataToDigestLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

#define DIGEST_LEN 20

unsigned char digestedData[DIGEST_LEN];
unsigned int digestedDataLen;

if ((status = B_DigestFinal
 (digester, digestedData, &digestedDataLen, DIGEST_LEN,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
1 4 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Message Digests
Step 6: Destroy
Remember to destroy all objects when you are done with them:

BER-Encoding the Digest
If you want to send your digest to someone, you should BER-encode the algorithm
identifier and the digest. The Crypto-C function B_EncodeDigestInfo offers a way to
put together a string containing your information in BER format.

The example in this section corresponds to the file mdber.c.

The Library Reference Manual Chapter 4 entry for B_EncodeDigestInfo shows that this
function takes six arguments:

The first argument is an address where Crypto-C can drop the BER-encoded digest
information. You will have to allocate the space for this buffer. This buffer will
contain the algorithm identifier and the 16- or 20-byte digest, the total for MD2 and
MD5 digests is 34; for a SHA1 digest, it is 35 bytes. If you want to be safe, you can
make the buffer larger.

The second argument is the address of an unsigned int; Crypto-C will place the final
length of the BER encoding at that address. The third argument is the buffer size. The
fourth is a pointer to an ITEM containing the DER encoding of the message digest
algorithm; you obtain the DER encoding by calling B_GetAlgorithmInfo with the
appropriate AI with BER-encoding. The fifth argument is the digest itself; the sixth is
the length of the digest.

B_DestroyAlgorithmObject (&digester);

int B_EncodeDigestInfo (
 unsigned char *digestInfo, /* encoded output buffer */
 unsigned int *digestInfoLen, /* length of encoded output */
 unsigned int maxDigestInfoLen, /* size of digestInfo buffer */
 ITEM *algorithmID, /* message digest algorithm identifier */
 unsigned char *digest, /* message digest value */
 unsigned int digestLen /* length of digest */
);
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 4 1

Message Digests
The following example BER-encodes the sample digest above:

To decode BER-encoded information, call B_DecodeDigestInfo. Simply pass the
addresses you need; Crypto-C will fill the ITEMs for you:

#define DIGEST_LEN 20
#define ALG_ID_LEN DIGEST_LEN + 18

ITEM *sha1AlgInfoBER;
unsigned char digestInfoBER[ALG_ID_LEN];
unsigned int digestInfoBERLen;

if ((status = B_GetAlgorithmInfo
 ((POINTER *)&sha1AlgInfoBER, digester, AI_SHA1_BER)) != 0)
 break;

if ((status = B_EncodeDigestInfo
 (digestInfoBER, &digestInfoBERLen, ALG_ID_LEN, sha1AlgInfoBER,
 digestedData, digestedDataLen)) != 0)
 break;

ITEM retrievedAlgorithmID;
ITEM retrievedDigest;

if ((status = B_DecodeDigestInfo
 (&retrievedAlgorithmID, &retrievedDigest, digestInfoBER,
 digestInfoBERLen)) != 0)
 break;
1 4 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Hash-Based Message Authentication Code (HMAC)
Hash-Based Message Authentication
Code (HMAC)
A hash-based message authentication code (HMAC) combines a secret key with a
message digest to create a message authentication code. See “Hash-Based Message
Authentication Codes (HMAC)” on page 47 for a description of the algorithm.

Crypto-C provides an HMAC implementation based on SHA1. Recall that SHA1
produces a 20-byte digest and takes input in 64-byte blocks.

The example in this section corresponds to the file hmac.c.

Step 1: Creating an Algorithm Object
Declare a variable of type B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
There is only one AI for hash-based message authentication codes, AI_HMAC. The
Library Reference Manual Chapter 2 entry for AI_HMAC states that the format of info
supplied to B_SetAlgorithmInfo is a pointer to a B_DIGEST_SPECIFIER structure:

The only choice for digestInfoType in Crypto-C is AI_SHA1. In the case of AI_SHA1,

 B_ALGORITHM_OBJ HMACDigester = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&HMACDigester)) != 0)
 break;

typedef struct {
 B_INFO_TYPE digestInfoType;
 POINTER digestInfoParams;
} B_DIGEST_SPECIFIER;
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 4 3

Hash-Based Message Authentication Code (HMAC)
digestInfoParams should be set to NULL_PTR:

Step 3: Init
For hash-based message authentication, you need a key before you can initialize the
object.

Step 3a: Creating the Key Object

Step 3b: Setting the Key Object
Generate a random 24-byte key using KI_24Byte:

 B_DIGEST_SPECIFIER hmacInfo;

 hmacInfo.digestInfoType = AI_SHA1;
 hmacInfo.digestInfoParams = NULL_PTR;

 if ((status = B_SetAlgorithmInfo
 (HMACDigester, AI_HMAC, (POINTER)&hmacInfo)) != 0)
 break;

#define KEY_SIZE 24

 B_KEY_OBJ HMACKey = (B_KEY_OBJ)NULL_PTR;
 unsigned char *keyData;

 /* Create a key object */
 if ((status = B_CreateKeyObject (&HMACKey)) != 0)
 break;

 keyData = T_malloc (KEY_SIZE);
 if ((status = (keyData == NULL_PTR)) != 0)
 break;

 /* Complete Steps 1-4 of Generating Random Numbers */
 /* Generate KEY_SIZE bytes of random data for the key. */
 if ((status = B_GenerateRandomBytes
 (randomAlgorithm, keyData, KEY_SIZE,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
1 4 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Hash-Based Message Authentication Code (HMAC)
Once you have a properly initialized the key object, you can call B_DigestInit. The
Library Reference Manual Chapter 4 entry on B_DigestInit shows that it requires four
arguments. The first argument is the algorithm object; the second is the key object.
The third is an algorithm chooser. The fourth is a surrender context; this is a fast
function, so it is reasonable to pass a properly cast NULL_PTR:

Step 4: Update
Once you have set the algorithm object, you can create the message authentication
code by calling B_DigestUpdate for all of the data to digest:

Step 5: Final
After the data to digest has been processed by calls to B_DigestUpdate, call
B_DigestFinal. You need to pass a pointer to the location where B_DigestFinal can
store the output. In the case of AI_HMAC using SHA1, you need 20 bytes to store the

 /* Set the key object */
 if ((status = B_SetKeyInfo (HMACKey, KI_24Byte, keyData)) != 0)
 break;

 B_ALGORITHM_METHOD *HMAC_CHOOSER[] = {
 &AM_SHA,
 &AM_SHA_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_DigestInit
 (HMACDigester, HMACKey, HMAC_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 unsigned char dataToDigest[] = "Digest this sentence.";
 unsigned int dataToDigestLen = strlen (dataToDigest);

 if ((status = B_DigestUpdate
 (HMACDigester, dataToDigest, dataToDigestLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 4 5

Hash-Based Message Authentication Code (HMAC)
result.

Step 6: Destroy
Once you have generated the message authentication code, destroy any objects you
used, and free up any memory you allocated:

 unsigned char *digestedData;
 unsigned int digestedDataLen;

 digestedData = T_malloc (20);
 if ((status = (digestedData == NULL_PTR)) != 0)
 break;

 if ((status = B_DigestFinal
 (HMACDigester, digestedData, &digestedDataLen,
 20, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 B_DestroyKeyObject (&HMACKey);
 B_DestroyAlgorithmObject (&randomAlgorithm);
 B_DestroyAlgorithmObject (&HMACDigester);

 if (digestedData != NULL_PTR) {
 T_memset (digestedData, 0, 20);
 T_free (digestedData);
 digestedData = NULL_PTR;
 digestedDataLen = 0;
 }
1 4 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Generating Random Numbers
Generating Random Numbers
In the “Introductory Example” on page 9, we hard-coded the DES key. In an actual
application, you would use randomly-generated values. Crypto-C allows you to
generate a pseudo-random sequence of bytes using a pseudo-random number
generator (PRNG). These PRNGs are based on the message digests MD2, MD5, and
SHA1. In fact, because different standards implement random number generation in
different ways, there are two random number generators based on SHA1:

• AI_X962Random_V0 is a SHA1-based pseudo-random number generator. Its
implementation can also be used as a model for the MD2 and MD5 random
number generators. This model should be used for most random-number
generation methods.

• AI_X931Random is a SHA1-based pseudo-random number generator that allows
multiple streams of randomness. It is intended primarily for use with
AI_RSAStrongKeyGen, and should not be used for general-purpose random-
number generation.

Because there are differences between these two PRNGs, this section shows how to
generate random numbers for the two SHA1 implementations.

Generating Random Numbers with SHA1
The example in this section corresponds to the file genbytes.c. This example, which
uses AI_X962Random_V0, can easily be modified to use the PRNGs based on MD2
and MD5, AI_MD2Random and AI_MD5Random, respectively.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&randomAlgorithm)) != 0)
 break;
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 4 7

Generating Random Numbers
Step 2: Setting The Algorithm Object
You need to supply an appropriate algorithm info type (AI) and the proper associated
info to B_SetAlgorithmInfo. For random-number generation, you have a choice
between AI_MD2Random, AI_MD5Random, AI_X962Random_V0 (also known as
AI_SHA1Random), and AI_X931Random, based on the message digest algorithms MD2,
MD5, and SHA1 described earlier. For this example, choose AI_X962Random_V0.

Note: AI_SHA1Random is identical to AI_X962Random_V0; the name
AI_SHA1Random is used in the demo applications. However, AI_SHA1Random
may change in future versions of Crypto-C. For forward compatibility, we
recommend that you do not use the name AI_SHA1Random in your
applications; use AI_X962Random_V0 instead.

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal
compression function, and there is some chance that the attack on MD2 may
be extended to the full hash function. The same attack applies to MD. Another
attack has been applied to the compression function on MD5, though this has
yet to be extended to the full MD5. RSA Data Security, Inc. recommends that
before you use MD, MD2, or MD5, you should consult the RSA Laboratories
web site to be sure that their use is consistent with the latest information.

The entry for AI_SHA1Random in Chapter 2 of the Library Reference Manual refers you to
AI_X962Random_V0; the entry for this second AI states that the info supplied to
B_SetAlgorithmInfo is NULL_PTR. So the proper way to set your random algorithm
object is:

Step 3: Init
Initialize randomAlgorithm with B_RandomInit. The prototype of this function in
Chapter 4 of the Library Reference Manual indicates that it takes three arguments: the
algorithm object, the algorithm chooser, and the surrender context. The first argument
is randomAlgorithm. For the second argument, build an algorithm chooser that
contains the AMs listed in the Library Reference Manual Chapter 2 entry for
AI_X962Random_V0. B_RandomInit is a fast function, so it is reasonable to use a

if ((status = B_SetAlgorithmInfo
 (randomAlgorithm, AI_SHA1Random, NULL_PTR)) != 0)
 break;
1 4 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Generating Random Numbers
properly cast NULL_PTR for the surrender context as the third argument.

Step 4: Update
The B_RandomUpdate function mixes in a random seed to the algorithm object. The
function prototype in Chapter 4 of the Library Reference Manual shows that
B_RandomUpdate takes four arguments: an algorithm object, a random seed, the length
of the random seed, and a surrender context. So before you can call B_RandomUpdate,
you need to procure a random seed.

Step 4a: The Random Seed
The purpose of random number generation is to produce an unpredictable and
unrepeatable sequence of bytes. If you do not update a random algorithm object with
a random seed, you will generate a default sequence of pseudo-random bytes. In
addition, if someone else updates their random algorithm object with the same seed
that you used, they will generate the same sequence you did. Because unrepeatability
depends on the random seed, you want an unrepeatable seed.

Generating a seed that cannot be predicted or repeated is especially important in
cryptography. There are a number of sources for unrepeatable seeds. The best source
may be a hardware noise generator. The BSAFE Hardware API (BHAPI) offers a way
to interface with a hardware random generator. One such implementation interfaces
with Intel’s Random Number Generator; see the RSA BSAFE Crypto-C Intel Security
Hardware User’s Manual for more information. Other seed-gathering methods involve
tracking mouse movement or timing keystrokes, system time, or processor-elapsed
time. There may be other schemes you can devise that do not depend on someone
entering a value from the keyboard.

The seed does not necessarily have to be random, but it must be input which is
difficult to predict or reproduce. Once you have seeded the random algorithm, the
algorithm can produce a sequence of random bytes; these bytes are “more random”
and are generated more quickly than the seed. See “Pseudo-Random Numbers and

B_ALGORITHM_METHOD *RANDOM_CHOOSER[] = {
 &AM_SHA1_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_RandomInit
 (randomAlgorithm, RANDOM_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 4 9

Generating Random Numbers
Seed Generation” on page 92 for more information.

Before you get your seed, you need to set aside memory to hold it. In this example,
you will allocate 256 bytes for your seed:

Now get the random seed. The exact method you use to get the seed will depend on
your application and how the seed is generated. Here is a quick method for getting
keyboard input. This method is not recommended for an actual application; it is
supplied for illustrative purposes only:

Note: Another method for acquiring a seed would be to use a hardware random
number generator, if available, such as the Intel Random Number Generator
described in the Crypto-C Intel Security Hardware User’s Guide. However, even
if you have access to random numbers from hardware, you will still want to
have a fallback method of seed collection, in case the hardware random
number generator is not available or fails for some reason.

Here you are using a 256-byte buffer. When the space was allocated, the contents of
the buffer were simply whatever happened to be in that memory location at the time.
In this case, when you enter a seed at the keyboard (the gets function), you overwrite
the first few bytes in the buffer, one byte for each keystroke. Now, the first bytes in the
buffer are the input from the keyboard; the rest of the 256 bytes are untouched.

Note: If you want to guarantee a repeatable seed (for example, if you are testing and
want to be able to reproduce your data), set the buffer with T_memset.

Now that you have a random seed, you can call B_RandomUpdate. The length
argument tells Crypto-C how many bytes from the random seed buffer to use. See
“Pseudo-Random Numbers and Seed Generation” on page 92 for a discussion on how

POINTER randomSeed = NULL_PTR;
unsigned int randomSeedLen;

randomSeedLen = 256;
randomSeed = T_malloc (randomSeedLen);
if ((status = (randomSeed == NULL_PTR)) != 0)
 break;

puts (“Enter a random seed”);
if ((status =
 (NULL_PTR ==
 (unsigned char *)gets ((char *)randomSeed))) != 0)
 break;
1 5 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Generating Random Numbers
many seed bytes to use. In this example, you will use all 256 bytes from the buffer,
even though you probably entered fewer than 256 characters at the keyboard. Once
again, it is reasonable to pass a NULL_PTR for the surrender context, because
B_RandomUpdate is a fast function:

Call B_RandomUpdate as many times as you wish with different seeds each time to
increase the unrepeatability of your random number generator. After each Update,
you may want to overwrite and free your seed immediately.

Step 5: Generate
When generating random bytes, you call B_GenerateRandomBytes instead of a Final
function. The function prototype in Chapter 4 of the Library Reference Manual calls for
the following arguments: a random algorithm object, an output buffer, the number of
bytes to generate, and a surrender context. You need to prepare a buffer before calling
B_GenerateRandomBytes:

Now you can generate some random bytes. Generating 64 bytes is quick, so you are
still safe in using a NULL_PTR for the surrender context.

if ((status = B_RandomUpdate
 (randomAlgorithm, randomSeed, randomSeedLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

#define NUMBER_OF_RANDOM_BYTES 64

unsigned char *randomByteBuffer = NULL_PTR;

randomByteBuffer = T_malloc (NUMBER_OF_RANDOM_BYTES);
if ((status = (randomByteBuffer == NULL_PTR)) != 0)
 break;

if ((status = B_GenerateRandomBytes
 (randomAlgorithm, randomByteBuffer, NUMBER_OF_RANDOM_BYTES,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 5 1

Generating Random Numbers
Step 6: Destroy
Remember to destroy all objects when done with them. You must also call T_free
once for each call to T_malloc. For security reasons, overwrite the seed buffer with
zeros as well:

Generating Independent Streams of Randomness
AI_X931Random is a SHA1-based pseudo-random number generator that allows you to
generated multiple streams of randomness. This means that the Crypto-C
implementation of the X9.31 random algorithm is somewhat different from the
implementation of the other PRNGs in Crypto-C. This section describes the
modifications you would have to make to the previous example to use
AI_X931Random. These modifications take place at Step 2, Set, and Step 3, Init.

The example in this section corresponds to the file x931rand.c.

Step 1: Create
This step is identical to the previous example.

Step 2: Set
Setting the X9.31 random algorithm object is the main difference working with the
other random algorithms. AI_X931Random requires you to pass in a structure
describing the number of independent streams of randomness and a seed which will
be divided between the streams.

For this example, you will specify six streams of randomness, and provide a seed

B_DestroyAlgorithmObject (&randomAlgorithm);
T_memset (randomSeed, 0, randomSeedLen);
T_free (randomSeed);
T_free (randomByteBuffer);

typedef struct
{
 unsigned int numberOfStreams; /* number of independent streams */
 ITEM seed; /* additional seeding */
 /* to be equally divided among the streams */
} A_X931_RANDOM_PARAMS;
1 5 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Generating Random Numbers
stored in an ITEM structure, randomSeed. The amount of seed data passed in the
A_X931_RANDOM_PARAMS structure must greater than or equal to 20 * (number of
streams) bytes and less than or equal to 64 * (number of streams) bytes. With six
streams, this means the seed size must be between 120 bytes and 384 bytes. If the
amount of seed data is outside this range, Crypto-C will return a BE_ALGORITHM_INFO
error.

In addition, Crypto-C checks the seed value for the amount of entropy. For example, a
constant seed (all zeros or all ones) will return an error.

Step 3: Init
Once the structure has been passed in, the Init is essentially the same as in the
previous example. The only difference is that AM_X931_RANDOM appears in the chooser.

Steps 4, 5, 6
These steps are identical to the previous example.

 ITEM randomSeed;
 A_X931_RANDOM_PARAMS x931Params;

 x931Params.numberOfStreams = 6;
 x931Params.seed.data = randomSeed.data;
 x931Params.seed.len = randomSeed.len;

 if ((status = B_SetAlgorithmInfo
 (randomAlgorithm, AI_X931Random, (POINTER)&x931Params)) != 0)
 break;

 B_ALGORITHM_METHOD *RANDOM_CHOOSER[] = {
 &AM_X931_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_RandomInit
 (randomAlgorithm, RANDOM_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 5 3

Converting Data Between Binary and ASCII
Converting Data Between Binary and
ASCII
If you have data in binary format, yet need it in ASCII, or vice versa, Crypto-C offers
functions to encode and decode according to the RFC1113 standard.

The example in this section corresponds to the file encdec.c.

Encoding Binary Data To ASCII

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one ASCII encoding or decoding AI, AI_RFC1113Recode. The Library
Reference Manual Chapter 2 entry for this AI states that the format of info supplied to
B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
To initialize ASCII encoding, call B_EncodeInit. This function takes only one

B_ALGORITHM_OBJ asciiEncoder = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&asciiEncoder)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (asciiEncoder, AI_RFC1113Recode, NULL_PTR)) != 0)
 break;
1 5 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Converting Data Between Binary and ASCII
argument, the algorithm object:

Step 4: Update
Enter the data to encode through B_EncodeUpdate. The application is responsible for
allocating the space for the output of this routine. When encoding, for each three bytes
of input there are four bytes of output. So when allocating space, multiply the input
size by 4/3 and round up. If memory is not an issue, you can make the output buffer
twice the size of the input length.

Given pre-existing binary input, your calls to the Update functions would be as
follows:

if ((status = B_EncodeInit (asciiEncoder)) != 0)
 break;

/* We are assuming binaryData already points to allocated
 space and contains the data to encode into ASCII.
 */
unsigned char *binaryData;
unsigned int binaryDataLen;
unsigned char *asciiEncoding = NULL_PTR;
unsigned int asciiEncodingLenUpdate;

/* Allocate a buffer twice the size of the binary data */
asciiEncoding = T_malloc (binaryDataLen * 2);
if ((status = (asciiEncoding == NULL_PTR)) != 0)
 break;

if ((status = B_EncodeUpdate
 (asciiEncoder, asciiEncoding, &asciiEncodingLenUpdate,
 (binaryDataLen * 2), binaryData, binaryDataLen)) != 0)
 break;
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 5 5

Converting Data Between Binary and ASCII
Step 5: Final
Finalize the encoding process, writing out any remaining bytes.

Step 6: Destroy
Remember to destroy all objects and free up any memory allocated when done:

Decoding ASCII-Encoded Data

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one ASCII-encoding or decoding AI, AI_RFC1113Recode. The Library
Reference Manual Chapter 2 entry on this AI states that the format of info supplied to

unsigned int asciiEncodingLenFinal;

if ((status = B_EncodeFinal
 (asciiEncoder, asciiEncoding + asciiEncodingLenUpdate,
 &asciiEncodingLenFinal,
 (binaryDataLen * 2) - asciiEncodingLenUpdate)) != 0)
 break;

B_DestroyAlgorithmObject (&asciiEncoder);
T_free (asciiEncoding);

B_ALGORITHM_OBJ asciiDecoder = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&asciiDecoder)) != 0)
 break;
1 5 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Converting Data Between Binary and ASCII
B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
To initialize decoding, call B_DecodeInit. This function takes only one argument, the
algorithm object:

Step 4: Update
Enter the data to decode through B_DecodeUpdate. The application is responsible for
allocating the space for the output of this routine. When decoding, there will be three
bytes of output for every four bytes of input. If memory is a concern, you may want to
determine the exact number of bytes you will need. If memory is not a concern, make
the output size equal to the input length.

Given your pre-existing ASCII input, your call to the Update function would be as
follows:

if ((status = B_SetAlgorithmInfo
 (asciiDecoder, AI_RFC1113Recode, NULL_PTR)) != 0)
 break;

if ((status = B_DecodeInit (asciiDecoder)) != 0)
 break;

/* We are assuming asciiEncoding already points to allocated
 space and contains the data to decode into binary. Also,
 asciiEncodingLenTotal is already set with the length of
 the asciiEncoding.
 */
unsigned char *asciiEncoding;
unsigned int asciiEncodingLenTotal;
unsigned char *binaryDecoding = NULL_PTR;
unsigned int binaryDecodingLenUpdate;

/* Allocate a buffer the same size as the ascii data. */
binaryDecoding = T_malloc (asciiEncodingLenTotal);
if ((status = (binaryDecoding == NULL_PTR)) != 0)
 break;
C h a p t e r 4 N o n - C r y p t o g r a p h i c O p e r a t i o n s 1 5 7

Converting Data Between Binary and ASCII
Step 5: Final
Finalize the decoding process, writing out any bytes remaining:

Step 6: Destroy
When you are done, remember to destroy all objects and free up any memory that has
been allocated:

if ((status = B_DecodeUpdate
 (asciiDecoder, binaryDecoding, &binaryDecodingLenUpdate,
 asciiEncodingLenTotal, asciiEncoding,
 asciiEncodingLenTotal)) != 0)
 break;

unsigned int binaryDecodingLenFinal;

if ((status = B_DecodeFinal
 (asciiDecoder, binaryDecoding + binaryDecodingLenUpdate,
 &binaryDecodingLenFinal,
 asciiEncodingLenTotal - binaryDecodingLenUpdate)) != 0)
 break;

B_DestroyAlgorithmObject (&asciiDecoder);
T_free (binaryDecoding);
1 5 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Chapter 5

Symmetric-Key Operations
Recall that the RC4 algorithm of the “Introductory Example” on page 9 is called
symmetric-key encryption because the key used to encrypt is the same key that will
be needed to decrypt. Crypto-C offers two types of symmetric-key encryption
operations: stream ciphers and block ciphers. RC4, the only stream cipher in Crypto-
C, was used in the “Introductory Example” on page 9. This chapter gives examples of
the block ciphers DES, RC2, and RC5.

For an example of public-key encryption, see “Performing RSA Operations” on
page 186.
C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 5 9

Block Ciphers
Block Ciphers

DES with CBC
The example in this section corresponds to the file descbc.c.

Step 1: Creating an Algorithm Object
Declare a variable to be a B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, it address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
There are a number of DES AIs to choose from. See Table 3-6 on page 107 for a
summary. For this example, choose AI_FeedbackCipher. AI_FeedbackCipher is a
general-purpose AI that allows you to choose different block cipher methods, such as
DES, RC2, and RC5. It also allows you to choose different feedback methods for your
cipher. This makes updating your program to use a different block cipher or feedback
method easy; you simply have to replace the arguments.

See “Block Ciphers” on page 36 of this manual for an overview of block cipher
algorithms and feedback methods. We will implement DES in CBC mode using the
padding scheme defined in PKCS #5.

The description of AI_FeedbackCipher in Chapter 2 of the Library Reference Manual
says that the format of the info supplied to B_SetAlgorithmInfo is a pointer to a

 B_ALGORITHM_OBJ encryptionObject = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&encryptionObject)) != 0)
 break;
1 6 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

encryptionMethodName is the block cipher that you will use; for this example, use “des”.
The information in the Library Reference Manual indicates that you do not need to
supply any parameters for the DES encryption algorithm, so set encryptionParams to
NULL_PTR.

Use Cipher Block Chaining (CBC) for your feedback method. For this method, the
Library Reference Manual says that feedbackParams is an ITEM structure containing the
initialization vector:

See “Block Ciphers” on page 36 for an explanation of initialization vectors. Use a
random number generator to produce an IV. Remember, the IV is not secret and will
not assist anyone in breaking the encryption, but you should use a different IV for
different messages. The size of the IV is eight bytes, because DES encrypts blocks of
eight bytes. The size of the IV is always related to the size of the block, not the key:

typedef struct {
 unsigned char *encryptionMethodName; /* examples include “des”, “rc5” */
 POINTER encryptionParams; /* e.g., RC5 parameters */
 unsigned char *feedbackMethodName;
 POINTER feedbackParams; /* Points at init vector ITEM */
 /* for all feedback modes except cfb */
 unsigned char *paddingMethodName;
 POINTER paddingParams; /* Ignored for now, but may be used */
 /* for new padding schemes */
} B_BLK_CIPHER_W_FEEDBACK_PARAMS;

 typedef struct {
 unsigned char *data;
 unsigned int len;
 } ITEM;

 unsigned char *ivBytes[BLOCK_SIZE];
 B_BLK_CIPHER_W_FEEDBACK_PARAMS fbParams;

 ITEM ivItem;
C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 6 1

Block Ciphers
You must also indicate that you want to use the standard CBC padding which is
defined in PKCS #5; do this by setting fbParams.paddingMethodName to "pad". You do
not need to pass in any padding parameters for this padding scheme. Again, “Block
Ciphers” on page 36 explains padding.

Now set up the B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

Step 3: Init
You need a key before you can initialize the object for encryption.

 /* Complete steps 1 - 4 of Generating Random Numbers, then */
 /* call B_GenerateRandomBytes. */

 if ((status = B_GenerateRandomBytes
 (randomAlgorithm, ivBytes, 8,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 ivItem.data = ivBytes;
 ivItem.len = 8;

 fbParams.encryptionMethodName = (unsigned char *)"des";
 fbParams.encryptionParams = NULL_PTR;
 fbParams.feedbackMethodName = (unsigned char *)"cbc";
 fbParams.feedbackParams = (POINTER)&ivItem;
 fbParams.paddingMethodName = (unsigned char *)"pad";
 fbParams.paddingParams = NULL_PTR;

 if ((status = B_SetAlgorithmInfo
 (encryptionObject, AI_FeedbackCipher,(POINTER)&fbParams)) != 0)
 break;
1 6 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
Step 3a: Creating the Key Object

Step 3b: Setting the Key Object
You want to use a KI compatible with DES encryption, so return to the entry for
AI_FeedbackCipher in Chapter 2 of the Library Reference Manual:

See “Summary of KIs” on page 115 of this manual for a discussion of the KIs. For this
example, you will use KI_DES8Strong. Its entry in the Library Reference Manual states:

Use a random number generator to produce eight bytes for the key:

Now that you have a key, you need an algorithm chooser and a surrender context.

B_KEY_OBJ desKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&desKey)) != 0)
 break;

Key info types for keyObject in B_EncryptInit or B_DecryptInit:
Depends on cipher type, as follows:

Cipher KIs

DES KI_Item, KI_DES8, KI_DES8Strong, KI_8Byte

Format of info supplied to B_SetKeyInfo:
pointer to an unsigned char array which holds the 8-byte DES key.
The key is DES parity-adjusted when it is copied to the key object.

 unsigned char keyData[8];

 /* Complete steps 1 - 4 of Generating Random Numbers, */
 /* then call B_GenerateRandomBytes. */
 if ((status = B_GenerateRandomBytes
 (randomAlgorithm, keyData, 8,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_SetKeyInfo
 (desKey, KI_DES8Strong, (POINTER)keyData)) != 0)
 break;
C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 6 3

Block Ciphers
This is a speedy function, so you can use a properly cast NULL_PTR for the surrender
context; but you do want to build a chooser:

Step 4: Update
Enter the data to encrypt with B_EncryptUpdate. The Library Reference Manual Chapter
2 entry for AI_FeedbackCipher states that you may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments. Once you have your input, call B_EncryptUpdate.

Remember that DES is a block cipher and requires input that is a multiple of eight
bytes. Because you set fbParams.paddingMethodName to "pad" (see page 162), Crypto-
C will pad to make the input a multiple of eight bytes. That means that the output
buffer should be at least eight bytes longer than the input length. DES is a fast
algorithm, so for small amounts of data it is reasonable to pass a properly cast
NULL_PTR for the surrender context. If you want to pass a surrender context, you can:

B_ALGORITHM_METHOD *DES_CBC_CHOOSER[] = {
 &AM_CBC_ENCRYPT,
 &AM_DES_ENCRYPT,
 &AM_SHA_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
 (encryptionObject, desKey, DES_CBC_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

static char *dataToEncrypt = "Encrypt this sentence.";
unsigned char *encryptedData = NULL_PTR;
unsigned int outputBufferSize;
unsigned int outputLenUpdate, outputLenFinal;
unsigned int encryptedDataLen;

encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
 break;
1 6 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
Step 5: Final

Step 6: Destroy
Remember to destroy all objects that you created and free up any memory that you
allocated:

Note: Using T_free means you can no longer access the data at that address. Do not
free a buffer until you no longer need the data it contains. If you will need the
data later, you might want to save it to a file first.

Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use
the same AI, IV, and key data. Use the proper decryption AM and call B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal.

RC2
RC2 is a variable-key-size block cipher. Whereas a DES key requires eight bytes — no

if ((status = B_EncryptUpdate
 (encryptionObject, encryptedData, &outputLenUpdate,
 encryptedDataLen, (unsigned char *)dataToEncrypt,
 dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_EncryptFinal
 (encryptionObject, encryptedData + outputLenUpdate,
 &outputLenFinal, encryptedDataLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyKeyObject (&desKey);
B_DestroyAlgorithmObject (&encryptionObject);
B_DestroyAlgorithmObject (&randomAlgorithm);
T_free (encryptedData);
C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 6 5

Block Ciphers
more, no less — an RC2 key can be anywhere between one and 128 bytes. The larger
the key, the greater the security. RC2 is called a block cipher because it encrypts 8-byte
blocks. Recall that DES also is a block cipher that encrypts 8-byte blocks. That means
RC2 can serve as a drop-in replacement for DES. The steps for using
AI_FeedbackCipher with RC2 are almost identical to those for DES.

The example in this section corresponds to the file rc2.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are a number of RC2 AIs to choose from. See Table 3-6 on page 107 for a
summary. Choose AI_FeedbackCipher; as in the previous example, the format of the
info supplied to B_SetAlgorithmInfo is a pointer to a
B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

Once again, encryptionMethodName is the block cipher that you will use; in this
example, use “rc2”. All the other parameters are the same as for DES, except
encryptionParams. For RC2, the Library Reference Manual indicates that you need to

B_ALGORITHM_OBJ rc2Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc2Encrypter)) != 0)
 break;

typedef struct {
 unsigned char *encryptionMethodName; /* examples include “des”, “rc5” */
 POINTER encryptionParams; /* e.g., RC5 parameters */
 unsigned char *feedbackMethodName;
 POINTER feedbackParams; /* Points at init vector ITEM */
 /* for all feedback modes except cfb */
 unsigned char *paddingMethodName;
 POINTER paddingParams; /* Ignored for now, but may be used */
 /* for new padding schemes */
} B_BLK_CIPHER_W_FEEDBACK_PARAMS;
1 6 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
supply an A_RC2_PARAMS structure for the RC2 encryption algorithm:

There is a distinction between key size and effective key bits. The RC2 algorithm
begins by building a 128-byte table based on the key. The total number of possible
tables is limited by the number of effective key bits. Using 80 effective key bits is
generally sufficient for most applications.

Use Cipher Block Chaining (CBC) for your feedback method. Once again, for this
method, you need an initialization vector; use a random number generator to produce
one. Remember, the IV is not secret and will not assist anyone in breaking the
encryption. Its size will be eight bytes, because RC2 encrypts blocks of eight bytes.
The Library Reference Manual says that feedbackParams is an ITEM structure containing
the initialization vector:

now you can set your algorithm object as follows:

typedef struct {
 unsigned int effectiveKeyBits; /* effective key size in bits */
} A_RC2_PARAMS;

 typedef struct {
 unsigned char *data;
 unsigned int len;
 } ITEM;

ITEM ivItem;
unsigned char initVector[BLOCK_SIZE];
A_RC2_PARAMS rc2Params;
B_BLK_CIPHER_W_FEEDBACK_PARAMS fbParams;

/* Complete steps 1 - 4 of Generating Random Numbers,
 then call B_GenerateRandomBytes. */
if ((status = B_GenerateRandomBytes
 (randomAlgorithm, (unsigned char *)initVector, 8,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

rc2Params.effectiveKeyBits = 80;
ivItem.data = initVector;
ivItem.len = BLOCK_SIZE;
C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 6 7

Block Ciphers
Step 3: Init
You need a key before you can initialize the algorithm object for encryption.

Step 3a: Creating a Key Object

Step 3b: Setting the Key Object
You are using 80 effective key bits. That does not mean you need exactly ten bytes of
key data, although for security reasons, it is important to use at least ten bytes. You
can generate 24 bytes (192 bits) of key data and the algorithm will still work at 80
effective bits. Thus, in the future, if you want to increase the effective key bits, you do
not have to change the code that generates key data, only the effective key bit
parameter.

Key generation is almost the same as with DES, but you will use a different KI. In the
Library Reference Manual Chapter 2 entry for AI_FeedbackCipher, you see you have a
choice of KIs. Because your key is going to be 24 bytes, you cannot use KI_8Byte, so
choose KI_Item. Looking up KI_Item in Chapter 3 of the Library Reference Manual, you
find that the info you supply to B_SetKeyInfo is a pointer to an ITEM struct, which is

fbParams.encryptionMethodName = (unsigned char *)"rc2";
fbParams.encryptionParams = NULL_PTR;
fbParams.feedbackMethodName = (unsigned char *)"cbc";
fbParams.feedbackParams = (POINTER)&ivItem;
fbParams.paddingMethodName = (unsigned char *)"pad";
fbParams.paddingParams = NULL_PTR;

if ((status = B_SetAlgorithmInfo
 (rc2Encrypter, AI_FeedbackCipher, (POINTER)&fbParams)) != 0)
 break;

B_KEY_OBJ rc2Key = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&rc2Key)) != 0)
 break

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;
1 6 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
Use a random number generator to come up with 24 bytes.

It is a good idea to zeroize any sensitive data after leaving the do-while. In fact, you
may want to zeroize the memory and free it up immediately after setting the key. To
do so, first free the memory using T_free, then reset rc2KeyItem.data to NULL_PTR,
duplicating the following sequence after the do-while. If there is an error inside the
do-while, you will still zeroize and free sensitive data; if there is no error, you have
reset to NULL_PTR, and the code after the do-while will not create havoc.

You need an algorithm chooser and a surrender context. This is a speedy function, so
it is reasonable to use a properly cast NULL_PTR for the surrender context. However,

ITEM rc2KeyItem;

rc2KeyItem.len = 24;
rc2KeyItem.data = T_malloc (rc2KeyItem.len);
if ((status = (rc2KeyItem.data == NULL_PTR)) != 0)
 break;

/* Complete steps 1 - 4 of Generating Random Numbers, then
 call B_GenerateRandomBytes. */
if ((status = B_GenerateRandomBytes
 (randomAlgorithm, rc2KeyItem.data, rc2KeyItem.len,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_SetKeyInfo
 (rc2Key, KI_Item, (POINTER)&rc2KeyItem)) != 0)
 break;

if (rc2KeyItem.data != NULL_PTR) {
 T_memset (rc2KeyItem.data, 0, rc2KeyItem.len);
 T_free (rc2KeyItem.data);
 rc2KeyItem.data = NULL_PTR;
 rc2KeyItem.len = 0;
}

C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 6 9

Block Ciphers
you do want to build a chooser:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Library Reference Manual
Chapter 2 entry on AI_FeedbackCipher, you see that you can pass
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Once you have your
input, call B_EncryptUpdate.

Remember that RC2 is a block cipher and requires that the input be a multiple of eight
bytes. Because you set fbParams.paddingMethodName to "pad" (see page 166),
Crypto-C will pad to make the input a multiple of eight bytes. That means that the
output buffer should be at least eight bytes larger than the input length.

RC2 is a fast algorithm, so for small amounts of data it is reasonable to pass a properly
cast NULL_PTR for the surrender context. If you want to pass a surrender context, you
can:

B_ALGORITHM_METHOD *RC2_CHOOSER[] = {
 &AM_CBC_ENCRYPT,
 &AM_RC2_ENCRYPT,
 &AM_SHA_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
 (rc2Encrypter, rc2Key, RC2_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

/* Assume dataToEncrypt points to already set data and
 dataToEncryptLen has been set to the number of bytes
 in dataToEncrypt. */

unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;
encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
1 7 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
Step 5: Final

Step 6: Destroy
Remember to destroy all objects created and free up any memory allocated:

if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

if ((status = B_EncryptUpdate
 (rc2Encrypter, encryptedData, &outputLenUpdate,
 encryptedDataLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

unsigned int outputLenFinal;
if ((status = B_EncryptFinal
 (rc2Encrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, encryptedDataLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyKeyObject (&rc2Key);
B_DestroyAlgorithmObject (&rc2Encrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);

if (encryptedData != NULL_PTR) {
 T_memset (encryptedData, 0, encryptedDataLen);
 T_free (encryptedData);
 encryptedData = NULL_PTR;
}

if (rc2KeyItem.data != NULL_PTR) {
 T_memset (rc2KeyItem.data, 0, rc2KeyItem.len);
 T_free (rc2KeyItem.data);
 rc2KeyItem.data = NULL_PTR;
 rc2KeyItem.len = 0;
}

C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 7 1

Block Ciphers
Decrypting
As with the “Introductory Example” on page 9, decrypting is similar to encrypting.
Use the same AI, IV, and key. Use the proper decrypting AM and call B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal.

RC5
RC5 is more properly known as RC5 w/r/b, where w stands for word size, r stands for
rounds and b stands for key size in bytes.

The word size parameter is designed to take advantage of variable hardware word
sizes. A hardware implementation can choose a 16-, 32-, or 64-bit word size,
depending on how many bits make up a register, or word. Software implementations
of RC5 can emulate any word size, regardless of the size of the machine’s register size.
Crypto-C implements word sizes of 32 or 64 bits; the 64-bit implementation has not
been optimized.

The next feature of RC5 is the rounds parameter. Increasing the number of rounds
increases security, but slows down the operation. This allows the application
developer to establish a desired trade-off between security and speed. RC5 allows
round counts from 0 to 255 rounds. RSA Data Security, Inc. recommends using at
least 16 rounds for the 32-bit word implementation. Analysis indicates that, in theory,
RC5 may be susceptible to various attacks for values less than 16.

The last feature is the variable key size. Whereas a DES key requires eight bytes, an
RC5 key can be anywhere between zero and 255 bytes. The larger the key, the greater
the security. Key size has no appreciable effect on speed.

RC5 is a block cipher; the size of the blocks is twice the word size. For RC5 32/r/b, the
block size is 64 bits or 8 bytes; for RC5 64/r/b, the block size is 128 bits or 16 bytes.

The example in this section corresponds to the file rc5.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ and as defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
1 7 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
B_CreateAlgorithmObject.

Step 2: Setting The Algorithm Object
There are a number of RC5 AIs to choose from. See Table 3-6 on page 107 for
descriptions. For this example, you will use a different cipher from
AI_FeedbackCipher. Choose AI_RC5_CBCPad. The Library Reference Manual Chapter 2
entry for this AI indicates that the format of info supplied to B_SetAlgorithmInfo is:

As a provision for future revisions of the RC5 algorithm, Crypto-C includes a version
number. So that the version number can be one byte, it is two hex digits. Version 1.0 is
therefore 0x10. Version 3.8, if there ever is one, will be 0x38. The hex number 0x10 is
the decimal number 16. Both are valid, but it is probably better to use 0x10 because it
is easier to see as a version number.

For this example, you will use 12 rounds with a word size of 32.

Because you have chosen an AI that uses Cipher Block Chaining (CBC), you need an
initialization vector. Use a random number generator to produce an IV. Because the
word size is 32, the block size is 64 bits or eight bytes, and your IV must be eight bytes
long. Remember, the IV is not secret and will not assist anyone in breaking the
encryption. Its size will be eight bytes, because RC5 encrypts blocks of eight bytes.

B_ALGORITHM_OBJ rc5Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc5Encrypter)) != 0)
 break;

typedef struct {
 unsigned int version; /* currently 1.0 defined 0x10 */
 unsigned int rounds; /* number of rounds (0 - 255) */
 unsigned int wordSizeInBits; /* AI_RC5_CBCPad requires 32 */
 unsigned char *iv; /* initialization vector */
} A_RC5_CBC_PARAMS;
C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 7 3

Block Ciphers
Remember, the IV is related to the block, not the key:

Step 3: Init
You need a key before you can initialize the algorithm object for encryption.

Step 3a: Creating A Key Object

Step 3b: Setting The Key Object
For this example, you will use 10 key bytes (80 bits). In the Library Reference Manual
Chapter 2 entry for AI_RC5_CBCPad, you see you must use KI_Item. Looking up
KI_Item in Chapter 3 of the Library Reference Manual, you find that the info you

unsigned char initVector[8];
A_RC5_CBC_PARAMS rc5Params;

/* Complete steps 1 - 4 of Generating Random Numbers,
 then call B_GenerateRandomBytes. */

if ((status = B_GenerateRandomBytes
 (randomAlgorithm, (unsigned char *)initVector, 8,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

rc5Params.version = 0x10;
rc5Params.rounds = 12;
rc5Params.wordSizeInBits = 32;
rc5Params.iv = (unsigned char *)initVector;

if ((status = B_SetAlgorithmInfo
 (rc5Encrypter, AI_RC5_CBCPad, (POINTER)&rc5Params)) != 0)
 break;

B_KEY_OBJ rc5Key = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&rc5Key)) != 0)
 break;
1 7 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
supply to B_SetKeyInfo is a pointer to an ITEM struct, defined in algobal.h:

Use a random number generator to create 10 bytes:

It is a good idea to zeroize any sensitive data after leaving the do-while. In fact, you
may want to zeroize the memory and free it up immediately after you set the key. To
do so, first free the memory using T_free, then reset rc5KeyItem.data to NULL_PTR
and duplicate the following sequence after the do-while. If there is an error inside the
do-while before you zeroize and free, you will still perform this important task; if
there is not an error, by resetting to NULL_PTR, you ensure that the code after the do-
while will not create havoc:

Now that you have a key, you need an algorithm chooser and a surrender context.

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;

ITEM rc5KeyItem;

rc5KeyItem.data = NULL_PTR;
rc5KeyItem.len = 10;
rc5KeyItem.data = T_malloc (rc5KeyItem.len);
if ((status = (rc5KeyItem.data == NULL_PTR)) != 0)
 break;

if ((status = B_GenerateRandomBytes
 (randomAlgorithm, rc5KeyItem.data, rc5KeyItem.len,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_SetKeyInfo
 (rc5Key, KI_Item, (POINTER)&rc5KeyItem)) != 0)
 break;

if (rc5KeyItem.data != NULL_PTR) {
 T_memset (rc5KeyItem.data, 0, rc5KeyItem.len);
 T_free (rc5KeyItem.data);
 rc5KeyItem.data = NULL_PTR;
 rc5KeyItem.len = 0;
};
C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 7 5

Block Ciphers
This is a speedy function, so you can use a properly cast NULL_PTR for the surrender
context; but you do want to build a chooser:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Library Reference Manual
Chapter 2 entry on AI_RC5_CBCPad you learn that you may pass
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Assuming you have
some input, call B_EncryptUpdate.

Remember that RC5 is a block cipher and requires input that is a multiple of eight
bytes. Because you are using AI_RC5_CBCPad, Crypto-C will pad to make the input a
multiple of eight bytes. That means that the output buffer should be at least eight
bytes larger than the input length.

RC5 is a fast algorithm, so for small amounts of data it is reasonable to pass a properly
cast NULL_PTR for the surrender context. If you want to pass a surrender context, you
can:

B_ALGORITHM_METHOD *RC5_CHOOSER[] = {
 &AM_RC5_CBC_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
 (rc5Encrypter, rc5Key, RC5_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

/* Assume dataToEncrypt points to already set data and
 dataToEncryptLen has been set to the number of bytes
 in dataToEncrypt. */

unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;
1 7 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
Step 5: Final

Step 6: Destroy
Remember to destroy all objects that you created and free up any memory that you
allocated.

encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

if ((status = B_EncryptUpdate
 (rc5Encrypter, encryptedData, &outputLenUpdate,
 encryptedDataLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
 (rc5Encrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, dataToEncryptLen + 8 - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyKeyObject (&rc5Key);
B_DestroyAlgorithmObject (&rc5Encrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);
if (rc5KeyItem.data != NULL_PTR) {
 T_memset (rc5KeyItem.data, 0, rc5KeyItem.len);
 T_free (rc5KeyItem.data);
 rc5KeyItem.data = NULL_PTR;
 rc5KeyItem.len = 0;
}

C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 7 7

Block Ciphers
Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use
the same AI, IV, and key data. Use the proper decrypting AM and call B_DecryptInit,
B_DecryptUpdate, and B_DecryptFinal.

Password-Based Encryption
In previous encryption methods, you used a random number generator to produce a
key. In password-based encryption (PBE), you will use a message digest algorithm to
derive a key from a password. See “Message Digests” on page 46 for information on
that topic.

For encryption, enter a password, append a salt to the password (see Step 2), and
digest that quantity. Extract the required number of bytes from the digest and you
have a key. Use that key to encrypt data using DES or RC2.

For decryption, enter a password, append the same salt, and then digest. Extract the
required number of bytes from the digest and use them as a key to decrypt. If you
entered the same password that you used to encrypt, you will obtain the same digest
and hence the same key, and the encrypted data will decrypt to the original data.

Crypto-C will automatically append the salt, digest the data, and extract the key.

The example in this section corresponds to the file pbe.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

if (encryptedData != NULL_PTR) {
 T_memset (encryptedData, 0, encryptedDataLen);
 T_free (encryptedData);
 encryptedData = NULL_PTR;
}

B_ALGORITHM_OBJ pbEncrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&pbEncrypter)) != 0)
 break;
1 7 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
Step 2: Setting The Algorithm Object
There are a number of PBE AIs to choose from (see “Summary of AIs” on page 106 for
a more detailed description). For now, choose AI_MD5WithRC2_CBCPad. In Chapter 2 of
the Library Reference Manual, the description of this AI indicates the format of info
supplied to B_SetAlgorithmInfo is:

The section “RC2” on page 38 contains an explanation of effective key bits. The salt is
a value that provides security against dictionary attacks or precomputation. An
attacker could precompute the digests of thousands of possible passwords, creating a
“dictionary” of likely keys. But recall that when you digest, changing input data even
a little changes the resulting digest. By digesting the password with a salt, the
attacker’s dictionary is rendered useless. The attacker would have to create a
dictionary of the keys that were generated from each password; then each password
would have to have a dictionary of each possible salt. The salt is not secret; knowing
the salt will not help anyone without the password to decrypt the data.

To produce the salt, create an eight-byte buffer and then employ a random number
generator to generate eight bytes. The iteration count is the number of times Crypto-C
will digest. If that value is one, digest the password and salt once; if it is two, digest
the password and salt, then digest the digest, and so on. Each iteration will increase
an attacker’s task greatly. Five is generally sufficient for most applications:

typedef struct {
 unsigned int effectiveKeyBits; /* effective key size in bits */
 unsigned char *salt; /* pointer to 8 byte salt value */
 unsigned int iterationCount; /* iteration count */
} B_RC2_PBE_PARAMS;

#define SALT_LEN 8

B_RC2_PBE_PARAMS rc2PBEParams;
unsigned char saltData[SALT_LEN];

/* Complete steps 1 - 4 of Generating Random Numbers,
 then call B_GenerateRandomBytes.*/
if ((status = B_GenerateRandomBytes
 (randomAlgorithm, saltData, SALT_LEN,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 7 9

Block Ciphers
Step 3: Init
You need a key before you can initialize the algorithm object for encryption. In PBE,
the password is the key. Simply enter the password data as the key data; Crypto-C
will generate the symmetric key from the password and salt.

Step 3a: Creating A Key Object

Step 3b: Setting The Key Object
In the Library Reference Manual Chapter 2 entry for AI_MD5WithRC2_CBCPad, you see
you have only one choice for a KI: KI_Item. Looking up KI_Item in Chapter 3 of the
Library Reference Manual, you find that the info you supply to B_SetKeyInfo is a
pointer to an ITEM structure, which is:

The data portion of the struct is the password. For this example, we will use the
following method to enter the password. This method for entering a password is not

rc2PBEParams.effectiveKeyBits = 64;
rc2PBEParams.salt = saltData;
rc2PBEParams.iterationCount = 5;

if ((status = B_SetAlgorithmInfo
 (pbEncrypter, AI_MD5WithRC2_CBCPad,
 (POINTER)&rc2PBEParams)) != 0)
 break;

#define MAX_PW_LEN 20

B_KEY_OBJ pbeKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&pbeKey)) != 0)
 break;

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;
1 8 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
secure; it is used for illustrative purposes only. It is not for duplication:

You should zeroize any sensitive data after leaving the do-while. In fact, you might
want to zeroize the memory immediately after you set the key:

Now that you have a key, you need an algorithm chooser and a surrender context.
This is a speedy function, so it is reasonable to use a properly cast NULL_PTR for the
surrender context. You do want to build a chooser:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. The Library Reference Manual
Chapter 2 entry on AI_MD5WithRC2_CBCPad states that you can pass
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Assuming you have
some input data, call B_EncryptUpdate. Remember that RC2 is a block cipher and

unsigned char enteredPassword[MAX_PW_LEN];
ITEM pbeKeyItem;

puts ("Enter the password, then press Return or Enter");
gets ((char *)enteredPassword);

pbeKeyItem.data = enteredPassword;
pbeKeyItem.len = strlen (enteredPassword);

if ((status = B_SetKeyInfo
 (pbeKey, KI_Item, (POINTER)&pbeKeyItem)) != 0)
 break;

T_memset (pbeKeyItem.data, 0, MAX_PW_LEN);

B_ALGORITHM_METHOD *PBE_CHOOSER[] = {
 &AM_MD5,
 &AM_RC2_CBC_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
 (pbEncrypter, pbeKey, PBE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 8 1

Block Ciphers
requires the input to be a multiple of eight bytes. But because you are using
AI_MD5WithRC2_CBCPad, Crypto-C will pad to make the input a multiple of eight
bytes. That means, though, that the output buffer should be at least eight bytes larger
than the input length.

PBE with MD5 and RC2 is a fast algorithm, so for small amounts of data, you can pass
a properly cast NULL_PTR for the surrender context. If you want to pass a surrender
context, you can:

/* Assume dataToEncrypt points to already set data and
 dataToEncryptLen has been set to the number of bytes
 in dataToEncrypt. */

#define BLOCK_LEN 8
unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;

encryptedDataLen = dataToEncryptLen + BLOCK_LEN;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

if ((status = B_EncryptUpdate
 (pbEncrypter, encryptedData, &outputLenUpdate,
 encryptedDataLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
1 8 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Block Ciphers
Step 5: Final

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory:

Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use
the same AI, password, and salt. Use the proper decrypting AM and call
B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal.

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
 (pbEncrypter, encryptedData + outputLenUpdate,
 &outputLenFinal, encryptedDataLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyKeyObject (&pbeKey);
B_DestroyAlgorithmObject (&pbEncrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);

 if (pbeKeyItem.data, 0, MAX_PW_LEN) {
 T_memset (pbeKeyItem.data, 0, MAX_PW_LEN);
 T_free (pbekeyItem.data);
 pbeKeyItem.data = NULL_PTR;
 }

 if (encryptedData != NULL_PTR) {
 T_memset (encryptedData, 0, encryptedDataLen);
 T_free (encryptedData);
 encryptedData = NULL_PTR;
 }
C h a p t e r 5 S y m m e t r i c - K e y O p e r a t i o n s 1 8 3

Block Ciphers
1 8 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Chapter 6

Public-Key Operations
In public-key cryptography, two associated keys are necessary, one to encrypt and the
other to decrypt. The sender encrypts a message using the recipient’s public key.
Once a message is encrypted, it can be decrypted with the recipient’s private key. This
is in contrast to algorithms like DES, RC2, RC4, and RC5, which are called symmetric-
key encryption algorithms because the key used to encrypt is the same key needed to
decrypt.

In public-key cryptography, it is also possible to encrypt using a private key. In this
case, the sender takes the plaintext input and the private key and follows the same
steps need to decrypt an encrypted file. This creates a ciphertext that can be read
using the public key; to read it, the recipient follows the same steps needed to encrypt
with the public key and restores it to the plaintext. Private-key encryption with
public-key decryption is used for digital signatures and verification. See “RSA Digital
Signatures” on page 198 and “DSA Signatures” on page 213 for more information.

Crypto-C supplies a number of public-key algorithms. These include:

• RSA encryption and decryption

• DSA signatures

• Diffie-Hellman key agreement

• Elliptic curve public-key operations
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 1 8 5

Performing RSA Operations
Performing RSA Operations
RSA is a public-key algorithm that relies on the difficulty of factoring a number that is
the product of two large primes. If you are not familiar with the RSA algorithm and
terminology, you may want to read “The RSA Algorithm” on page 50 before you
continue.

The algorithm chooser used throughout the sections concerning executing the RSA
algorithm can be found in “Algorithm Choosers” on page 118.

The example in this section corresponds to the file rsapkcs.c.

Generating a Key Pair
Before you can encrypt and decrypt, you need a key pair. The key pair consists of a
private key and its associated public key. Generating a key pair is not trivial. The RSA
algorithm relies on very large prime numbers, which are produced during key pair
generation. This could be fairly time-consuming, so we recommend you use a
surrender context. The surrender context used below is the one in “The Surrender
Context” on page 120.

Most Crypto-C operations follow the six-step procedure outlined in the “Introductory
Example” on page 9. Generating a key pair needs only five of the steps; there is no
Update call.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
For this example, use AI_RSAKeyGen to generate an RSA key pair. The Library Reference
Manual Chapter 2 entry for AI_RSAKeyGen states that the info for B_SetAlgorithmInfo

B_ALGORITHM_OBJ keypairGenerator = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&keypairGenerator)) != 0)
 break;
1 8 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
is a pointer to an A_RSA_KEY_GEN_PARAMS structure, defined as:

where ITEM is:

The size of the modulus in bits can be any number from 256 to 2048, the larger the
modulus, the greater the security. Unfortunately, the larger the modulus, the longer it
takes to generate key pairs and to encrypt and decrypt. RSA Data Security, Inc.,
recommends 768 bits or more for applications. In testing and learning, though, it is
safe to choose a smaller modulus to save time. For this exercise, choose 512.

The public exponent is usually one of two values: F0 = 3 or F4 = 65537. Recall that the
algorithm requires a public exponent that has no common divisor with (p–1)(q–1).
With F0 or F4, it is easier to find primes p and q that meet that requirement. F4 is also a
good choice for a public exponent because it is large, prime, and of low weight.
Weight here refers to the number of 1’s in the binary representation: in hex, F4 is
01 00 01. The F in F0 and F4 stands for Pierre de Fermat, the 17th-century
mathematician who first described the special properties of these and other
interesting numbers. For more information on F4 (and other Fermat numbers), see
ITU-T X.509, Annex D.

For this example, choose F4:

typedef struct {
 unsigned int modulusBits; /* size of modulus in bits */
 ITEM publicExponent; /* fixed public exponent */
} A_RSA_KEY_GEN_PARAMS;

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;

A_RSA_KEY_GEN_PARAMS keygenParams;
static unsigned char f4Data[3] = {0x01, 0x00, 0x01};

keygenParams.modulusBits = 512;
keygenParams.publicExponent.data = f4Data;
keygenParams.publicExponent.len = 3;
if ((status = B_SetAlgorithmInfo
 (keypairGenerator, AI_RSAKeyGen,
 (POINTER)&keygenParams)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 1 8 7

Performing RSA Operations
Step 3: Init
Look up the description and prototype for B_GenerateInit in Chapter 4 of the Library
Reference Manual. For this example, you can use the following:

Here, you use NULL_PTR for the surrender context because B_GenerateInit is a speedy
function. B_GenerateKeypair in Step 5 is the time-consuming function.

Step 4: Update
There is no Step 4 in generating a key pair.

Step 5: Generate
Find the description and prototype for B_GenerateKeypair in Chapter 4 of the Library
Reference Manual. This function takes five arguments. The first is the algorithm object:
for this example, it is keypairGenerator. The second and third are key objects. For this
call, all you have to do is create the key objects; they will be set by
B_GenerateKeypair. The fourth argument is a random algorithm. For this, complete
Steps 1 through 4 of “Generating Random Numbers” on page 147. You do not need
random bytes, only an algorithm that can generate them. The algorithm chooser you
are using (defined in “Algorithm Choosers” on page 118) contains the AM for SHA1
random number generation.

The last argument is the surrender context. This function call can take a while,
although the amount of time is not uniform. On slower machines, it may take over
two or three minutes to generate a 512-bit key pair, or it may take only 17 seconds.

Crypto-C needs to find two primes of the proper size. To find a prime, Crypto-C
generates a candidate and tests to see if it is prime. If the candidate passes the test,
Crypto-C has one of the primes; if not, Crypto-C builds a new number. If you are
lucky, two early numbers Crypto-C creates will pass the test. Sometimes, though,
Crypto-C has to try many numbers before it finds a pair.

Note: The numbers Crypto-C produces are not provably prime. They are numbers
for which the probability is very low that they are not prime. This does not

if ((status = B_GenerateInit
 (keypairGenerator, RSA_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
1 8 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
affect the accuracy of the algorithm and will not appreciably decrease
security.

When you generate a key pair, it can look as if your program has stopped or as if the
machine has frozen up. To help allay fears of disaster, use the surrender function
outlined in “The Surrender Context” on page 120. It will print out a dot every second
to let you know the program is running properly. If the dots do not appear, then you
know something is wrong:

Step 6: Destroy
When you are done with your objects, remember to destroy them:

Distributing an RSA Public Key
After generating a key pair, you need to make the public key available to the public.

Crypto-C Format
publicKey is a key object that was set by the Crypto-C function B_GenerateKeypair. Its
key info type (KI) is KI_RSAPublic. In the Library Reference Manual Chapter 3 entry on

B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&publicKey)) != 0)
 break;

if ((status = B_CreateKeyObject (&privateKey)) != 0)
 break;

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_GenerateKeypair
 (keypairGenerator, publicKey, privateKey,
 randomAlgorithm, &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&keypairGenerator);
B_DestroyKeyObject (&publicKey);
B_DestroyKeyObject (&privateKey);
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 1 8 9

Performing RSA Operations
KI_RSAPublic, the section titled “Format of info returned by B_GetKeyInfo:” tells you
that the function returns a pointer to an A_RSA_KEY struct:

So you need to declare a variable to be a pointer to such a struct and pass this
variable’s address as the argument.

Using the Library Reference Manual Chapter 4 prototype for B_GetKeyInfo as a guide,
write the following:

If you looked at the elements of the struct:

getPublicKey->modulus.data
getPublicKey->modulus.len
getPublicKey->exponent.data
getPublicKey->exponent.len

you could see the public key that Crypto-C generated. This is the information you
would make public.

Note: If you want to email the information, you will not be able to send the
information over most email systems because the data is in binary form, not
ASCII. Crypto-C offers encoding and decoding functions to convert between
binary and ASCII. See “Converting Data Between Binary and ASCII” on
page 154 for more information.

BER/DER Encoding
There is a problem with distributing the key in the above struct: it is not standard; it
is unique to Crypto-C. If the recipient is not using Crypto-C, how do you give them
the information? Suppose your application mails this key to a certification authority.
What information do you send? There is a standard that defines what the public key
consists of and how that information should be formatted: BER-encoding. It is defined

typedef struct {
 ITEM modulus; /* modulus */
 ITEM exponent; /* exponent */
} A_RSA_KEY;

A_RSA_KEY *getPublicKey = (A_RSA_KEY *)NULL_PTR;

if ((status = B_GetKeyInfo
 ((POINTER *)&getPublicKey, publicKey, KI_RSAPublic)) != 0)
 break;
1 9 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
in ASN.1, which defines the Basic Encoding Rules (BER) and Distinguished Encoding
Rules (DER). See “BER/DER Encoding” on page 125 for more information.

You must put the key into DER format, encode it into ASCII, and email the encoding.
The recipient will decode the DER string and convert the key information into the
format of their choice.

This sounds difficult, but Crypto-C offers a means of doing it simply. Above, in order
to obtain the key, you used B_GetKeyInfo with KI_RSAPublic. Chapter 3 of the Library
Reference Manual also lists KI_RSAPublicBER, which states:

Crypto-C returns a pointer to where that information resides, not the information.
Another call to Crypto-C might alter or destroy it. Therefore, once you get the pointer
to the information, copy it into your own buffer:

So, to distribute a key, you generate the key pair, get the key info in BER format with
B_GetKeyInfo and KI_RSAPublicBER, encode the BER data into ASCII format, and
send it off.

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure which gives the address and length of the DER-
encoding. Note that B_GetKeyInfo returns an encoding which contains the object
identifier for rsaEncryption (defined in PKCS #1) as opposed to rsa.

ITEM *cryptocPublicKeyBER;
ITEM myPublicKeyBER;

myPublicKeyBER.data = NULL_PTR;

if ((status = B_GetKeyInfo
 ((POINTER *)&cryptocPublicKeyBER, publicKey,
 KI_RSAPublicBER)) != 0)
 break;

myPublicKeyBER.len = cryptocPublicKeyBER->len;
myPublicKeyBER.data = T_malloc (myPublicKeyBER.len);
if ((status = (myPublicKeyBER.data == NULL_PTR)) != 0)
 break;
T_memcpy (myPublicKeyBER.data, cryptocPublicKeyBER->data,
 myPublicKeyBER.len);
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 1 9 1

Performing RSA Operations
Remember to free any memory you allocated:

Note: The conversion into BER or DER is known as BER-encoding or DER-
encoding; the conversion between binary to ASCII is known as encoding and
decoding. In general, the word “encoding” without “BER” in front of it means
binary to ASCII. If the encoding is BER- or DER-encoding, the BER or DER
should be explicitly stated.

RSA Public-Key Encryption
Follow Steps 1 through 6 to encrypt the following using an RSA public key:

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are a number of RSA AIs, described in Table 3-7 on page 110. For this example,
use AI_PKCS_RSAPublic. This AI encrypts and decrypts data according to the Public-
Key Cryptography Standard #1 (PKCS #1). See the PKCS document [1] for more
information. According to the Library Reference Manual Chapter 2 entry for

T_free (myPublicKeyBER.data);

static unsigned char dataToEncryptWithRSA[8] = {
 0x4a, 0x72, 0x55, 0x36, 0xda, 0x2f, 0xb9, 0x51
};

B_ALGORITHM_OBJ rsaEncryptor = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rsaEncryptor)) != 0)
 break;
1 9 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
AI_PKCS_RSAPublic, the info supplied to B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
You will encrypt using the recipient’s RSA public key. Normally, you would obtain
the public key from the recipient or a certificate service. For this exercise, though, you
will simply use the public key you generated in “Generating a Key Pair” on page 186.
B_EncryptInit is quick, so you are safe in passing NULL_PTR as the surrender context:

Step 4: Update
The Library Reference Manual Chapter 2 entry on AI_PKCS_RSAPublic states:

For this example, the key’s size in bits is 512, which is 64 bytes. So you cannot pass
more than 53 bytes. If you were encrypting more than 53 bytes, you could not use
AI_PKCS_RSAPublic. If you had more than 53 bytes to encrypt and tried to break it up
into smaller units, calling B_EncryptUpdate for each unit, it would not work. That is
because PKCS RSA encryption adds padding, and the padding scheme needs at least
11 spare bytes to work. It is intended for digital envelopes and digital signatures, and
in those situations, the number of bytes to encrypt is usually eight, 16, or (for BER-
encoded digests) 34 or 35. If you want to encrypt larger amounts of data using the
RSA algorithm, you must use AI_RSAPublic, also known as raw RSA. See “Raw RSA”
on page 197 for more information.

You are encrypting eight bytes, so you do not need to worry about that constraint.
However, the output of RSA encryption is the same size as the modulus, as described
in “The RSA Algorithm” on page 50. That means you must set the output buffer,
which will hold the encrypted data, to be the same size as the modulus. Your

if ((status = B_SetAlgorithmInfo
 (rsaEncryptor, AI_PKCS_RSAPublic, NULL_PTR)) != 0)
 break;

if ((status = B_EncryptInit
 (rsaEncryptor, publicKey, RSA_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is the
key’s modulus size in bytes.
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 1 9 3

Performing RSA Operations
modulus is 512 bits, or 64 bytes.

Note: The input to the RSA algorithm must also be the same size as the modulus,
but AI_PKCS_RSAPublic will automatically pad.

The description of AI_PKCS_RSAPublic notes that “B_EncryptUpdate and
B_EncryptFinal require a random algorithm.” The random number generator is for
the padding. You do not need random bytes, only an algorithm that can generate
them. Although RSA encryption is not as slow as key pair generation, you will not see
an immediate response. Use a surrender context so that you know the program is
running and has not frozen:

Step 5: Final

#define BLOCK_SIZE 64

unsigned char encryptedData[BLOCK_SIZE];
unsigned int outputLenUpdate;

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_EncryptUpdate
 (rsaEncryptor, encryptedData, &outputLenUpdate,
 BLOCK_SIZE, (unsigned char *)dataToEncryptWithRSA, 8,
 randomAlgorithm, &generalSurrenderContext)) != 0)
 break;

unsigned int outputLenFinal;

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_EncryptFinal
 (rsaEncryptor, encryptedData + outputLenUpdate,
 &outputLenFinal, BLOCK_SIZE - outputLenUpdate,
 randomAlgorithm, &generalSurrenderContext)) != 0)
 break;
1 9 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
Step 6: Destroy
When you are done with all your objects, remember to destroy them.

RSA Private-Key Decryption
This example shows how to decrypt using an RSA private key. Remember that with
Crypto-C, you have the choice of doing your private-key operations normally or
utilizing the blinding technique (see “Timing Attacks and Blinding” on page 96). You
make this choice in the algorithm chooser. For normal decryption operations, use
AM_RSA_CRT_DECRYPT; to execute blinding, use AM_RSA_CRT_DECRYPT_BLIND.

Step 1: Creating an Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
Because you used AI_PKCS_RSAPublic to encrypt, it is easiest to use
AI_PKCS_RSAPrivate to decrypt. Crypto-C padded the data before encrypting; when
you use the “matching” AI to decrypt, Crypto-C will automatically strip the padding.
The Library Reference Manual Chapter 2 entry on this AI indicates the info supplied to
B_SetAlgorithmInfo is NULL_PTR:

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&rsaEncryptor);
B_DestroyKeyObject (&publicKey);

B_ALGORITHM_OBJ rsaDecryptor = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rsaDecryptor)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (rsaDecryptor, AI_PKCS_RSAPrivate, NULL_PTR)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 1 9 5

Performing RSA Operations
Step 3: Init
To decrypt, you must use the RSA private key that is associated with the public key
that was used to encrypt, which would be the key you generated in “Generating a Key
Pair” on page 186. B_DecryptInit is quick, so you are safe in passing NULL_PTR as the
surrender context.

Step 4: Update
When you encrypted, there were certain constraints on the size of the input data to
B_EncryptUpdate. The only constraint on the data passed to B_DecryptUpdate is that it
be numerically less than the modulus. If the data you are decrypting was indeed
encrypted using RSA, it will be.

You know the encryption process padded the original data, so, while the encrypted
data is 64 bytes, the decrypted data will be less than 64 bytes. But you do not know
how much less. For simplicity, make the decrypted data buffer 64 bytes large.
Presumably, the encrypter added outputLenUpdate and outputLenFinal from the
encryption to get the total number of bytes of encrypted data. The Library Reference
Manual Chapter 2 entry on AI_PKCS_RSAPrivate indicates you may pass a properly
cast NULL_PTR for randomAlgorithm arguments.

Although RSA decryption is not as slow as key pair generation, you will not see an
immediate response. Use the surrender context given above so you know the
program is running and has not frozen:

if ((status = B_DecryptInit
 (rsaDecryptor, privateKey, RSA_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

#define BLOCK_SIZE 64

unsigned char decryptedData[BLOCK_SIZE];
unsigned int outputLenTotal;
unsigned int outputLenUpdate;
 /* where outputLenTotal is the sum of the encryption’s
 outputLenUpdate and outputLenFinal. The encrypter should
 send this information along with the encrypted data. */
1 9 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
Step 5: Final

Step 6: Destroy
When you are done with all objects, remember to destroy them:

Raw RSA
When you used AI_PKCS_RSAPublic, you could not encrypt more than k – 11 bytes,
where k was the size of the modulus in bytes. That is because PKCS RSA encryption
pads, and the padding scheme needs 11 spare bytes to work. It is intended for digital
envelopes and digital signatures; in those situations, the number of bytes to encrypt is
usually eight, 16, or (for BER-encoded digests) 34 or 35. If you want to encrypt and
decrypt more than k – 11 bytes, use raw RSA.

Note: In general, there should be no need for raw RSA encryption or decryption.
For most applications, if you have a longer message, it is faster and simpler to
encrypt the message with a symmetric algorithm and then use the RSA
algorithm to encrypt the key. (See “Digital Envelopes” on page 54.) If you do

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_DecryptUpdate
 (rsaDecryptor, decryptedData, &outputLenUpdate, BLOCK_SIZE,
 encryptedData, outputLenTotal, NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;

unsigned int outputLenFinal;

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_DecryptFinal
 (rsaDecryptor, decryptedData + outputLenUpdate,
 &outputLenFinal, BLOCK_SIZE - outputLenUpdate, NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&rsaDecryptor);
B_DestroyKeyObject (&privateKey);
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 1 9 7

Performing RSA Operations
use raw RSA encryption and decryption, your application must be
responsible for adding and removing the necessary padding. We do not
recommend using raw RSA unless you are familiar with the issues involved.

To encrypt more bytes than the PKCS AIs allow, use AI_RSAPublic for encryption and
and AI_RSAPrivate for decryption. Note that this is different from the recommended
use for these AIs, as described in the Library Reference Manual. There are two
important constraints to consider when using these AIs:

• The total length of the data must be a multiple of the modulus size.

If your data’s length is not a multiple of the modulus size, your application must
do the padding. When decrypting with raw RSA, Crypto-C will not strip the
padding; the application must do that.

• The data must be numerically less than the modulus.

To do this, divide your data into blocks that are one byte smaller than the
modulus. Prepend one byte of 0 to each block. If the leading byte of the data is 0,
your data will meet this second constraint.
For example, suppose you wanted to encrypt 100 bytes with RSA using a 512-bit
modulus. You would break the data into two blocks, the first one 63 bytes, the
second 37. Prepend a 0 byte to the first block and it is now 64 bytes (512 bits).
Prepend a 0 byte and append 26 pad bytes to the second block and it, too is now
64 bytes. Call B_EncryptUpdate for each of the two blocks, then B_EncryptFinal.
This will produce 128 bytes of encrypted data.
When decrypting, call B_DecryptUpdate once for all 128 bytes, then
B_DecryptFinal. The application will have to then strip the prepended zeroes and
the padding. You could also break the encrypted data into 64-byte blocks and call
B_DecryptUpdate for each block and strip the padding then.

Some padding procedures are recommended; others are discouraged. For a
description of one particular trusted padding system, see PKCS #1 v2 [1].

RSA Digital Signatures
The section “Authentication and Digital Signatures” on page 55 discusses what a
digital signature is. This section describes how to write Crypto-C code that computes
or verifies digital signatures. For signing, Crypto-C offers B_SignInit, B_SignUpdate,
and B_SignFinal, which will digest the data and encrypt the digest using RSA
encryption with a private key. For verification, Crypto-C offers B_VerifyInit,
B_VerifyUpdate, and B_VerifyFinal, which will digest the data again, decrypt the
signature with the RSA public key, and compare the digest to the decrypted
1 9 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
signature.

Note that you cannot use the Sign and Verify functions if you do not want to digest
the data. Some applications may not call for a digest; they may demand that the
signature be the actual data encrypted with a private key. This is the case with some
forms of authentication, for instance. In other cases, the data passed to the application
has already been digested. In such an application, encrypt using AI_PKCS_RSAPrivate
or AI_RSAPrivate; do not follow the model outlined here.

A digital signature is actually not the private-key encrypted digest of the data, but the
private-key encrypted BER-encoding of the digest. (Remember that when you
“encrypt” using the private key, you are actually following the same steps you use for
decryption, even though you apply them to a plaintext file.) When you are using
SHA1, this means the input data will be 35 bytes, not 20. The “encryption” follows the
PKCS standards, so the data must be at least 11 bytes shorter than the modulus.
Hence, the modulus must be at least 46 bytes (368 bits) for computing digital
signatures using SHA1 as the digesting algorithm.

The example in this section corresponds to the file rsasign.c.

Computing a Digital Signature
Remember that with Crypto-C, you have the choice of doing your private-key
operations normally or of using the blinding technique (see “Timing Attacks and
Blinding” on page 96). You make this choice in the algorithm chooser. For normal
signature operations, use AM_RSA_CRT_ENCRYPT. To use blinding, use
AM_RSA_CRT_ENCRYPT_BLIND.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Crypto-C provides three methods for computing RSA digital signatures: MD2 with

B_ALGORITHM_OBJ digitalSigner = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&digitalSigner)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 1 9 9

Performing RSA Operations
RSA encryption, MD5 with RSA encryption, and SHA1 with RSA encryption.

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal
compression function, and there is some chance that the attack on MD2 may
be extended to the full hash function. The same attack applies to MD. Another
attack has been applied to the compression function on MD5, though this has
yet to be extended to the full MD5. RSA Data Security, Inc., recommends that
before you use MD, MD2, or MD5, you should consult the RSA Laboratories
web site to be sure that their use is consistent with the latest information.

For this example, choose AI_SHA1WithRSAEncryption. The Library Reference Manual
Chapter 2 entry on this AI states that the format of info supplied to
B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
Associate a key and algorithm method with the algorithm object through B_SignInit.
The Library Reference Manual Chapter 4 entry for this function shows that it takes four
arguments: the algorithm object, a key object, an algorithm chooser, and a surrender
context. The algorithm object in this example is digitalSigner. Remember, if the
algorithm object was not set to AI_MD5WithRSAEncryption,
AI_MD2WithRSAEncryption, AI_SHA1WithRSAEncryption, or their BER counterparts,
you cannot use B_SignInit. For a key object, use an RSA private key. Follow Steps 1
through 5 of “Generating a Key Pair” on page 186 to produce a key pair. Remember,
the modulus must be at least 368 bits.

Build an algorithm chooser with the AMs listed in the Library Reference Manual
Chapter 2 entry for the AI in use:

Note: If you want to sign using the blinding technique to thwart timing attacks (see
“Timing Attacks and Blinding” on page 96), use AM_RSA_CRT_ENCRYPT_BLIND
in the algorithm chooser.

if ((status = B_SetAlgorithmInfo
 (digitalSigner, AI_SHA1WithRSAEncryption, NULL_PTR)) != 0)
 break;

B_ALGORITHM_METHOD *SIGN_SAMPLE_CHOOSER[] = {
 &AM_SHA,
 &AM_RSA_CRT_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
2 0 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
B_SignInit is fast, so it is reasonable to pass a properly cast NULL_PTR for the
surrender context:

Step 4: Update
Digest the data to sign with B_SignUpdate, which is described in Chapter 4 of the
Library Reference Manual. Unless there is an extraordinarily large amount of data (for
example, a megabyte), this function is quick and a NULL_PTR for the surrender context
should be no problem. Assuming you have your input data and you know its length,
your call would be the following:

Step 5: Final
B_SignUpdate digested the data. Encrypt the digest and output the result to a
signature buffer with B_SignFinal. The signature will be the same size as the public
modulus, so make sure the output buffer is big enough. The Library Reference Manual
Chapter 2 entry on AI_SHAWithRSAEncryption states that “You may pass
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.” This function does
not return immediately, so a surrender context can be helpful; for this example use the
surrender context outlined in “The Surrender Context” on page 120:

if ((status = B_SignInit
 (digitalSigner, privateKey, SIGN_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_SignUpdate
 (digitalSigner, inputData, inputDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

#define BLOCK_SIZE 64;

/* Assuming we are using a 512-bit key */
unsigned char signature[BLOCK_SIZE];
unsigned int signatureLen;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 0 1

Performing RSA Operations
Step 6: Destroy
When you are done with all objects, remember to destroy them.

Verifying a Digital Signature
The Crypto-C sequence B_VerifyInit, B_VerifyUpdate, and B_VerifyFinal will
digest the original data, decrypt the signature with the provided RSA public key, and
compare the digest to the decrypted signature. If the values are the same,
B_VerifyFinal returns a 0; if they are different, it returns an error code.

Note: If a signing application did not digest the data before encrypting to produce a
signature, you cannot use the Verify functions. Instead, decrypt the signature
using AI_PKCS_RSAPublic or AI_RSAPublic.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
The signer should tell you which message digest and decryption algorithms you need

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_SignFinal
 (digitalSigner, signature, &signatureLen, 64,
 (B_ALGORITHM_OBJ)NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&digitalSigner);
B_DestroyKeyObject (&privateKey);

B_ALGORITHM_OBJ digitalVerifier = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&digitalVerifier)) != 0)
 break;
2 0 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
to use to verify the signature. To verify the signature created above, you would use
the same AI:

Step 3: Init
Associate a key and algorithm method with the algorithm object through
B_VerifyInit. The Chapter 4 Library Reference Manual entry for this function shows
that it takes four arguments: the algorithm object, a key object, an algorithm chooser,
and a surrender context. The algorithm object in this example is digitalVerifier. For
a key object, use an RSA public key, presumably the partner to the RSA private key
that was used for the signature. Build an algorithm chooser which incorporates the
AMs listed in the Library Reference Manual Chapter 2 entry for the AI in use.
B_VerifyInit is fast, so it is reasonable to pass a properly cast NULL_PTR for the
surrender context:

Note: If the algorithm object was not set to AI_MD5WithRSAEncryption,
AI_MD2WithRSAEncryption, AI_SHA1WithRSAEncryption, or their BER
counterparts, you cannot use B_VerifyInit.

Step 4: Update
Use B_VerifyUpdate to digest the data that was signed. Its prototype is in Chapter 4 of
the Library Reference Manual. Unless there is an extraordinarily large amount of data
(for example, a megabyte), B_VerifyUpdate is quick and a NULL_PTR for the surrender
context should be no problem. Assuming that you have the same input data and you

if ((status = B_SetAlgorithmInfo
 (digitalVerifier, AI_SHA1WithRSAEncryption, NULL_PTR)) != 0)
 break;

B_ALGORITHM_METHOD *VERIFY_SAMPLE_CHOOSER[] = {
 &AM_SHA,
 &AM_RSA_DECRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_VerifyInit
 (digitalVerifier, publicKey, VERIFY_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 0 3

Performing RSA Operations
know its length, your call is the following:

Step 5: Final
B_VerifyUpdate digested the data. Decrypt the signature and compare the result to
the digest with B_VerifyFinal. The Library Reference Manual Chapter 2 entry on
AI_SHA1WithRSAEncryption states that “You may pass (B_ALGORITHM_OBJ)NULL_PTR
for all randomAlgorithm arguments.” This function does not return immediately, so use
a surrender context:

The return value will be 0 if the signature verifies, nonzero if it does not. Of course, a
nonzero return value may indicate some other error, so check any error return against
the Crypto-C Error Types, in Appendix A of the Library Reference Manual.

Step 6: Destroy
When you are done with all objects, remember to destroy them:

ANSI X9.31-Compliant RSA Digital Signatures
Crypto-C supplies a special AI, AI_SignVerify, for ANSI X9.31-compliant digital
signing and verification. The procedure to sign and verify using AI_SignVerify is
similar to the steps outlined in the previous section “RSA Digital Signatures” on

if ((status = B_VerifyUpdate
 (digitalVerifier, inputData, inputDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_VerifyFinal
 (digitalVerifier, signature, signatureLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&digitalVerifier);
B_DestroyKeyObject (&publicKey);
2 0 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
page 198. The steps that differ are shown below.

The example in this section corresponds to the file signver.c.

Computing A Digital Signature

Step 1: Creating an Algorithm Object
Create your algorithm object as in “Computing a Digital Signature” on page 199.

Step 2: Setting the Algorithm Object
Assume that RSA_MODULUS_BITS gives the modulus size of the RSA key pair. The
proper AI to use for following the ANSI X9.31 standard for digital signatures is
AI_SignVerify. The Library Reference Manual Chapter 2 entry for this AI states that
you have to pass a pointer to a B_SIGN_VERIFY_PARAMS structure to
B_SetAlgorithmInfo:

Currently, the only signing method supported is "rsaSignX931", the only digest
available is "sha1", and the only format method is "formatX931". You can pass in a
NULL_PTR for the encryption and digest parameters, but the formatParams field requires
a pointer to a A_X931_PARAMS structure:

You need to determine blockLen for your modulus. AI_SignVerify encodes the input
data in blocks. Because of the requirements of the underlying RSA algorithm, the
number of bits of data must be the same as the number of bits of the RSA modulus.
However, the input block size is measured in bytes. Because the modulus size, which
is stored in RSA_MODULUS_BITS, may not be an even number of bytes, you need to

typedef struct { /* Current Choices */
 unsigned char *encryptionMethodName; /* "rsaSignX931", "rsaVerifyX931" */
 POINTER encryptionParams; /* Null for what is currently available*/
 unsigned char *digestMethodName; /* "sha1" */
 POINTER digestParams; /* Null for sha1 */
 unsigned char *formatMethodName; /* "formatX931" */
 POINTER formatParams; /* structure of type A_X931_PARAMS for sha1 */
} B_SIGN_VERIFY_PARAMS;

typedef struct {
 unsigned int blockLen;
 unsigned int oidNum;
} A_X931_PARAMS;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 0 5

Performing RSA Operations
calculate the smallest number of bytes you can use for your block. This number is the
integer part of (RSA_MODULUS_BITS + 7) / 8. For example, if your modulus is 514 bits
long, the smallest block size you can use is the integer part of (514 + 7)/8 bytes, or 65
bytes.

Note: For verifying, use "rsaVerifyX931" in place of "rsaSignX931".

Step 3: Init
Associating a key and algorithm method is the same as in the previous example, but
you need to include different algorithm methods in the chooser. The Library Reference
Manual Chapter 2 entry for AI_SignVerify lists the appropriate ones to add:

 A_X931_PARAMS x931params;
 B_SIGN_VERIFY_PARAMS signVerifyParams;
 x931params.blockLen = ((RSA_MODULUS_BITS + 7) / 8);
 x931params.oidNum = 3;

 signVerifyParams.encryptionMethodName = (unsigned char *)"rsaSignX931";
 signVerifyParams.encryptionParams = NULL_PTR;
 signVerifyParams.digestMethodName = (unsigned char *)"sha1";
 signVerifyParams.digestParams = NULL_PTR;
 signVerifyParams.formatMethodName = (unsigned char *)"formatX931";
 signVerifyParams.formatParams = (POINTER)&x931params;

 if ((status = B_SetAlgorithmInfo (digitalSigner, AI_SignVerify,
 (POINTER)&signVerifyParams)) != 0)
 break;

 B_ALGORITHM_METHOD *SIGNVERIFY_SAMPLE_CHOOSER[] = {
 &AM_SHA,
 &AM_SHA_RANDOM,
 &AM_RSA_STRONG_KEY_GEN,
 &AM_FORMAT_X931,
 &AM_RSA_CRT_X931_ENCRYPT,
 &AM_EXTRACT_X931, /* We will use these two AMs */
 &AM_RSA_X931_DECRYPT, /* for verifying the signature */
 (B_ALGORITHM_METHOD *)NULL_PTR
 };
2 0 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing RSA Operations
Steps 4, 5, 6
All other steps remain the same as in the example “Computing a Digital Signature”
on page 199.

Verifying A Digital Signature

Step 1: Creating An Algorithm Object
Create your algorithm object as in “Verifying a Digital Signature” on page 202.

Step 2: Setting the Algorithm Object
To verify the signature created above, you need to use the same AI you used for
signing. Again, you must set up the appropriate structures containing the information
for the algorithm you wish to use. The x931params structure is the same as the one
used for signing, but you need to use "rsaVerifyX931" for the encryptionMethodName.

Step 3: Init
Again, the only change required in the Init step is to include the appropriate
algorithm methods in the chooser. These are the same methods included in the

 if ((status = B_SignInit
 (digitalSigner, privateKey, SIGNVERIFY_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 signVerifyParams.encryptionMethodName = (unsigned char *)"rsaVerifyX931";
 signVerifyParams.encryptionParams = NULL_PTR;
 signVerifyParams.digestMethodName = (unsigned char *)"sha1";
 signVerifyParams.digestParams = NULL_PTR;
 signVerifyParams.formatMethodName = (unsigned char *)"formatX931";
 signVerifyParams.formatParams = (POINTER)&x931params;

 if ((status = B_SetAlgorithmInfo (digitalVerifier, AI_SignVerify,
 (POINTER)&signVerifyParams)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 0 7

Performing RSA Operations
SIGNVERIFY_SAMPLE_CHOOSER above. Then, call B_VerifyInit with the chooser:

Steps 4, 5, 6
All other steps remain the same as in the example “Verifying a Digital Signature” on
page 202.

 if ((status = B_VerifyInit
 (digitalVerifier, publicKey, SIGNVERIFY_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 0 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing DSA Operations
Performing DSA Operations
The Digital Signature Algorithm (DSA) is part of the Digital Signature Standard
(DSS), published by the National Institute of Standards and Technology (NIST, a
division of the US Department of Commerce), and is the digital authentication
standard of the US government. The section “Digital Signature Algorithm (DSA)” on
page 58 gives a more detailed description of the actual algorithm.

Generating a DSA key pair is a two-step process. First, you must generate the DSA
parameters, then you can generate the actual key pair.

The example in this section corresponds to the file dsasign.c.

Generating DSA Parameters
In this section, you generate the DSA parameters: a prime, a subprime, and a base.
There is no Step 4, Update, in generating DSA parameters.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one AI that will generate DSA parameters, AI_DSAParamGen. The format
of info supplied to B_SetAlgorithmInfo is a pointer to the following:

Crypto-C will generate the prime, but you must decide how big that prime will be.
The number of prime bits can be anywhere from 512 to 2048. Larger numbers provide

B_ALGORITHM_OBJ dsaParamGenerator = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dsaParamGenerator)) != 0)
 break;

typedef struct {
 unsigned int primeBits; /* size of prime in bits */
} B_DSA_PARAM_GEN_PARAMS;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 0 9

Performing DSA Operations
greater security, but are also much slower. As with the RSA algorithm, RSA Data
Security recommends using 768 bits. To save time, because this is for illustrative
purposes only, this example will use 512. The subprime is always 160 bits long:

Step 3: Init
Initialize the generation process with B_GenerateInit. Build an algorithm chooser.
Because this function is quick, it is reasonable to pass NULL_PTR as the surrender
context. Generating the parameters in Step 5 is time-consuming, though, so you will
use a surrender context there:

Step 4: Update
There is no Step 4 in generating DSA parameters.

Step 5: Generate
To generate DSA parameters, call the Crypto-C function B_GenerateParameters. The
Library Reference Manual Chapter 4 entry for this call indicates there are four
arguments. The first is the algorithm object that generates the parameters; in this
example, that is dsaParamGenerator.

The second is a result algorithm object. Crypto-C will generate some values and will

B_DSA_PARAM_GEN_PARAMS dsaParams;

dsaParams.primeBits = 512;
if ((status = B_SetAlgorithmInfo
 (dsaParamGenerator, AI_DSAParamGen,
 (POINTER)&dsaParams)) != 0)
 break;

B_ALGORITHM_METHOD *DSA_PARAM_GEN_CHOOSER[] = {
 &AM_SHA_RANDOM,
 &AM_DSA_PARAM_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_GenerateInit
 (dsaParamGenerator, DSA_PARAM_GEN_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 1 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing DSA Operations
need to place them somewhere. This information will be used in later Crypto-C calls,
so you might as well place these values in an algorithm object now. Create an
algorithm object, but do not set it; B_GenerateParameters will do that. (This is similar
to generating an RSA key pair, where the results were placed into key objects.)

The third argument is a random algorithm. Complete Steps 1 through 4 of
“Generating Random Numbers” on page 147. You do not need random bytes, only an
algorithm that can generate them. The algorithm chooser you are using contains the
AM for SHA1 random number generation.

The last argument is a surrender context. Generating DSA parameters can be time-
consuming, sometimes taking two or three minutes. On slower machines, generating
parameters over 800 bits can take more than an hour. Use the surrender context
described previously. It will print out a dot every second to let you know that Crypto-
C is computing and the machine has not crashed:

Step 6: Destroy
Remember to destroy your objects. Do not destroy the dsaKeyGenObj object until you
have used it to generate the actual key pair:

Generating a DSA Key Pair
The previous code generated the DSA parameters and set an algorithm object. With
that algorithm object, you can generate the key pair. Remember, the algorithm object
has already been created and set, so you can jump directly to Step 3.

B_ALGORITHM_OBJ dsaKeyGenObj = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dsaKeyGenObj)) != 0)
 break;

/* generalFlag is for this tutorial’s surrender function. */
generalFlag = 0;
if ((status = B_GenerateParameters
 (dsaParamGenerator, dsaKeyGenObj, randomAlgorithm,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dsaParamGenerator);
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 1 1

Performing DSA Operations
Step 3: Init
When it generated the parameters, Crypto-C set the algorithm object dsaKeyGenObj to
AI_DSAKeyGen. That means that when you build an algorithm chooser for the Init call,
you need to include AM_DSA_KEY_GEN. Look up the description and prototype for
B_GenerateInit in Chapter 4 of the Library Reference Manual. For this example, you
can use the following:

This example uses NULL_PTR for the surrender context because B_GenerateInit is a
speedy function. B_GenerateKeypair in Step 5 is the time-consuming function.

Step 4: Update
There is no Step 4 in generating a key pair.

Step 5: Generate
The description and prototype for B_GenerateKeypair in Chapter 4 of the Library
Reference Manual show that this function takes five arguments. The first is the
algorithm object; for this example, it is dsaKeyGenObj. The second and third are key
objects. For this call, all you have to do is create the key objects; they will be set by
B_GenerateKeypair. The fourth argument is a random algorithm. For this, complete
Steps 1 through 4 of “Generating Random Numbers” on page 147. You do not need
random bytes, only an algorithm that can generate them. The algorithm chooser you
are using (from Step 3) contains the AM for SHA1 random number generation. The
last argument is the surrender context. This function call is quick; the lengthy portion
was generating the parameters:

B_ALGORITHM_METHOD *DSA_KEY_GEN_CHOOSER[] = {
 &AM_SHA_RANDOM,
 &AM_DSA_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_GenerateInit
 (dsaKeyGenObj, DSA_KEY_GEN_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_KEY_OBJ dsaPublicKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ dsaPrivateKey = (B_KEY_OBJ)NULL_PTR;
2 1 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing DSA Operations
Step 6: Destroy
When you are done with all objects, remember to destroy them:

DSA Signatures
In this section, we describe how to write Crypto-C code that computes or verifies DSA
digital signatures. See “Authentication and Digital Signatures” on page 55 for
information on what a digital signature is. For signing, Crypto-C offers B_SignInit,
B_SignUpdate, and B_SignFinal, which will digest the data and create a signature
using DSA with a private key. For verification, Crypto-C offers B_VerifyInit,
B_VerifyUpdate, and B_VerifyFinal to digest the data again and check the signature
using the DSA public key.

Computing a Digital Signature

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for

if ((status = B_CreateKeyObject (&dsaPublicKey)) != 0)
 break;

if ((status = B_CreateKeyObject (&dsaPrivateKey)) != 0)
 break;

if ((status = B_GenerateKeypair
 (dsaKeyGenObj, dsaPublicKey, dsaPrivateKey,
 randomAlgorithm, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dsaKeyGenObj);
B_DestroyKeyObject (&dsaPublicKey);
B_DestroyKeyObject (&dsaPrivateKey);
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 1 3

Performing DSA Operations
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one Crypto-C choice for computing DSA digital signatures,
AI_DSAWithSHA1 (or its BER counterpart). The Library Reference Manual Chapter 2 entry
for this AI states that the format of info supplied to B_SetAlgorithmInfo is NULL_PTR.

Step 3: Init
Associate a key and algorithm method with the algorithm object through B_SignInit.
The Chapter 4 Library Reference Manual entry on this function shows that it takes four
arguments: the algorithm object, a key object, an algorithm chooser and a surrender
context. The algorithm object in this example is dsaSigner. For a key object you want
to use a DSA private key. See the previous section on generating a DSA key pair.

Build an algorithm chooser, the elements being the AMs listed in the Library Reference
Manual Chapter 2 entry for the AI in use. B_SignInit is fast, so it is reasonable to pass
a properly cast NULL_PTR for the surrender context:

B_ALGORITHM_OBJ dsaSigner = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dsaSigner)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (dsaSigner, AI_DSAWithSHA1, NULL_PTR)) != 0)
 break;

B_ALGORITHM_METHOD *DSA_SIGN_CHOOSER[] = {
 &AM_SHA,
 &AM_DSA_SIGN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};
if ((status = B_SignInit
 (dsaSigner, dsaPrivateKey, DSA_SIGN_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 1 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing DSA Operations
Step 4: Update
Digest the data to sign with B_SignUpdate, the prototype of which is in Chapter 4 of
the Library Reference Manual. Unless there is an extraordinarily large amount of data
(for example, a megabyte or more), this function is quick and a NULL_PTR for the
surrender context should be no problem. Assuming you have some input data and
you know its length, your call is the following:

Step 5: Final
B_SignUpdate digested the data. Create the signature and send the result to a
signature buffer with B_SignFinal. The signature will be as many as 48 bytes long, so
make sure the output buffer is big enough. The Library Reference Manual Chapter 2
entry on AI_DSAWithSHA1 states:

This function does not return immediately, so a surrender context can be helpful. For
this example, use the surrender context described in “The Surrender Context” on
page 120:

if ((status = B_SignUpdate
 (dsaSigner, inputData, inputDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 You must pass a random algorithm in B_SignFinal, but may pass
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.

#define MAX_SIG_LEN 48

unsigned char signature[MAX_SIG_LEN];
unsigned int signatureLen;

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_SignFinal
 (dsaSigner, signature, &signatureLen, MAX_SIG_LEN,
 randomAlgorithm,
 &generalSurrenderContext)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 1 5

Performing DSA Operations
Step 6: Destroy
When you are done with all objects, remember to destroy them:

Verifying a Digital Signature
The Crypto-C sequence B_VerifyInit, B_VerifyUpdate, and B_VerifyFinal digests
the original data and checks the signature. If the signature is valid, B_VerifyFinal
returns a zero; if the signature is not valid, it returns an error code.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
To verify the signature created above, use the same AI:

Step 3: Init
Associate a key and algorithm method with the algorithm object through
B_VerifyInit. The Chapter 4 Library Reference Manual entry on this function shows
that it takes four arguments: the algorithm object, a key object, an algorithm chooser,
and a surrender context. The algorithm object in this example is dsaVerifier. For a key
object, you want to use a DSA public key, presumably the partner to the DSA private
key used to sign. Build an algorithm chooser, the elements being the AMs listed in the

B_DestroyAlgorithmObject (&dsaSigner);
B_DestroyKeyObject (&dsaPrivateKey);

B_ALGORITHM_OBJ dsaVerifier = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dsaVerifier)) != 0)
 break;

if ((status = B_SetAlgorithmInfo
 (dsaVerifier, AI_DSAWithSHA1, NULL_PTR)) != 0)
 break;
2 1 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing DSA Operations
Library Reference Manual Chapter 2 entry for the AI in use. B_VerifyInit is fast, so it is
reasonable to pass a properly cast NULL_PTR for the surrender context:

Step 4: Update
Digest the data that was signed with B_VerifyUpdate, the prototype of which is in
Chapter 4 of the Library Reference Manual. Unless there is an extraordinarily large
amount of data (for example, a megabyte or more), this function is quick and a
NULL_PTR for the surrender context will probably be no problem. Assuming you have
the same input data and you know its length, your call is the following:

Step 5: Final
B_VerifyUpdate digested the data. Check the signature with B_VerifyFinal. The
Library Reference Manual Chapter 2 entry on AI_DSAWithSHA1 states:

B_ALGORITHM_METHOD *DSA_VERIFY_CHOOSER[] = {
 &AM_SHA1,
 &AM_DSA_VERIFY,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_VerifyInit
 (dsaVerifier, dsaPublicKey, DSA_VERIFY_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

if ((status = B_VerifyUpdate
 (dsaVerifier, inputData, inputDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 You must pass a random algorithm in B_SignFinal, but may pass
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 1 7

Performing DSA Operations
This function does not return immediately, so use a surrender context:

The return value will be zero if the signature verifies, nonzero if it does not. Of course,
a nonzero return value may indicate some other error, so check any error return
against the Crypto-C Error Types, Appendix A of the Library Reference Manual.

Step 6: Destroy
When you are done with all objects, remember to destroy them:

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_VerifyFinal
 (dsaVerifier, signature, signatureLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&dsaVerifier);
B_DestroyKeyObject (&dsaPublicKey);
2 1 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Diffie-Hellman Key Agreement
Performing Diffie-Hellman Key Agreement
The Diffie-Hellman Key Agreement is a method for two parties to obtain the same
symmetric key. In this procedure, a central authority generates parameters and gives
them to the two individuals seeking to generate a secret key. In Phase 1, each
individual uses these parameters to produce a public value and a private value. In
Phase 2, they trade public values and each uses the other’s public value with their
own private value to generate the same secret value.

Note: One of the individuals could act as the central authority and generate the
parameters. Security does not depend on a third party’s independently
producing the parameters.

The section “Diffie-Hellman Public Key Agreement” on page 61 gives a detailed
description of the Diffie-Hellman algorithm.

Generating Diffie-Hellman Parameters
The parameters are a prime, a base, and, optionally, the length in bits of the private
value. The parties will generate their own private values in Phase 1, although the
central authority has the option of declaring how long these values will be.

Note: You may have noticed that the Diffie-Hellman algorithm is very similar to the
RSA algorithm. The Diffie-Hellman prime is analogous to the RSA modulus,
and the Diffie-Hellman base is analogous to the RSA data to encrypt. The
Diffie-Hellman private value is analogous to the RSA private exponent
(private key) in private-key encryption.

The example in this section corresponds to the file dhparam.c. There is no Step 4,
Update, in generating Diffie-Hellman parameters.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

B_ALGORITHM_OBJ dhParamGenerator = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dhParamGenerator)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 1 9

Performing Diffie-Hellman Key Agreement
Step 2: Setting The Algorithm Object
There is only one AI for generating Diffie-Hellman parameters: AI_DHParamGen. The
format of info supplied to B_SetAlgorithmInfo is a pointer to the following struct:

Crypto-C will generate the prime, but you must decide how big that prime will be. As
with the RSA modulus, the number of prime bits can be anywhere from 256 to 2048.
Larger numbers provide greater security, but operations with larger numbers are
much slower. RSA Data Security recommends 768. To save time, because this is for
illustrative purposes only, this example will use 512.

The exponent is the private value, generated randomly by each party during Phase 1.
The value exponentBits is the length of that private value. The Diffie-Hellman
algorithm allows the parameter generator (the central authority) to optionally
determine the length of the private value. Crypto-C exercises that option and requires
the length.

The exponent length should be at least twice the general security level of the system.
For instance, if 80-bit security against brute-force attack is desired, the exponent
should be 160 bits long. (This is how DSS does it.) The prime length should be chosen
to have a comparable level of difficulty against the best discrete logarithm algorithms.
The relationship between the sizes changes from time to time; a 1024-bit prime would
not be too far off from the 80-bit level.

The closer the exponent length is to the prime length, the longer it takes to generate
the Diffie-Hellman parameters, because Crypto-C generates a prime p and a prime q
where p-1 is a multiple of q, and the length of q is the same as the desired length of the
exponent. If the lengths are very close it will take a long time to find an appropriately
related pair of primes, because for a given q there won't be all that many possible p’s.
For example: for a one-bit difference between the prime and exponent lengths, p must
equal 2q+1, and it's unlikely that q and 2q+1 are simultaneously prime.

The Chapter 2 entry for AI_DHParamGen notes that the “exponentBits must be less than

typedef struct {
 unsigned int primeBits; /* size of prime modulus in bits */
 unsigned int exponentBits; /* size of random exponent in bits */
} A_DH_PARAM_GEN_PARAMS;
2 2 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Diffie-Hellman Key Agreement
primeBits.” For this example, choose 512 prime bits and 504 exponent bits:

Step 3: Init
Initialize the generation process with B_GenerateInit. Build an algorithm chooser.
Because this function is quick, it is reasonable to pass NULL_PTR as the surrender
context. Generating the parameters in Step 5 is time-consuming, though, so you will
use a surrender context there:

Step 4: Update
There is no Step 4 in generating Diffie-Hellman parameters.

Step 5: Generate
To generate Diffie-Hellman parameters, call the Crypto-C function
B_GenerateParameters. The Library Reference Manual Chapter 4 entry for this call
indicates there are four arguments. The first is the algorithm object that generates the
parameters; in this example, that is dhParamGenerator. The second is a result algorithm
object. Crypto-C will generate some values and will need to place them somewhere.
So you might as well place them into an algorithm object now. (This is similar to
generating an RSA key pair, where the results were placed into key objects.) Create an

A_DH_PARAM_GEN_PARAMS dhParams;

dhParams.primeBits = 512;
dhParams.exponentBits = 504;
if ((status = B_SetAlgorithmInfo
 (dhParamGenerator, AI_DHParamGen,
 (POINTER)&dhParams)) != 0)
 break;

B_ALGORITHM_METHOD *DH_SAMPLE_CHOOSER[] = {
 &AM_SHA_RANDOM,
 &AM_DH_PARAM_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_GenerateInit
 (dhParamGenerator, DH_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 2 1

Performing Diffie-Hellman Key Agreement
algorithm object, but do not set it; B_GenerateParameters will do that.

The third argument is a random algorithm. Complete Steps 1 through 4 of
“Generating Random Numbers” on page 147. You do not need random bytes, only an
algorithm that can generate them. The algorithm chooser you are using contains the
AM for SHA random number generation.

The last argument is a surrender context. Generating Diffie-Hellman parameters is
time-consuming; it can take up to two minutes. On slower machines, generating
parameters over 800-bits can take more than an hour. Use the surrender context
mentioned above. It will print out a dot every second to let you know that Crypto-C is
computing and the machine has not crashed:

Step 6: Destroy
Remember to destroy your objects. Do not destroy the dhParametersObj object until
you have passed it on to the parties executing the agreement. The next section
discusses that point:

Distributing Diffie-Hellman Parameters
The central authority, after computing the parameters, must send this information to
the parties seeking agree on a secret key. This can be done using Crypto-C format or
BER-encoded format.

B_ALGORITHM_OBJ dhParametersObj = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dhParametersObj)) != 0)
 break;

/* generalFlag is for this tutorial’s surrender function. */
generalFlag = 0;
if ((status = B_GenerateParameters
 (dhParamGenerator, dhParametersObj, randomAlgorithm,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dhParamGenerator);
2 2 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Diffie-Hellman Key Agreement
Note: It is not necessary to generate parameters each time two parties wish to agree
on a secret key. Any number of key agreements can use the same parameters.
Of course, for greater security, it is a good idea to generate new parameters
every so often.

Crypto-C Format
To send the information in Crypto-C format, you can send a copy of the algorithm
object to the participants. Actually, you do not send the object itself, but rather the
“info supplied to B_SetAlgorithmInfo.”

Recall that you did not set the algorithm object dhParametersObj; the Crypto-C
function B_GenerateParameters did. It is set to the AI AI_DHKeyAgree. In the Library
Reference Manual Chapter 2 entry on AI_DHKeyAgree, the topic “Format of info
returned by B_GetAlgorithmInfo” states that it returns a pointer to an
A_DH_KEY_AGREE_PARAMS structure:

where ITEM is:

Declare a variable to be a pointer to such a structure and pass its address as the
argument.

Using the Library Reference Manual Chapter 4 prototype for B_GetAlgorithmInfo as a
guide, you can write the following:

typedef struct {
 ITEM prime; /* prime modulus */
 ITEM base; /* base generator */
 unsigned int exponentBits; /* size of random exponent in bits */
} A_DH_KEY_AGREE_PARAMS;

typedef struct {
 unsigned char *data;
 unsigned int len;
} ITEM;

A_DH_KEY_AGREE_PARAMS *dhKeyAgreeParams =
 (A_DH_KEY_AGREE_PARAMS *)NULL_PTR;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 2 3

Performing Diffie-Hellman Key Agreement
If you look at the elements of the struct:

dhKeyAgreeParams->prime.data
dhKeyAgreeParams->prime.len
dhKeyAgreeParams->base.data
dhKeyAgreeParams->base.len
dhKeyAgreeParams->exponentBits

you will see the parameters Crypto-C generated. This is the information the central
authority sends to the participants in the key agreement. Copy this information to a
file or diskette, for instance, and pass it on.

If you want to email the information, you will not be able to send the information over
most email systems because the data is in binary form, not ASCII. Crypto-C offers
encoding and decoding functions to convert between binary and ASCII. See
“Converting Data Between Binary and ASCII” on page 154 for more information.

BER Format
There is a problem with distributing the parameters in the above structure. The
struct is not standard; it is unique to Crypto-C. If one or both of the parties are not
using Crypto-C, how do you give them the information? The standard is ASN.1,
which defines Basic Encoding Rules (BER) and Distinguished Encoding Rules (DER).
See “BER/DER Encoding” on page 125 for a description of this topic.

The central authority puts the parameters into DER format, encodes them, and emails
the encoding. The parties decode the DER string and convert that information into the
parameters in the format of their choice.

This sounds difficult, but Crypto-C offers a means of doing it simply. Above, in order
to obtain the parameters, you used B_GetAlgorithmInfo with AI_DHKeyAgree.
Chapter 2 of the Library Reference Manual lists AI_DHKeyAgreeBER, which states:

Crypto-C returns a pointer to where that information resides, not the information. As

if ((status = B_GetAlgorithmInfo
 ((POINTER *)&dhKeyAgreeParams, dhParametersObj,
 AI_DHKeyAgree)) != 0)
 break;

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure which gives the address and length of the DER-encoded
algorithm identifier.
2 2 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Diffie-Hellman Key Agreement
soon as the object that contains that information is destroyed, the information will no
longer be accessible. Therefore, once you get the pointer to that information, copy it
into your own buffer:

In summary, generate the parameters, get the algorithm info in BER format with
B_GetAlgorithmInfo and AI_DHKeyAgreeBER, encode the BER data into ASCII format
and send it to the Diffie-Hellman key agreement participants.

Note: The conversion into BER or DER is known as BER-encoding or DER-
encoding, and the conversion between binary to ASCII is known as encoding
and decoding. This may get confusing, but the word encoding without a BER
in front of it generally means binary to ASCII. If the encoding is BER- or DER-
encoding, the BER or DER should be explicitly stated.

Diffie-Hellman Key Agreement
If you are one of the parties involved in the key agreement, perform the following
steps. Note that instead of Update and Final, you use B_KeyAgreePhase1 and
B_KeyAgreePhase2. Also, if you are writing an application that executes the Diffie-
Hellman key agreement, the application must be interactive.

This process will produce an agreed-upon secret value. That value may be larger than
necessary. For instance, the agreement may produce a 64-byte agreed upon secret
value, yet the parties may need only 8 bytes. The application must determine which
bytes from the agreed upon secret value to use.

ITEM *cryptocDHParametersBER;
ITEM myDHParametersBER;

myDHParametersBER.data = NULL_PTR;

if ((status = B_GetAlgorithmInfo
 ((POINTER *)&cryptocDHParametersBER, myDHParametersObj,
 AI_DHKeyAgreeBER)) != 0)
 break;

myDHParametersBER.len = cryptocDHParametersBER->len;
myDHParametersBER.data = T_malloc (myDHParametersBER.len);
if ((status = (myDHParametersBER.data == NULL_PTR)) != 0)
 break;
T_memcpy (myDHParametersBER.data, cryptocDHParametersBER->data,
 myDHParametersBER.len);
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 2 5

Performing Diffie-Hellman Key Agreement
The example in this section corresponds to the file dhagree.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are two possible AIs to use in setting a Diffie-Hellman key agreement algorithm
object: AI_DHKeyAgree and AI_DHKeyAgreeBER. Recall that in generating the Diffie-
Hellman parameters, the central authority set an algorithm object and then retrieved
its info using B_GetAlgorithmInfo. The central authority then distributed that info to
you, telling you which AI to use. For this example, use AI_DHKeyAgreeBER to match
the usage in “Distributing Diffie-Hellman Parameters” on page 222:

Step 3: Init
Initialize the algorithm object with B_KeyAgreeInit. The Library Reference Manual
Chapter 4 entry on this function indicates it takes four arguments. The first is the
algorithm object, dhKeyAgreeAlg. The second is a key object. The Diffie-Hellman key
agreement algorithm does not require a key, so use a properly cast NULL_PTR for this
argument. The third argument is an algorithm chooser, and the last is a surrender
context. This function is fast, so it is reasonable to pass a properly cast NULL_PTR for

B_ALGORITHM_OBJ dhKeyAgreeAlg = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&dhKeyAgreeAlg)) != 0)
 break;

/* Assume you received the BER-encoded DH parameters from the
 central authority in the ITEM dhParametersBER. */
ITEM dhParametersBER;

if ((status = B_SetAlgorithmInfo
 (dhKeyAgreeAlg, AI_DHKeyAgreeBER,
 (POINTER)&dhParametersBER)) != 0)
 break;
2 2 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Diffie-Hellman Key Agreement
the surrender context.

Step 4: Phase 1
In Phase 1, you generate a random private value and compute a public value from
that private value and the parameters. The Library Reference Manual Chapter 4 entry
on B_KeyAgreePhase1 describes the format of its six arguments.

The first is the algorithm object. The second is output. This output is the public value,
which will be the same size as the prime. You are responsible for allocating the
memory for the buffer to contain the public value. In this example, you do not know
how big the prime is; just set the algorithm with the BER-encoded info. That info does
contain the size of the prime, but you would have to know exactly where to look. An
easier way to find the prime size is by getting the algorithm info as AI_DHKeyAgree.

The third argument for the Phase 1 call is the address of an unsigned int. Crypto-C
will place the length in bytes of the public value at that address. The fourth is the size
of the buffer you allocated; if the buffer is not big enough to hold the output, Crypto-
C will generate an error. The fifth argument is a random algorithm object. For this,
complete Steps 1 through 4 of “Generating Random Numbers” on page 147. You do
not need random bytes, only an algorithm that can generate them. The last argument
is a surrender context. This function does not return immediately, so a surrender
context is helpful. Use the one outlined in “The Surrender Context” on page 120:

B_ALGORITHM_METHOD *DH_AGREE_SAMPLE_CHOOSER[] = {
 &AM_DH_KEY_AGREE,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_KeyAgreeInit
 (dhKeyAgreeAlg, (B_KEY_OBJ)NULL_PTR, DH_AGREE_SAMPLE_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

unsigned char *myPublicValue = NULL_PTR;
unsigned int myPublicValueLen;
A_DH_KEY_AGREE_PARAMS *getParams;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 2 7

Performing Diffie-Hellman Key Agreement
Step 5: Phase 2
After you have computed your public value, you must send it off to the other party
and receive their public value. You need the same algorithm object from Phase 1 to
complete Phase 2. This is why the process must be interactive. You cannot save your
private value and stop the program after sending off your public value while you
wait for the other party’s public value.

The input of B_KeyAgreePhase2 is the other party’s public value; the output is the
agreed-upon secret value. The output will be the same size as the prime; you must
allocate the space to hold this output. Although the output will be at least 32 bytes, the
parties might only need eight bytes for a session key. If that is the case, it is the
application’s responsibility to specify which bytes of the agreed-upon secret value
will be used. This function does not return immediately, so a surrender context is

/* Find out how big the prime is so we know how many bytes to
 allocate for the public value buffer. */

if ((status = B_GetAlgorithmInfo
 ((POINTER *)&getParams, dhKeyAgreeAlg, AI_DHKeyAgree)) != 0)
 break;

myPublicValue = T_malloc (getParams->prime.len);
if ((status = (myPublicValue == NULL_PTR)) != 0)
 break;

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_KeyAgreePhase1
 (dhKeyAgreeAlg, myPublicValue, &myPublicValueLen,
 getParams->prime.len, randomAlgorithm,
 &generalSurrenderContext)) != 0)
 break;
2 2 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Diffie-Hellman Key Agreement
useful:

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory:

/* The other party should send their public value and its length. */

unsigned char *otherPublicValue;
unsigned int otherPublicValueLen;
unsigned char *agreedUponSecretValue = NULL_PTR;
unsigned int agreedUponSecretValueLen;

agreedUponSecretValue = T_malloc (getParams->prime.len);
if ((status = (agreedUponSecretValue == NULL_PTR)) != 0)
 break;

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_KeyAgreePhase2
 (dhKeyAgreeAlg, agreedUponSecretValue,
 &agreedUponSecretValueLen, getParams->prime.len,
 otherPublicValue, otherPublicValueLen,
 &generalSurrenderContext)) != 0)
 break;

B_DestroyAlgorithmObject (&dhKeyAgreeAlg);
B_DestroyAlgorithmObject (&randomAlgorithm);
T_free (myPublicValue);
T_free (agreedUponSecretValue);
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 2 9

Performing Elliptic Curve Operations
Performing Elliptic Curve Operations
Elliptic curve cryptosystems can be used for a number of public-key operations.
Crypto-C supports the following elliptic curve features:

• Generation of elliptic curve parameters

• Elliptic curve key pair generation

• Elliptic Curve Signature Schemes (ECDSA)

• Elliptic Curve Authenticated Encryption Scheme (ECAES)

• Elliptic Curve Diffie-Hellman key agreement (ECDH)

Crypto-C also allows you to generate precomputed acceleration tables to speed up
certain elliptic curve operations.

For a description of elliptic curve parameters and algorithms, see “Elliptic Curve
Cryptography” on page 64.

Generating Elliptic Curve Parameters
Before you can perform any elliptic curve operations, you must create the parameters
for the curve that you will be using. Once you have generated elliptic curve
parameters, you can use the parameters to: generate a key pair, to create an
acceleration table, or to perform Elliptic Curve Diffie-Hellman (ECDH) key
agreement. The same elliptic curve parameters can be used for multiple operations.
See “Elliptic Curve Parameters” on page 65 for more information.

You need to make some choices about the kind of elliptic curve you want to use. You
need to choose what to use for a base field: an odd prime finite field or a field of even
characteristic. If you choose a field of even characteristic, you also have to choose
what type of basis you want to use. You also have to choose the number of bits that
you want for the length of an element in the field.

For this example, you will use an odd prime field for the base field. The example in
this section corresponds to the file ecparam.c.

Step 1: Creating an Algorithm Object
You need to create two algorithm objects. The first, paramGenObj, is initialized by the
programmer prior to the parameter generation operation; it is used to hold
information necessary to generate parameters. The second, ecParamsObj, is set and
initialized by B_GenerateParameters; it will hold the newly-generated elliptic curve
2 3 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
parameters.

Step 2: Setting the Algorithm Object
You need to set the algorithm object that will be used to generate the elliptic curve
parameters. The only AI that can be used to generate elliptic curve parameters is
AI_ECParamGen. Chapter 2 in the Library Reference Manual gives the following:

To supply the necessary information, pass a pointer to a B_EC_PARAM_GEN_PARAMS
structure as the third argument to B_SetAlgorithmInfo. The B_EC_PARAM_GEN_PARAMS
structure is defined in the Chapter 2 entry in the Library Reference Manual for
AI_ECParamGen:

You must choose the field type and the length of the field element. The field type can
be either: a prime field of odd characteristic, that is, Fp; or a field of even characteristic,
F2m.

For this example, set the arguments as shown below. The first argument specifies the

B_ALGORITHM_OBJ paramGenObj = (B_ALGORITHM_OBJ)NULL_PTR;
B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject(¶mGenObj)) != 0)
 break;
if ((status = B_CreateAlgorithmObject(&ecParamsObj)) != 0)
 break;

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_EC_PARAM_GEN_PARAMS structure.

typedef struct {
 unsigned int version; /* implementation version */
 unsigned int fieldType; /* base field for the elliptic curve */
 unsigned int fieldElementBits; /* length of field element in bits */
 unsigned int compressIndicator; /* controls field element representation */
 unsigned int minOrderBits; /* minimum size of group generated by base */
 /* input of 0 defaults to fieldElementBits - 7 */
 unsigned int trialDivBound; /* maximum size of second largest prime */
 /* subgroup of group generated by base */
 /* input of 0 defaults to 255 */
 unsigned int tableLookup; /* characteristic 2 only. Set if the */
 /* use of precomputed params is desired */
} B_EC_PARAM_GEN_PARAMS;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 3 1

Performing Elliptic Curve Operations
version number; in Crypto-C, the only version available is 0. The second argument
specifies that you want your base field to be of the form Fp (p is an odd prime).

The third argument sets the length of a field element in bits; in this example, set it to
be 160. For the prime field case, the size of a field element can be anywhere from 64 to
384 bits. The length of a field element, along with minOrderBits, strongly affects the
security of the system; the greater the length, the greater the security. However, the
greater the length, the longer it takes to generate key pairs and encrypt and decrypt.
Currently, RSA Data Security recommends a size of 160 to 170 bits for minOrderBits
for prototyping and evaluation; because minOrderBits defaults to 7 bits smaller than
fieldElementBits, fieldElementBits should be set to 167–177 bits.

For the legal values for fieldElementBits in the even characteristic case, see the entry
for AI_ECParamGen in Chapter 2 of the Library Reference Manual.

Note: Generating an elliptic curve for even characteristic without table lookup
(fieldtype = FT_F2_ONB or FT_F2_POLYNOMIAL and tableLookup = 0) can be
extremely time-consuming, taking several hours in some cases. In general,
larger values for minOrderBits means longer times for curve generation.
Therefore, if you wish to generate curves for even characteristic, but do not
want to use table lookup, you can speed curve generation by setting a smaller
value for minOrderBits. Remember, however, that the size of minOrderBits is
directly tied to the security of your elliptic curve cryptosystem. Setting
minOrderBits allows you to make a trade-off between the time it takes to
generate curves and the security of your system.

The fourth argument specifies whether you will express the base and public key in
uncompressed or hybrid form; pass CI_NO_COMPRESS to indicate that your application
will not use compression. For the fifth and six arguments, pass 0; this tells Crypto-C to
use its internal algorithms to generate its own values:

 B_EC_PARAM_GEN_PARAMS paramGenInfo;
 paramGenInfo.version = 0;
 paramGenInfo.fieldType = FT_FP;
 paramGenInfo.fieldElementBits = 160;
 paramGenInfo.compressIndicator = CI_NO_COMPRESS;
 paramGenInfo.minOrderBits = 0;
 paramGenInfo.trialDivBound = 0;

if ((status = B_SetAlgorithmInfo(paramGenObj, AI_ECParamGen,
 (POINTER)¶mGenInfo)) != 0)
 break;
2 3 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
Step 3: Init
You can pass a NULL_PTR for the surrender context, because B_GenerateInit is a
speedy function. For AI_ECParamGen, Chapter 2 of the Library Reference Manual
indicates which algorithm methods you need to include in your chooser,
paramGenChooser:

Because you are using an odd prime, use AM_ECFP_PARAM_GEN:

Step 4: Update
No Update step is necessary for parameter generation.

Step 5: Generate
This function may take a while, so you should use a surrender function. See “The
Surrender Context” on page 120. B_GenerateParameters places the newly-generated
elliptic curve parameters in ecParamsObj:

Algorithm methods to include in application’s algorithm chooser:
AM_ECFP_PARAM_GEN for odd prime fields and AM_ECF2POLY_PARAM_GEN for even
characteristic.

B_ALGORITHM_METHOD *paramGenChooser[] = {
 &AM_ECFP_PARAM_GEN,
 &AM_ECF2POLY_PARAM_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_GenerateInit(paramGenObj, paramGenChooser,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 generalSurrenderContext.Surrender = GeneralSurrenderFunction;
 generalSurrenderContext.handle = (POINTER)&generalFlag;
 generalSurrenderContext.reserved = NULL_PTR;
 generalFlag = 0;

if ((status = B_GenerateParameters(paramGenObj, ecParamsObj,
 randomAlgorithm,
 &generalSurrenderContext)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 3 3

Performing Elliptic Curve Operations
Step 6: Destroy
Destroy all algorithm objects that are no longer necessary. However, do not destroy
ecParamsObj until you have retrieved and stored the parameters. See “Retrieving
Elliptic Curve Parameters” on page 234 for more information. Do destroy ecParamsObj
when it is no longer needed:

Retrieving Elliptic Curve Parameters
Once you have your elliptic curve parameters in an algorithm object, you need to be
able to retrieve those parameters in an accessible form. Once you have retrieved your
parameters, you can store the information or print it out. You also need to retrieve the
elliptic curve parameters from the algorithm object when you generate acceleration
tables.

This section outlines two application-specific procedures, AllocAndCopyECParamInfo
and FreeECParamInfo, that are used to retrieve and store information. These
procedures are referred to in subsequent sections.

To retrieve information from an algorithm object, it is necessary to call
B_GetAlgorithmInfo with an appropriate AI. The only AI listed in the Library
Reference Manual that allows you to set or retrieve the parameters is AI_ECParameters:

The Library Reference Manual Chapter 2 entry for AI_ECParameters also states that the
format of the information returned by B_GetAlgorithmInfo is a pointer to an

B_DestroyAlgorithmObject (¶mGenObj);
B_DestroyAlgorithmObject (&randomAlgorithm);

Type of information this allows you to use:
the parameters generated by executing AI_ECParamGen for either generating keys or
executing key agreements.
2 3 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
A_EC_PARAMS structure:

Assume that the elliptic curve parameters are placed in the algorithm object
ecParamsObj (see “Generating Elliptic Curve Parameters” on page 230). Make the
appropriate call to B_GetAlgorithmInfo:

Note that cryptocECParamInfo is a pointer to the information, not the information itself.
The memory that cryptocECParamInfo points to belongs to Crypto-C; another call to
Crypto-C may alter or destroy it. Therefore, once you get the pointer to the
information, you must copy it to your own buffer.

The following procedure, AllocAndCopyECParamInfo, is an example of an application-
specific procedure that allocates space to store the parameters. You can also write
your own procedure to satisfy the needs of your application:

typedef struct {
 unsigned int version; /* implementation version */
 unsigned int fieldType; /* indicates type of base field */
 ITEM fieldInfo; /* It is the prime number */
 /* in case that fieldType = FT_FP; */
 /* the basis polynomial if fieldType = FT_F2_POLYNOMIAL; */
 /* and the degree of the field if fieldType = FT_F2_ONB */
 ITEM coeffA; /* elliptic curve coefficient */
 ITEM coeffB; /* elliptic curve coefficient */
 ITEM base; /* elliptic curve group generator */
 ITEM order; /* order of subgroup’s generating element */
 ITEM cofactor; /* the cofactor of the subgroup */
 unsigned int compressIndicator; /* controls field element representation */
 unsigned int fieldElementBits; /* field element size in bits */
} A_EC_PARAMS;

 A_EC_PARAMS *cryptocECParamInfo;

 if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParamInfo,
 ecParamsObj, AI_ECParameters)) != 0)
 break;

int AllocAndCopyECParamInfo(output, input)
A_EC_PARAMS *output;
A_EC_PARAMS *input;
{
 int status;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 3 5

Performing Elliptic Curve Operations
 do {
 output->version = input->version;

 output->fieldType = input->fieldType;

 output->fieldInfo.len = input->fieldInfo.len;
 output->fieldInfo.data = T_malloc(output->fieldInfo.len);
 if ((status = (output->fieldInfo.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->fieldInfo.data, input->fieldInfo.data,
 output->fieldInfo.len);

 output->coeffA.len = input->coeffA.len;
 output->coeffA.data = T_malloc(output->coeffA.len);
 if ((status = (output->coeffA.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->coeffA.data, input->coeffA.data,
 output->coeffA.len);

 output->coeffB.len = input->coeffB.len;
 output->coeffB.data = T_malloc(output->coeffB.len);
 if ((status = (output->coeffB.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->coeffB.data, input->coeffB.data,
 output->coeffB.len);

 output->base.len = input->base.len;
 output->base.data = T_malloc(output->base.len);
 if ((status = (output->base.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->base.data, input->base.data,
 output->base.len);

 output->order.len = input->order.len;
 output->order.data = T_malloc(output->order.len);
 if ((status = (output->order.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->order.data, input->order.data,
 output->order.len);
2 3 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
For this example application, use AllocAndCopyECParamInfo() to make a copy of the
information that cryptocECParamInfo points to and place that in your own buffer,
ecParamInfo:

When the information in ecParamInfo is no longer needed, you must remember to free
any memory that you allocated:

where FreeECParamInfo is a procedure that performs this operation. In the sample

 output->cofactor.len = input->cofactor.len;
 output->cofactor.data = T_malloc(output->cofactor.len);
 if ((status = (output->cofactor.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->cofactor.data, input->cofactor.data,
 output->cofactor.len);

 output->compressIndicator = input->compressIndicator;

 output->fieldElementBits = input->fieldElementBits;
 } while(0);

 if (status != 0)
 printf("AllocAndCopyECParamInfo failed with status %i\n", status);

 return status;
}

 A_EC_PARAMS ecParamInfo;

 if ((status = AllocAndCopyECParamInfo(&ecParamInfo,
 cryptocECParamInfo)) != 0)
 break;

 FreeECParamInfo(&ecParamInfo);
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 3 7

Performing Elliptic Curve Operations
code, FreeECParamInfo is implemented as follows:

Generating an Elliptic Curve Key Pair
In this section, you will generate a key pair suitable for use with Elliptic Curve DSA
(ECDSA) and the Elliptic Curve Authenticated Encryption Scheme (ECAES).

You can optionally use an acceleration table to speed up the key generation operation.
This is useful if you will be doing key generation with the same elliptic curve several
times. If you will be using an acceleration table with this example, assume that you
have gone through the steps of generating an acceleration table and that you have the
table in the ITEM structure accelTableItem.

Step 1: Create
Create the algorithm object that you will use to generate the key pair:

Also create the key objects to hold the keys after they have been generated:

void FreeECParamInfo(ecParams)
A_EC_PARAMS *ecParams;
{
 T_free(ecParams->fieldInfo.data);
 T_free(ecParams->coeffA.data);
 T_free(ecParams->coeffB.data);
 T_free(ecParams->base.data);
 T_free(ecParams->order.data);
 T_free(ecParams->cofactor.data);
}

 B_ALGORITHM_OBJ ecKeyGen = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecKeyGen)) != 0)
 break;

 B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
 B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;
2 3 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
Step 2: Set
The Library Reference Manual indicates that the appropriate AI to use for generating an
elliptic curve key pair is AI_ECKeyGen. You must set the algorithm object with the
parameter information for the elliptic curve that you are using to generate the key.
You do this by providing B_SetAlgorithmInfo with a pointer to a B_EC_PARAMS
structure.

Place the elliptic curve parameters in the A_EC_PARAMS structure ecParamInfo. You can
do this either by setting ecParamInfo with the appropriate values, or by following the
steps outlined in “Retrieving Elliptic Curve Parameters” on page 234 to retrieve the
parameters from an algorithm object and place them into an A_EC_PARAMS structure.

The AI that describes data in this format is AI_ECParameters:

You can also optionally use the acceleration table to speed up key generation. See
“Generating Acceleration Tables” on page 243 for more information. Assume that you
have the acceleration table corresponding to your elliptic curve in the ITEM structure
accelTableItem. The appropriate AI to use with B_SetAlgorithmInfo in this case is
AI_ECAcceleratorTable. Pass in a pointer to the ITEM structure holding the
acceleration table as the third argument to B_SetAlgorithmInfo. Now set your key-

 if ((status = B_CreateKeyObject (&publicKey)) != 0)
 break;
 if ((status = B_CreateKeyObject (&privateKey)) != 0)
 break;

typedef struct {
 B_INFO_TYPE parameterInfoType;
 POINTER parameterInfoValue;
} B_EC_PARAMS;

 B_EC_PARAMS paramInfo;

 paramInfo.parameterInfoType = AI_ECParameters;
 paramInfo.parameterInfoValue = (POINTER)&ecParamInfo;

 if ((status = B_SetAlgorithmInfo (ecKeyGen, AI_ECKeyGen,
 (POINTER)¶mInfo)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 3 9

Performing Elliptic Curve Operations
generation algorithm object with the acceleration table information:

Step 3: Initialize
Here you can pass a NULL_PTR for the surrender context, because B_GenerateInit is a
speedy function. The Library Reference Manual entry on AI_ECKeyGen indicates which
algorithm methods you need to include in your chooser, keyGenChooser:

Step 4: Update
There is no Update step for key generation.

Step 5: Generate
Now you can complete the key-generation operation. Note that you must pass in a
properly-initialized random algorithm as the fourth argument:

Step 6: Destroy
Remember to destroy all key objects and algorithm objects once they are no longer

 if ((status = B_SetAlgorithmInfo (ecKeyGen, AI_ECAcceleratorTable,
 (POINTER)&accelTableItem)) != 0)
 break;

 B_ALGORITHM_METHOD *keyGenChooser[] = {
 &AM_ECFP_KEY_GEN,
 &AM_ECF2POLY_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_GenerateInit (ecKeyGen, keyGenChooser,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_GenerateKeypair
 (ecKeyGen, publicKey, privateKey, randomAlgorithm,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 4 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
needed:

Retrieving an Elliptic Curve Key
If you need to store or transport information about your elliptic curve keys, you need
to be able to retrieve the key information from an algorithm object. This section
outlines the steps needed to retrieve information for a public key. The steps for
retrieving a private key are similar.

You need to call B_GetKeyInfo with the appropriate KI. The Library Reference Manual
describes two KIs for use with elliptic curve public keys: KI_ECPublic and
KI_ECPublicComponent. However, KI_ECPublicComponent does not supply the elliptic
curve parameters, which must be associated with any elliptic curve key. Therefore,
you can only use KI_ECPublicComponent if you only need the public component, for
example, if you have already retrieved the appropriate EC parameters. Therefore, for
this example, you’ll use KI_ECPublic.

KI_ECPublic gives a pointer to an A_EC_PUBLIC_KEY structure:

After you have your public key information in the key object publicKey, make a call to
B_GetKeyInfo. See “Generating an Elliptic Curve Key Pair” on page 238 for more
information:

B_GetKeyInfo gives a pointer to memory, but this memory is owned by Crypto-C. If
you want to store this information, you need to make your own copy of the

 B_DestroyAlgorithmObject(&ecKeyGen);
 B_DestroyAlgorithmObject(&randomAlgorithm);
 B_DestroyKeyObject(&publicKey);
 B_DestroyKeyObject(&privateKey);

typedef struct {
 ITEM publicKey; /* public component */
 A_EC_PARAMS curveParams; /* the underlying elliptic curve parameters */
} A_EC_PUBLIC_KEY;

 A_EC_PUBLIC_KEY *cryptocPublicKeyInfo;

 if ((status = B_GetKeyInfo((POINTER *)&cryptocPublicKeyInfo,
 *publicKey, KI_ECPublic)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 4 1

Performing Elliptic Curve Operations
information because another call to Crypto-C may modify the memory owned by
Crypto-C. The routines AllocAndCopyECPubKeyInfo and FreeECPubKeyInfo given below
retrieve and store the key information. These routines are used in the sample code for
building public-key acceleration tables.

AllocAndCopyECPubKeyInfo takes as input a pointer to an A_EC_PUBLIC_KEY structure
containing memory belonging to Crypto-C. It copies the information from the
structure owned by Crypto-C to an A_EC_PUBLIC_KEY structure created by the
application and outputs a pointer to the structure just created. The memory allocated
with AllocAndCopyECPubKeyInfo should be freed using FreeECPubKeyInfo when
appropriate:

FreeECPubKeyInfo takes a pointer to an A_EC_PUBLIC_KEY structure that contains space
that was allocated by AllocAndCopyECPubKeyInfo and calls T_malloc to free all allocated

int AllocAndCopyECPubKeyInfo(output, input)
A_EC_PUBLIC_KEY *output;
A_EC_PUBLIC_KEY *input;

{
 int status;

 do {
 output->publicKey.len = input->publicKey.len;
 output->publicKey.data = T_malloc(output->publicKey.len);
 if ((status = (output->publicKey.data == NULL_PTR)) != 0)
 break;
 T_memcpy(output->publicKey.data, input->publicKey.data,
 output->publicKey.len);

 if ((status = AllocAndCopyECParamInfo(&(output->curveParams),
 &(input->curveParams))) != 0)
 break;
 } while(0);

 if (status != 0)
 printf("AllocAndCopyECPubKeyInfo failed with status %i\n", status);

 return status;
} /* end AllocAndCopyECPubKeyInfo */
2 4 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
data:

Generating Acceleration Tables
An acceleration table stores precomputed versions of certain values that are
frequently used during some elliptic curve operations. Acceleration tables can speed
up certain elliptic curve operations. However, this increase in speed comes at the cost
of space, as these tables tend to be very large.

There are two types of acceleration tables in Crypto-C:

• Generic acceleration table: stores values that are commonly used in many elliptic-
curve operations, including key-pair generation, Elliptic Curve Diffie-Hellman
key agreement, and ECDSA signing and verifying.

• Public-key acceleration table: stores all the values stored by the generic acceleration
table, as well as additional values commonly used only in ECDSA verification.

The examples in this section are in the file eparam.c.

Generating a Generic Acceleration Table
This acceleration table can be used to speed up key-pair generation, public-key
encryption, Elliptic Curve Diffie-Hellman key agreement, and ECDSA signing and
verifying. This table is most useful if these operations are performed repeatedly with
the same elliptic curve. The function BuildAccelTable, used in the sample code and
defined in the file ecparam.c, demonstrates the following steps in creating the
acceleration table.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in

/* This procedure takes a pointer to an A_EC_PUBLIC_KEY structure containing
 * space allocated by AllocAndCopyECPubKeyInfo and frees all data allocated
 * with T_malloc. */

void FreeECPubKeyInfo(pubKey)
A_EC_PUBLIC_KEY *pubKey;
{
 T_free(pubKey->publicKey.data);
 FreeECParamInfo(&(pubKey->curveParams));
} /* end FreeECPubKeyInfo */
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 4 3

Performing Elliptic Curve Operations
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Set

Step 2a: Retrieve the elliptic curve parameters
Because you are generating an acceleration table corresponding to a particular elliptic
curve, you need to retrieve the elliptic curve parameters and place them in the
algorithm object. Assume that you have gone through the steps to generate an elliptic
curve and you have stored the parameters in the algorithm object ecParamsObj. See
“Retrieving Elliptic Curve Parameters” on page 234 for more details:

Step 2b: Format the information
You must put the information you retrieved into the proper format. The Library
Reference Manual Chapter 2 entry for AI_ECBuildAcceleratorTable says that you
must supply a pointer to a B_EC_PARAMS structure to B_SetAlgorithmInfo:

The first field in this structure, parameterInfoType, is used to interpret the elliptic
curve parameter information you supply in the second field, parameterInfoValue. The

 B_ALGORITHM_OBJ buildTable = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject(&buildTable)) != 0)
 break;

 A_EC_PARAMS *cryptocECParamInfo;
 A_EC_PARAMS ecParamInfo;

 if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParamInfo,
 ecParamsObj, AI_ECParameters)) != 0)
 break;

 if ((status = AllocAndCopyECParamInfo(&ecParamInfo,
 cryptocECParamInfo)) != 0)
 break;

typedef struct {
 B_INFO_TYPE parameterInfoType;
 POINTER parameterInfoValue;
} B_EC_PARAMS;
2 4 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
EC parameter information you have is an A_EC_PARAMS structure containing the data
that describes the EC parameters. The B_INFO_TYPE that is used to properly interpret
that information is AI_ECParameters.

Set the parameterInfoType field to AI_ECParameters and give the parameterInfoValue
field a pointer to the location of the A_EC_PARAMS structure:

Step 3: Init
In this step, you must supply the appropriate algorithm methods through the
algorithm chooser. The Library Reference Manual Chapter 2 entry for
AI_ECBuildAcceleratorTable indicates which AMs you must include in your
chooser. This step doesn’t take much time to complete, so you can pass in a NULL_PTR
for your surrender context:

Step 4: Update
There is no Update step for building acceleration tables.

Step 5: Final

Step 5a: Allocate memory
You must allocate sufficient memory to hold the acceleration table. According to the

 B_EC_PARAMS paramInfo;
 paramInfo.parameterInfoType = AI_ECParameters;
 paramInfo.parameterInfoValue = (POINTER)&ecParamInfo;

 if ((status = B_SetAlgorithmInfo
 (buildTable, AI_ECBuildAcceleratorTable,(POINTER)¶mInfo)) != 0)
 break;

 B_ALGORITHM_METHOD *ecAccelChooser[] = {
 &AM_ECFP_BLD_ACCEL_TABLE, /* for odd prime field */
 &AM_ECF2POLY_BLD_ACCEL_TABLE, /* for characteristic 2 field */
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_BuildTableInit(buildTable, ecAccelChooser,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 4 5

Performing Elliptic Curve Operations
Library Reference Manual, you can use B_BuildTableGetBufSize to tell how much
space will be required to store the acceleration table:

Step 5b: Build the acceleration table
Finally, build the acceleration table and store it in an ITEM structure. You store it this
way for convenience—when you actually use the acceleration table, you will have to
provide it in an ITEM structure to B_SetAlgorithmInfo. Building an acceleration table
can take a lot of time, so use a surrender context. See “The Surrender Context” on
page 120 for more information:

Step 6: Destroy
You must free all allocated memory and destroy all objects when they are no longer
needed so that all sensitive information is zeroized and freed:

 ITEM accelTableItem;
 unsigned int maxTableLen;

 if ((status = B_BuildTableGetBufSize(buildTable, &maxTableLen)) != 0)
 break;

 accelTableItem.data = T_malloc(maxTableLen);

 if ((status = (accelTableItem.data == NULL_PTR)) != 0)
 break;

 ITEM accelTableItem;

 generalSurrenderContext.Surrender = GeneralSurrenderFunction;
 generalSurrenderContext.handle = (POINTER)&generalFlag;
 generalSurrenderContext.reserved = NULL_PTR;
 generalFlag = 0;

 if ((status = B_BuildTableFinal(buildTable, accelTableItem.data,
 &(accelTableItem.len), maxTableLen,
 &generalSurrenderContext)) != 0)
 break;

 T_memset(accelTableItem.data, 0, accelTableItem.len);
 T_free(accelTableItem.data);
 B_DestroyAlgorithmObject(&buildTable);
2 4 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
Public-Key Acceleration Table
This special-purpose acceleration table can be used to speed up ECDSA verification.
Again, the cost in time to generate the table and space to store it must be weighed
against the speedup in verification that it will provide. This table is most useful if
ECDSA verification will be performed repeatedly with the same public key. The
function BuildPubKeyAccelTable, used in the sample code and defined in the file
ecparam.c, demonstrates the steps in creating the public-key acceleration table.

Step 1: Create
Create the algorithm object that will be used in building the public-key acceleration
table. Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype
in Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Set
Retrieve the public-key information and place it in the algorithm object used to build
the acceleration table for that public key.

Step 2a: Retrieve the public key information
Because B_GetKeyInfo returns a pointer to memory that belongs to Crypto-C, you
must make a copy of this information. See “Retrieving an Elliptic Curve Key” on
page 241 for the definitions of AllocAndCopyECPubKeyInfo and FreeECPubKeyInfo. Of
course, you can write your own versions of these procedures to satisfy the needs of
your application:

 B_ALGORITHM_OBJ buildTable = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject(&buildTable)) != 0)
 break;

 A_EC_PUBLIC_KEY *cryptocPublicKeyInfo;
 A_EC_PUBLIC_KEY publicKeyInfo;

 if ((status = B_GetKeyInfo((POINTER *)&cryptocPublicKeyInfo,
 *publicKey, KI_ECPublic)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 4 7

Performing Elliptic Curve Operations
When the information is no longer needed, don’t forget to free the allocated memory:

Step 2b: Put the information retrieved in the proper format
To build the public-key acceleration table, use AI_ECBuildPubKeyAccelTable. The
Library Reference Chapter 2 entry for AI_ECBuildPubKeyAccelTable states that you
must supply a pointer to a B_EC_PARAMS structure. The procedure you use to fill this
structure in is the same as the one you used to build the generic acceleration table.
However, because you are building an acceleration table based on the public key, you
must also pass in information about the public key.

You have an A_EC_PUBLIC_KEY struct containing the public key information, so the
appropriate B_INFO_TYPE to use is AI_ECPubKey. According to the Library Reference
Manual entry on AI_ECPubKey, you should pass B_SetAlgorithmInfo a pointer to
A_EC_PUBLIC_KEY structure. Set the parameterInfoType to AI_ECPubKey and give
parameterInfoValue the pointer to your A_EC_PUBLIC_KEY structure publicKeyInfo.

Step 3: Init
In order to initialize the proper algorithms, you must supply an algorithm chooser
with the appropriate algorithm methods. See the Library Reference Manual Chapter 2
entry for AI_BuildPubKeyAccelTable for a list of the appropriate AMs to include in

 if ((status = AllocAndCopyECPubKeyInfo(&publicKeyInfo,
 cryptocPublicKeyInfo)) != 0)
 break;

 FreeECPubKeyInfo(&publicKeyInfo);

 B_EC_PARAMS paramInfo;

 paramInfo.parameterInfoType = AI_ECPubKey;
 paramInfo.parameterInfoValue = (POINTER)&publicKeyInfo;

 if ((status = B_SetAlgorithmInfo(buildTable, AI_ECBuildPubKeyAccelTable,
 (POINTER)¶mInfo)) != 0)
 break;
2 4 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
the chooser:

Step 4: Update
There is no Update step for building acceleration tables.

Step 5: Final

Step 5a: Allocate memory
You must allocate sufficient memory to hold the acceleration table. Use
B_BuildTableGetBufSize to obtain the maximum size of the public key acceleration
table. Then allocate enough space to hold the table:

Step 5b: Build the public-key acceleration table
It can take a while to generate the table, so use a surrender function. See “The

 B_ALGORITHM_METHOD *ecAccelChooser[] = {
 &AM_ECFP_BLD_PUB_KEY_ACC_TAB,
 &AM_ECF2POLY_BLD_PUB_KEY_ACC_TAB,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_BuildTableInit(buildTable, ecAccelChooser,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 ITEM pubKeyAccelTableItem;
 unsigned int maxTableLen;

 if ((status = B_BuildTableGetBufSize(buildTable, &maxTableLen)) != 0)
 break;

 pubKeyAccelTableItem.data = T_malloc(maxTableLen);

 if ((status = (pubKeyAccelTableItem.data == NULL_PTR)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 4 9

Performing Elliptic Curve Operations
Surrender Context” on page 120 for more information:

Step 6: Destroy
Zeroize and free all sensitive information when it is no longer needed:

Performing EC Diffie-Hellman Key Agreement
Performing elliptic curve key agreement is similar to the ordinary Diffie-Hellman key
agreement scheme, which allows two parties to obtain the same symmetric key. First,
the two parties seeking to generate a secret key need to agree on the elliptic curve
parameters. The parameters can be generated by a central authority or by the parties
themselves.

The example in this section corresponds to the file ecdh.c. In this example, the two
parties who wish to derive the same secret key are Alice and Bob. Both parties need to
be provided with the same parameters:

In order to initialize ecParamsObj with a set of parameters describing an elliptic curve,
follow the steps in the section “Generating Elliptic Curve Parameters” on page 230.
Assume that these steps have been successfully completed and ecParamsObj contains

 ITEM pubKeyAccelTableItem;

 generalSurrenderContext.Surrender = GeneralSurrenderFunction;
 generalSurrenderContext.handle = (POINTER)&generalFlag;
 generalSurrenderContext.reserved = NULL_PTR;
 generalFlag = 0;

 if ((status = B_BuildTableFinal
 (buildTable, pubKeyAccelTableItem.data,
 &(pubKeyAccelTableItem.len), maxTableLen,
 &generalSurrenderContext)) != 0)
 break;

 T_memset(pubKeyAccelTableItem.data, 0, pubKeyAccelTableItem.len);
 T_free(pubKeyAccelTableItem.data);
 B_DestroyAlgorithmObject(&buildTable);

 B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;
2 5 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
the common parameters for Alice and Bob. Put the elliptic curve parameters in the
A_EC_PARAMS structure, ecParams. For an implementation of an application-specific
procedure, AllocAndCopyECParamInfo, which retrieves and stores the parameters, see
“Retrieving Elliptic Curve Parameters” on page 234:

You will walk through the steps that Alice goes through, keeping in mind that Bob,
perhaps in another application, is performing the same steps.

Note: If this key agreement operation is performed several times with the same
parameters, you may wish to use the acceleration table. See “Generating
Acceleration Tables” on page 243 for more information.

Step 1: Create
Create the algorithm object which you will use to perform the key agreement:

Step 2: Set
Set the algorithm object with the information necessary to perform the operation.
AI_EC_DHKeyAgree, when used as the second argument to B_SetAlgorithmInfo, takes
as the third argument a pointer to a B_EC_PARAMS structure:

 A_EC_PARAMS ecParams;
 A_EC_PARAMS *cryptocECParams;

 if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParams, alice,
 AI_ECParameters)) != 0)
 break;

 if ((status = AllocAndCopyECParamInfo(&ecParams, cryptocECParams)) != 0)
 break;

 B_ALGORITHM_OBJ alice = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject(&alice)) != 0)
 break;

typedef struct {
 B_INFO_TYPE parameterInfoType;
 POINTER parameterInfoValue;
} B_EC_PARAMS;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 5 1

Performing Elliptic Curve Operations
Because you have the EC parameters in the A_EC_PARAMS structure ecParams, the
appropriate AI that describes the data is AI_ECParameters:

Step 2b (optional): Set Acceleration Table Info
If you are using an acceleration table, you need to set the algorithm object with the
appropriate acceleration table. Once you have gone through the steps in “Generating
Acceleration Tables” on page 243 and have an ITEM structure containing the
acceleration table, you can pass a pointer to the ITEM structure as the third argument
to B_SetAlgorithmInfo:

Step 3: Initialize
Initialize the algorithm object to perform the key agreement protocol. The Library
Reference Manual Chapter 2 entry for AI_EC_DHKeyAgree states which algorithm
methods to include in your chooser:

You must allocate space to hold the results of Phase 1 and Phase 2. The largest size of
Phase 1 output you can get is one byte larger than twice the field element size. For

 B_EC_PARAMS commonECParams;
 commonECParams.parameterInfoType = AI_ECParameters;
 commonECParams.parameterInfoValue = (POINTER)&ecParams;

 if ((status = B_SetAlgorithmInfo(alice, AI_EC_DHKeyAgree,
 (POINTER)&commonECParams)) != 0)
 break;

 if ((status = B_SetAlgorithmInfo (alice, AI_ECAcceleratorTable,
 (POINTER)&aTableItem)) != 0)
 break;

 B_ALGORITHM_METHOD *EC_DH_CHOOSER[] = {
 &AM_ECFP_DH_KEY_AGREE,
 &AM_ECF2POLY_DH_KEY_AGREE,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_KeyAgreeInit(alice, (B_KEY_OBJ)NULL_PTR, EC_DH_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
2 5 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
Phase 2, the size of the output should be the same as the field element size. (See the
Library Reference Manual Chapter 2 entry for AI_EC_DHKeyAgree for details.)

You can get the field element size using Alice’s elliptic curve parameters. Since you
have the parameters in the A_EC_PARAMS structure ecParams, look at the
fieldElementBits field, which gives you the required information. A simple
manipulation gives you the field element length in bytes:

Step 4: Phase 1
During this phase, each party computes a private value and a public value. The
private value is secret and currently cannot be accessed though the Crypto-C API. The
public value should be transported to the other party. Note that you will have to
supply a properly initialized random algorithm as the fifth argument to
B_KeyAgreePhase1:

Step 5: Phase 2
By the time you have reached this step, Alice and Bob have exchanged public values.
Assume that the pointer bobPublicValue points to Bob’s public value and

 unsigned int fieldElementLen, maxPhase1Len, maxPhase2Len;

 fieldElementLen = (ecParams->fieldElementBits + 7) / 8;
 maxPhase1Len = (fieldElementLen * 2);
 maxPhase2Len = fieldElementLen;

 unsigned char *alicePublicValue = NULL_PTR;
 unsigned int alicePublicValueLen;
 alicePublicValue = T_malloc(maxPhase1Len);

 if ((status = (alicePublicValue == NULL_PTR)) != 0)
 break;

 if ((status = B_KeyAgreePhase1(alice, alicePublicValue,
 &alicePublicValueLen, maxPhase1Len,
 randomAlgorithm,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 5 3

Performing Elliptic Curve Operations
bobPublicValueLen gives the length of Bob's public value:

Using Bob’s public value, Alice can compute the secret key that she and Bob will use
to communicate with each other:

Step 6: Destroy
Always destroy key objects and algorithm objects once they are no longer needed:

Performing ECDSA
The Elliptic Curve Digital Signature Agreement (ECDSA) is an elliptic curve analogue
of DSA. To sign an arbitrarily long message with the elliptic curve version of DSA,
you can use AI_EC_DSAWithDigest. First, you need to generate parameters for an
elliptic curve and a key pair from that curve. Then, you will specify a digest algorithm
for use with ECDSA in signing the message. Currently, the only digest algorithm
supported for this operation is SHA1.

The example in this section corresponds to the file ecdsadig.c.

 unsigned char *bobPublicValue;
 unsigned int bobPublicValueLen;

 unsigned char *aliceSecretValue = NULL_PTR;
 unsigned int aliceSecretValueLen;
 aliceSecretValue = T_malloc(maxPhase2Len);

 if ((status = (aliceSecretValue == NULL_PTR)) != 0)
 break;

 if ((status = B_KeyAgreePhase2(alice, aliceSecretValue,
 &aliceSecretValueLen, maxPhase2Len,
 bobPublicValue, bobPublicValueLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 T_free (alicePublicValue);
 T_free (aliceSecretValue);
 B_DestroyAlgorithmObject(&randomAlgorithm);
 B_DestroyAlgorithmObject(&alice);
2 5 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
Generating EC Parameters
See the section “Generating Elliptic Curve Parameters” on page 230 for the steps you
must complete to generate a new curve. You will need a properly initialized pseudo-
random number generator. Assume that the function InitializeRandomAlgorithm goes
through Steps 1-4 in “Generating Random Numbers” on page 147. Also, assume that
the function InitializeECParamsObj goes through the steps in “Generating Elliptic
Curve Parameters” on page 230 to generate new parameters and place them in
ecParamsObj:

Now you have a properly initialized random algorithm object, randomAlgorithm, and
an algorithm object, ecParamsObj, containing the parameters that describe the elliptic
curve that you are going to use.

Generating an EC Key Pair
You also need to generate a public and private key. See “Generating an Elliptic Curve
Key Pair” on page 238 for the required steps. To complete those steps, you will need a
properly initialized random algorithm, the parameters describing an elliptic curve,
and optionally the acceleration table corresponding to that curve:

Assume that the steps in “Generating an Elliptic Curve Key Pair” on page 238 have
been completed and that publicKey and privateKey are ready to be used.

 B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
 B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = InitializeRandomAlgorithm (&randomAlgorithm)) != 0)
 break;

 if ((status = InitializeECParamsObj (&ecParamsObj,
 &randomAlgorithm)) != 0)
 break;

 B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
 B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;

 if ((status = GenerateECKeys (&publicKey, &privateKey,
 &ecParamsObj, &randomAlgorithm) != 0)
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 5 5

Performing Elliptic Curve Operations
Computing a Digital Signature

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Set
The appropriate AI to use is AI_EC_DSAWithDigest. According to the entry in the
Library Reference Manual, you have to provide a pointer to a B_DIGEST_SPECIFIER
structure to B_SetAlgorithmInfo:

Currently, the only digest algorithm supported is SHA1. This does not require any
parameters, so specify NULL_PTR for digestInfoParams:

Step 2b (optional): Set Acceleration Table Info

Go through the steps in the section “Generating Acceleration Tables” on page 243 to

 B_ALGORITHM_OBJ ecDSASign = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecDSASign)) != 0)
 break;

typedef struct {
 B_INFO_TYPE digestInfoType;
 POINTER digestInfoParams;
} B_DIGEST_SPECIFIER;

 B_DIGEST_SPECIFIER digestInfo;
 digestInfo.digestInfoType = AI_SHA1;
 digestInfo.digestInfoParams = NULL_PTR;

 if ((status = B_SetAlgorithmInfo (ecDSASign, AI_EC_DSAWithDigest,
 (POINTER)&digestInfo)) != 0)
 break;

 ITEM aTableItem;
2 5 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
create an acceleration table, placing the table information in aTableItem:

Step 3: Init
Build an algorithm chooser with the appropriate AMs:

Now you can associate your private key and your algorithm chooser with the
algorithm object:

Step 4: Update
Now, using B_SignUpdate, pass in the data to be signed:

Step 5: Final
First you must allocate space to store the signature. The output of the ECDSA

 if ((status = B_SetAlgorithmInfo (ecDSASign, AI_ECAcceleratorTable,
 (POINTER)&aTableItem)) != 0)
 break;

 B_ALGORITHM_METHOD *EC_DSA_CHOOSER[] = {
 &AM_SHA,
 &AM_ECFP_DSA_SIGN,
 &AM_ECF2POLY_DSA_SIGN,
 &AM_ECFP_DSA_VERIFY,
 &AM_ECF2POLY_DSA_VERIFY,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_SignInit (ecDSASign, privateKey, EC_DSA_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 unsigned char *dataToSign = "Some arbitrarily long piece of data to
sign...";
 unsigned int dataToSignLen = strlen(dataToSign) + 1;
 if ((status = B_SignUpdate (ecDSASign, dataToSign, dataToSignLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 5 7

Performing Elliptic Curve Operations
signature is the BER encoding of a sequence of two integers, (r,s). At most, the size of
the output will be six bytes more than twice the length of the order. Retrieve the field
element length from ecParamsObj and do a simple manipulation to find the field
element length in bytes.

Now, finalize the process and retrieve the signature. Note that the Library Reference
Manual entry for AI_EC_DSAWithDigest indicates that you will have to pass in a
properly initialized random algorithm in B_SignFinal:

Step 6: Destroy
Destroy all objects that are no longer needed:

Verifying a Digital Signature
To verify the signature, you must go through a similar procedure. At the end, if the
signature is valid, B_VerifyFinal returns 0. If it is not valid, B_VerifyFinal will

 A_EC_PARAMS *ecParamInfo;
 unsigned int order, maxSignatureLen;
 unsigned char *signature;

 if ((status = B_GetAlgorithmInfo ((POINTER *)&ecParamInfo, ecParamsObj,
 AI_ECParameters)) != 0)
 break;

 order = (ecParamInfo->order.len + 7) / 8;
 maxSignatureLen = (2 * order) + 6;
 signature = T_malloc(maxSignatureLen);
 if ((status = (signature == NULL_PTR)) != 0)
 break;

 unsigned int signatureLen;

 if ((status = B_SignFinal (ecDSASign, signature, &signatureLen,
 maxSignatureLen, randomAlgorithm,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 B_DestroyAlgorithmObject(&ecDSASign);
 B_DestroyKeyObject(&privateKey);
2 5 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
return an error.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Set
Use the same AI and digestInfo as you did for signing:

Step 2b (Optional): Set Public Key Acceleration Table Info
You can use either the public key acceleration table or the generic acceleration table to
accelerate ECDSA verification. Verification using the public key acceleration table is
faster than verification using only the generic acceleration table.

Go through the steps in the section “Generating Acceleration Tables” to create a
generic acceleration table, placing the table information in aTableItem:

Step 3: Init
Associate a key with the algorithm object and provide a chooser that contains the

 B_ALGORITHM_OBJ ecDSAVerify = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecDSAVerify)) != 0)
 break;

 if ((status = B_SetAlgorithmInfo (ecDSAVerify, AI_EC_DSAWithDigest,
 (POINTER)&digestInfo)) != 0)
 break;

 ITEM pubKeyAccelTableItem;

 if ((status = B_SetAlgorithmInfo (ecDSAVerify, AI_ECAcceleratorTable,
 (POINTER)&pubKeyAccelTableItem)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 5 9

Performing Elliptic Curve Operations
necessary algorithm methods:

Step 4: Update
Pass in the original message. It will be internally digested to make a new signature
that can be compared with the signature received by B_VerifyFinal:

Step 5: Final
Pass in the signature that was received with the message. B_VerifyFinal returns 0 if
the signature verifies, or an error if it is an invalid signature:

Step 6: Destroy
Destroy all objects that are no longer needed:

Using ECAES
You can use the Elliptic Curve Authenticated Encryption System (ECAES) to perform
public-key encryption. The example in this section corresponds to the file eces.c.

 if ((status = B_VerifyInit (ecDSAVerify, publicKey, EC_DSA_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_VerifyUpdate (ecDSAVerify, dataToSign, dataToSignLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 if ((status = B_VerifyFinal (ecDSAVerify, signature, signatureLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 T_free(signature);
 B_DestroyAlgorithmObject(&ecParamsObj);
 B_DestroyAlgorithmObject(&ecDSAVerify);
 B_DestroyKeyObject(&publicKey);
2 6 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
You will encrypt the following:

Using Elliptic Curve Parameters
See the section “Generating Elliptic Curve Parameters” on page 230 for the steps you
must complete to generate a new curve. You need a properly initialized pseudo-
random number generator. Assume that the function InitializeRandomAlgorithm goes
through Steps 1 through 4 in the section “Generating Random Numbers” on page 147.
Also assume that the function InitializeECParamsObj generates new parameters and
places them in ecParamsObj, following the steps in “Using Elliptic Curve Parameters”
on page 261:

You now have a properly initialized random algorithm object, randomAlgorithm, and
an algorithm object, ecParamsObj, containing the parameters that describe the elliptic
curve that you will use.

Using an EC Key Pair
Before you can encrypt, you need to generate a public/private key pair. As described
in “Using an EC Key Pair” on page 261, key generation requires a properly initialized
random algorithm and the parameters describing an elliptic curve, both of which you
have created in the previous step:

 unsigned char *dataToEncrypt = “Encrypt this arbitrarily long sentence
using ECAES!”;

 unsigned int dataToEncryptLen = sizeof(dataToEncrypt) + 1;

 B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
 B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = InitializeRandomAlgorithm (&randomAlgorithm)) != 0)
 break;
 if ((status = InitializeECParamsObj (&ecParamsObj,
 &randomAlgorithm)) != 0)
 break;

 B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
 B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 6 1

Performing Elliptic Curve Operations
Assume that the steps in “Using an EC Key Pair” have been completed and that
publicKey and privateKey are ready to be used.

ECAES Public-Key Encryption
Once you have gone through the preliminary steps of generating your elliptic curve
parameters and creating your public/private key pair, you are ready to encrypt your
message.

Step 1: Create
First, create the algorithm object that will hold the information necessary to perform
the encryption operation:

Step 2: Set
Associate the elliptic curve encryption AI, AI_EC_ES, with the algorithm object.
According to the Library Reference Manual Chapter 2 entry for AI_EC_ES, you should
pass NULL_PTR as the third argument to B_SetAlgorithmInfo:

Step 2b (optional) Acceleration Table
You can use an acceleration table containing precomputed values to speed up
encryption. Because users frequently perform encryption, it is worth while to use the
acceleration table whenever the required memory is available.

To use the acceleration table, assume you have gone through the steps in “Generating
a Generic Acceleration Table” on page 243 and placed the information in
accelerationTableItem:

 B_ALGORITHM_OBJ ecESEncrypt = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecESEncrypt)) != 0)
 break;

 if ((status = B_SetAlgorithmInfo
 (ecESEncrypt, AI_EC_ES, NULL_PTR)) != 0)
 break;

 ITEM accelerationTableItem;
2 6 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
Now, pass this information into your algorithm object:

Step 3: Init
You must initialize the algorithm object to perform encryption. You also need to
provide the key that will be used for encryption. The algorithm chooser should
contain the encryption algorithm methods listed in the Library Reference Manual for
AI_EC_ES:

Step 4: Update
To update, first find the field element length in bytes. Remember that earlier, in
“Using Elliptic Curve Parameters” on page 261, you placed the elliptic curve
parameters in your algorithm object, ecParamsObj. You can use this object to retrieve
the field element length:

Next, you must allocate space to hold the encrypted data. According to the Library

 if ((status = B_SetAlgorithmInfo
 (ecESEncrypt, AI_ECAcceleratorTable,
 (POINTER)&accelerationTableItem)) != 0)
 break;

 B_ALGORITHM_METHOD *EC_CHOOSER[] = {
 &AM_ECFP_ENCRYPT,
 &AM_ECF2POLY_ENCRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_EncryptInit (ecESEncrypt, publicKey, EC_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 A_EC_PARAMS *ecParamInfo;
 unsigned int fieldElementLen;

 if ((status = B_GetAlgorithmInfo ((POINTER *)&ecParamInfo, ecParamsObj,
 AI_ECParameters)) != 0)
 break;

 fieldElementLen = (ecParamInfo->fieldElementBits + 7) / 8;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 6 3

Performing Elliptic Curve Operations
Reference Manual Chapter 2 entry for AI_EC_ES, the length of the encrypted data will
be as much as (21 + 2 · (the size of a field element in bytes) + (length of input in bytes))
bytes.

Step 5: Final

Step 6: Destroy
Destroy all objects that are no longer needed. Also, be sure to zeroize and free any
allocated memory when it is no longer needed.

 unsigned int maxEncryptedDataLen;
 unsigned int outputLenUpdate;

 maxEncryptedDataLen = 21 + (2 * fieldElementLen) = dataToEncryptLen;
 encryptedData = T_malloc(maxEncryptedDataLen);
 if ((status = (encryptedData == NULL_PTR)) != 0)
 break;

 if ((status = B_EncryptUpdate
 (ecESEncrypt, encryptedData, &outputLenUpdate,
 maxEncryptedDataLen, dataToEncrypt, dataToEncryptLen,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 unsigned int outputLenFinal, outputLenTotal;

 if ((status = B_EncryptFinal
 (ecESEncrypt, encryptedData + outputLenUpdate,
 &outputLenFinal, maxEncryptedDataLen - outputLenUpdate,
 randomAlgorithm, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 outputLenTotal = outputLenUpdate + outputLenFinal;

 B_DestroyAlgorithmObject (&ecESEncrypt);
 B_DestroyKeyObject (&publicKey);
 T_free (encryptedData);
2 6 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Performing Elliptic Curve Operations
ECAES Private-Key Decryption
The steps for decryption are similar to those for encryption.

Step 1: Create
Create an algorithm object:

Step 2: Set
Associate the algorithm object with AI_EC_ES and pass NULL_PTR as the third
argument:

Step 3: Init
At this point, commit your algorithm object to perform decryption with a particular
private key. Be sure that EC_CHOOSER contains the appropriate algorithm methods:

Step 4: Update
Since you know that the length of the plaintext can’t be larger than the length of the

 B_ALGORITHM_OBJ ecESDecrypt = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&ecESDecrypt)) != 0)
 break;

 if ((status = B_SetAlgorithmInfo
 (ecESDecrypt, AI_EC_ES, NULL_PTR)) != 0)
 break;

 B_ALGORITHM_METHOD *EC_CHOOSER[] = {
 &AM_ECFP_DECRYPT,
 &AM_ECF2POLY_DECRYPT,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_DecryptInit (ecESDecrypt, privateKey, EC_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 6 P u b l i c - K e y O p e r a t i o n s 2 6 5

Performing Elliptic Curve Operations
ciphertext, you’ll use this approximation to allocate space for the decrypted data:

Step 5: Final

Step 6: Destroy
Destroy any objects that are no longer needed. Also, be sure to zeroize and free any
allocated memory when it is no longer needed.

 unsigned char *decryptedData;
 unsigned int maxDecryptedDataLen;
 unsigned int outputLenUpdate;

 maxDecryptedDataLen = outputLenTotal; /* Use the outputLenTotal from */
 /* Step 5 of ECAES encryption */
 decryptedData = T_malloc(maxDecryptedDataLen);
 if ((status = (decryptedData == NULL_PTR)) != 0)
 break;

 if ((status = B_DecryptUpdate
 (ecESDecrypt, decryptedData, &outputLenUpdate,
 maxDecryptedDataLen, encryptedData, outputLenTotal,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 unsigned int outputLenFinal, outputLenTotal;

 if ((status = B_DecryptFinal
 (ecESDecrypt, decryptedData + outputLenUpdate,
 &outputLenFinal, maxDecryptedDataLen - outputLenUpdate,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 outputLenTotal = outputLenUpdate + outputLenFinal;

 B_DestroyAlgorithmObject (&ecESDecrypt);
 B_DestroyKeyObject (&privateKey);
 T_free (decryptedData);
2 6 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Chapter 7

Secret Sharing Operations
Secret Sharing
Secret sharing allows a system to require a certain number of “shares” to retrieve a
secret. The process encrypts information and then creates a number of shares of the
encrypted information. The information can be recovered by collecting a declared
number (called the threshold) of shares. Note that the threshold must be less than or
equal to the total number of shares.

Typically, the secret is a key used for encrypting sensitive data. For example, you
might protect an RC2 key with a secret-sharing algorithm, creating four shares, and
set the threshold to two. Then any two of the four shares can reconstruct the RC2 key.

Generating Shares
Crypto-C offers the Bloom-Shamir secret sharing method. For this implementation,
the minimum total number of shares is two and the maximum is 255; the threshold
must be less than or equal to the total number of shares. The 255 limit is not part of the
Bloom-Shamir algorithm, but a constraint of the Crypto-C implementation. See Step 4
for details.

The following example will encrypt 16 bytes (for example, an RC2 key), splitting the
secret into four shares, and set the threshold to two.
C h a p t e r 7 S e c r e t S h a r i n g O p e r a t i o n s 2 6 7

Secret Sharing
The example in this section corresponds to the file scrtshar.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one AI that implements the Bloom-Shamir secret sharing algorithm:
AI_BSSecretSharing. The Library Reference Manual Chapter 2 entry on this AI reports
that the format of info supplied to B_SetAlgorithmInfo is the following struct:

Because you want to set the threshold to two, set your algorithm object as follows:

Step 3: Init
Initialize the algorithm with B_EncryptInit. No key is necessary, so pass a properly
cast NULL_PTR for the key object. This algorithm object does not need an algorithm
chooser, so pass a properly cast NULL_PTR for that argument as well. This function is

B_ALGORITHM_OBJ secretSplitter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&secretSplitter)) != 0)
 break;

typedef struct {
 unsigned int threshold; /* share threshold */
} B_SECRET_SHARING_PARAMS;

B_SECRET_SHARING_PARAMS secretSharingParams;

secretSharingParams.threshold = 2;

if ((status = B_SetAlgorithmInfo
 (secretSplitter, AI_BSSecretSharing,
 (POINTER)&secretSharingParams)) != 0)
 break;
2 6 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Secret Sharing
very quick, so it is reasonable to pass a NULL_PTR for the surrender context:

Step 4: Update
Call B_EncryptUpdate once for each of the total number of shares. Each call to
B_EncryptUpdate produces a share. For each share, you must allocate a space that is
one byte larger than the secret. A share is actually the same size as the secret, but
Crypto-C also appends one byte containing the number of the share. (This is why
Crypto-C limits the shares to 255; it is the largest integer one byte can represent.)
Make sure you do not overwrite a previous share.

The input for each call to B_EncryptUpdate is the secret itself. You also need a random
algorithm for the first call to B_EncryptUpdate. You can pass a random algorithm each
time, however; Crypto-C simply ignores it on each successive call. Complete Steps 1
through 4 of “Generating Random Numbers” on page 147. You do not need random
bytes, only an algorithm that can generate them. This function is not too time-
consuming, so it is reasonable to pass a properly cast NULL_PTR for the surrender
context.

To create four shares, you could use the following:

if ((status = B_EncryptInit
 (secretSplitter, (B_KEY_OBJ)NULL_PTR,
 (B_ALGORITHM_CHOOSER)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

#define SECRET_SIZE 16
#define TOTAL_SHARES 4

static unsigned char secretKey[SECRET_SIZE] = {
 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10
};
unsigned char *secretShare[TOTAL_SHARES];
unsigned int secretShareLen[TOTAL_SHARES];
int count;

for (count = 0; count < TOTAL_SHARES; ++count)
 secretShare[count] = NULL_PTR;
C h a p t e r 7 S e c r e t S h a r i n g O p e r a t i o n s 2 6 9

Secret Sharing
Step 5: Final
Finalize the process with B_EncryptFinal. This function does not need a random
algorithm, so pass a NULL_PTR. It is a quick call, so it is reasonable to pass a NULL_PTR
for the surrender context:

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory when you are
done. Save the shares to files or disks before freeing the memory:

Reconstructing The Secret
To reconstruct the secret, call B_DecryptUpdate for each share you are entering. You

for (count = 0; count < TOTAL_SHARES; ++count) {
 secretShare[count] = T_malloc (SECRET_SIZE + 1);
 if ((status = (secretShare[count] == NULL_PTR)) != 0)
 break;

 if ((status = B_EncryptUpdate
 (secretSplitter, secretShare[count],
 &(secretShareLen[count]), SECRET_SIZE + 1,
 secretKey, SECRET_SIZE, randomAlgorithm,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
}
if (status != 0)
 break;

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
 (secretSplitter, NULL_PTR, &outputLenFinal, 0,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)

B_DestroyAlgorithmObject (&secretSplitter);
B_DestroyAlgorithmObject (&randomAlgorithm);
for (count = 0; count < TOTAL_SHARES; ++count)
 T_free (secretShare[count]);
2 7 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Secret Sharing
need at least threshold number of shares; if you enter fewer, B_DecryptFinal will
return an error. Any combination of threshold shares will work.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in
Chapter 4 of the Library Reference Manual, its address is the argument for
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Use the same AI, AI_BSSecretSharing:

Step 3: Init
Initialize the algorithm with B_DecryptInit. Once again no key or algorithm chooser
is necessary. This function is very quick, so it is reasonable to pass a NULL_PTR for the
surrender context:

B_ALGORITHM_OBJ secretReconstructer = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject
 (&secretReconstructer)) != 0)
 break;

B_SECRET_SHARING_PARAMS secretSharingParams;

secretSharingParams.threshold = 2;

if ((status = B_SetAlgorithmInfo
 (secretReconstructer, AI_BSSecretSharing,
 (POINTER)&secretSharingParams)) != 0)
 break;

if ((status = B_DecryptInit
 (secretReconstructer, (B_KEY_OBJ)NULL_PTR,
 (B_ALGORITHM_CHOOSER)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 7 S e c r e t S h a r i n g O p e r a t i o n s 2 7 1

Secret Sharing
Step 4: Update
Call B_DecryptUpdate once for each of the shares you are using to reconstruct the
secret. You can use any number of shares from the threshold number to the total
number of shares.

Each call to B_DecryptUpdate produces no output, so pass NULL_PTRs. The input is a
share. This call does not need a random algorithm, so pass a NULL_PTR. It is also quick,
so it is reasonable to pass a properly cast NULL_PTR for the surrender context:

Step 5: Final
Finalize the process with B_DecryptFinal. There will be output now. This function
does not need a random algorithm, so pass a NULL_PTR there. It is a quick call, so it is
reasonable to pass a NULL_PTR for the surrender context:

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory when you are

unsigned int outputLenUpdate;

for (count = 0; count < (int)secretSharingParams.threshold; ++count) {
 if ((status = B_DecryptUpdate
 (secretReconstructer, NULL_PTR, &outputLenUpdate,
 0, secretShare[count], secretShareLen[count],
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
}
if (status != 0)
 break;

unsigned char getSecret[SECRET_SIZE]
unsigned int getSecretLen;

if ((status = B_DecryptFinal
 (secretReconstructer, getSecret, &getSecretLen, SECRET_SIZE,
 (B_ALGORITHM_OBJ)NULL_PTR,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
2 7 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Secret Sharing
done:

B_DestroyAlgorithmObject (&secretReconstructer);
C h a p t e r 7 S e c r e t S h a r i n g O p e r a t i o n s 2 7 3

2 7 4 C h a p t e r 7 S e c r e t S h a r i n g O p e r a t i o n s

Chapter 8

Cryptographic Hardware
Crypto-C is designed to interface with cryptographic hardware devices. If you are
using such a device and the manufacturer has built an interface to Crypto-C using
BSAFE Hardware Application Programming Interface (BHAPI), you can write an
application that will use the hardware.
C h a p t e r 8 C r y p t o g r a p h i c H a r d w a r e 2 7 5

Using Hardware Registration
Using Hardware Registration
This section describes a typical scenario for modifying an application to use hardware
registration.

An application can define this algorithm method in chooser.c:

To modify the application to use hardware registration, execute the following steps:

1. Modify chooser.c and rename CHOOSER to FIXED_CHOOSER.
2. Add two declarations in main:

3. Add a call in main to B_CreateSessionChooser that precedes all calls to the
Crypto-C initialization calls:

4. Add a call in main to B_FreeSessionChooser after all the Crypto-C calls.

B_ALGORITHM_METHOD CHOOSER[] = {&AM_CBC_DES_ENCRYPT, ...,NULL_PTR};

B_Chooser CHOOSER = (B_Chooser)NULL_PTR;
unsigned char **listOfOEMTags = (unsigned char**)NULL_PTR;

B_CreateSessionChooser
 (
 FIXED_CHOOSER,
 &CHOOSER,
 FIXED_HARDWARE_LIST, /* defined in hrdwrsmp.c */
 /* in btest/source */
 NULL_PTR, /* reserved for use with dynamic hardware libraries */
 NULL_PTR, /* reserved for use with dynamic hardware libraries */
 &listOfOEMTags /* Used to identify supplier of given AM */
 /* for purposes of selecting a given OEM. */
);

 B_FreeSessionChooser
 (
 &CHOOSER,
 &listOfOEMTags
);
2 7 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Retrieving Random Numbers
Retrieving Random Numbers
This demonstration program shows how you can use the AM_HW_RANDOM algorithm
method to glean true random numbers from a cryptographically secure random
number generator on a hardware co-processor. The use of AM_HW_RANDOM is almost
totally transparent; it may be used in place of AM_MD5_RANDOM, AM_MD2_RANDOM, or
AM_SHA_RANDOM.

Using a hardware device that implements the BHAPI interface is similar to using
Crypto-C software function calls. The differences are mentioned below.

Step 0: Include Files
As with any Crypto-C program, begin by including the appropriate files:

Step 1: Creating an Algorithm Object
Just as in any Crypto-C program, you create an algorithm object by declaring a
variable to be an algorithm object and calling B_CreateAlgorithmObject:

Step 1a: Create the session chooser
When accessing a hardware device, Crypto-C uses what is called a session chooser. This
chooser combines the hardware-based algorithm methods indicated in the hardware
chooser list and a standard algorithm chooser to create a hardware-based chooser. For
this example, assume you already have a hardware chooser list containing a
hardware implementation of AM_HW_Random and a software chooser. Let
FIXED_HARDWARE_LIST be the hardware list constructed from the set of available
hardware-based methods and SOFTWARE_CHOOSER be a standard software algorithm
chooser.

#include "aglobal.h"
#include "bsafe.h"

#include "bhapi.h"

 B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;

 if ((status = B_CreateAlgorithmObject (&randomAlgorithm)) != 0)
 break;
C h a p t e r 8 C r y p t o g r a p h i c H a r d w a r e 2 7 7

Retrieving Random Numbers
Note: Consult the documentation for your hardware to the list of available
hardware-based methods. See “Algorithm Choosers” on page 118 for more
information on software choosers.

To create the session chooser for use with your hardware, call
B_CreateSessionChooser. As defined in the Library Reference Manual, Chapter 4, this
function takes 6 arguments:

For the first argument, pass in your software chooser, SOFTWARE_CHOOSER. The second
argument is a pointer to a location in memory where the session chooser will be
placed. The third argument is the fixed hardware list, FIXED_HARDWARE_LIST. The fourth
argument is the passPhrase, which is used to control access to the hardware. At
registration time, the hardware-method interface can check whether the passphrase
contains the access code to enable access to a hardware instantiation of a particular
method. In this example, pass NULL_PTR, since AM_HW_Random does not require a
passPhrase. The fifth argument is amTagList, which supports the dynamic linking of
DLL version of hardware libraries into the session chooser. According to the Library
Reference Manual Chapter 4 entry for B_CreateSessionChooser, you pass a properly-
cast NULL_PTR for amTagList. The final argument is a char *. A list of OEM tags will be
placed here by Crypto-C.

int B_CreateSessionChooser (
B_Chooser fixedChooser, /* Chooser consisting of software-based */
 /* algorithm methods. */
B_Chooser *sessionChooser, /* Runtime chooser dynamically bound to */
 /* available hardware based methods. */
HW_TABLE_ENTRY *staticHardwareList[], /* List of statically defined */
 /* hardware methods terminated by a */
 /* properly cast NULL_PTR. */
ITEM *passPhrase, /* hardware passphrase */
POINTER *amTagList, /* For now pass (*)NULL_PTR */
unsigned char ***listOfOEMTags /* Returns list of OEM tags */
 /* for methods in sessionChooser */
);
2 7 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Retrieving Random Numbers
Now you can create the call to B_CreateSessionChooser:

Step 2: Setting the Algorithm Object
Setting the algorithm object for a hardware implementation is the same as for a
software implementation. Just pass in the correct AI; in this case, it is AI_HW_Random:

Step 3: Init
Now you need to call B_RandomInit. This call is the same as any other call to
B_RandomInit, except that you must pass in the chooser, SESSION_CHOOSER, created by
the call to B_CreateSessionChooser:

Step 4: Update
No Update step is needed for AI_HW_Random. In a software implementation, you
would call B_RandomUpdate during the Update step to seed the pseudo-random

 B_ALGORITHM_CHOOSER SESSION_CHOOSER = (B_ALGORITHM_CHOOSER)NULL_PTR;
 HW_TABLE_ENTRY *FIXED_HARDWARE_LIST[] = {
 & HW_XYZ_RANDOM, (HW_TABLE_ENTRY *)NULL_PTR
 };
 B_ALGORITHM_METHOD *SOFTWARE_CHOOSER[] = {
 &AM_HW_RANDOM,
 (B_ALGORITHM_METHOD *)NULL_PTR
 };

 if ((status = B_CreateSessionChooser
 (SOFTWARE_CHOOSER, &SESSION_CHOOSER,
 (POINTER *)FIXED_HARDWARE_LIST, (ITEM*)NULL_PTR,
 (POINTER*)NULL_PTR, &oemTagList)) != 0)
 break;

 if ((status = B_SetAlgorithmInfo
 (randomAlgorithm, AI_HW_Random, NULL_PTR)) !=0)
 break;

 if ((status = B_RandomInit
 (randomAlgorithm, SESSION_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;
C h a p t e r 8 C r y p t o g r a p h i c H a r d w a r e 2 7 9

Retrieving Random Numbers
number generator. In this case, since you’re dealing with a hardware source of
randomness, you don’t need to worry about setting the seed, because the hardware
should take care of seeding the generator, if necessary.

Step 5: Generate
After you have initialized the random number generator, generate your random
bytes:

Step 6: Destroy
Be sure to destroy the session chooser, the random algorithm object, and any memory
that you allocated:

 randomData = T_malloc (randomDataLen);
 if ((status = (randomData == NULL_PTR)) != 0)
 break;

 if ((B_GenerateRandomBytes
 (randomAlgorithm, randomData, randomDataLen,
 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
 break;

 B_FreeSessionChooser (&SESSION_CHOOSER, &oemTagList);
 B_DestroyAlgorithmObject (&randomAlgorithm);
 T_free(randomData);
2 8 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Appendix A

Command-Line Demos
Overview of the Demos
In addition to the sample programs included on the CD, there are three Crypto-C
command-line demo applications: BDEMO, BDEMODSA, and BDEMOEC. These are
actual applications that demonstrate some of the aspects of building cryptographic
applications using Crypto-C. They use the Crypto-C library routines and are
provided to all Crypto-C customers in source form.

The BDEMO application is found in bdemo.c with supporting files fileio.c,
filebsl.c, tstdlib.c, a chooser, choosc.c, and include files fileio.h, filebsl.h
and demochos.h. Because BDEMO utilizes BSLite, bslite.c must be linked in and the
bslite.h file must be included. See “BSLite” on page 292 for more information about
BSLite.

The command-line demos provide the following functionality:

• BDEMO can create and verify an RSA digital signature for a DES-encrypted file. It
can also seal and open an RSA digital envelope, placing the encrypted output in
another file. The signature and envelope methods used by Crypto-C are
compatible with the Public-Key Cryptography Standards (PKCS).

• BDEMODSA demonstrates the use of DSA to digitally sign and verify the
integrity of data files.
A p p e n d i x A C o m m a n d - L i n e D e m o s 2 8 1

Overview of the Demos
• BDEMOEC can use ECDSA to create and verify digital signatures for a file, and it
can use the Elliptic Curve Authenticated Encryption Scheme (ECAES) to seal and
open a digital envelope, placing the output in another file. These demo programs
support input files of arbitrary length. As with BDEMO, the file to be sealed with
the digital envelope is encrypted using the DES algorithm; however, in
BDEMOEC, the DES key is encrypted using ECAES instead of RSA.

This appendix has three sections. “Command-Line Demo User’s Guide” on page 283
shows how to use the BDEMO, BDEMODSA, and BDEMOEC Command-Line
Demos. “File Reference” on page 290 explains the files used in these applications.
“BSLite” on page 292 describes the BSLite routines.
2 8 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Command-Line Demo User’s Guide
Command-Line Demo User’s Guide
The three command-line demos are menu-driven application that demonstrates basic
cryptographic operations. Each demo prompts you for commands; you type the
responses. The various commands and expected responses are explained in the
sections for the individual demos.

BDEMO

Starting BDEMO

Command Line mode
To start BDEMO, enter the following after the system prompt:

> bdemo

Input Redirection mode
You may also run BDEMO in input redirection mode where your responses to the
menu prompts are read from a file. For example, to read commands from a file named
testin, enter the following after the system prompt:

> bdemo -s < testin

Notice that this uses ‘<’ to redirect testin as the input to BDEMO. The -s option to
BDEMO eliminates the menu prompts when BDEMO is taking input from a file.

Any line that is blank or begins with ’#’ is ignored. This means that the file used in
response file mode may contain blank lines and comment lines that begin with ’#’.

Specifying User Keys
BDEMO comes pre-loaded with RSA key pairs for two test users: User 1 and User 2.
You can also use BDEMO to generate a new RSA key pair; if you do so, this becomes
the key pair for User 3. See “Generate a Key Pair” on page 285 for key pair generation.

Note: Key pair generation in BDEMO is for demonstration purposes only and is not
cryptographically secure.

When you sign, verify, seal, or open a file, BDEMO asks which user’s key to use. You
can specify either 1 or 2. If you have generated a new RSA key, you can specify 3.
A p p e n d i x A C o m m a n d - L i n e D e m o s 2 8 3

Command-Line Demo User’s Guide
Using BDEMO
When you type “bdemo” at the system prompt, the following top-level menu is
displayed:

S - Sign a file
E - Envelope a file
V - Verify a signed file
O - Open an enveloped file
G - Generate a keypair (may take a long time)
Q - Quit
 Enter choice:

Commands may be entered in either upper or lower case, and all but the initial letter
of a command is ignored. So, for example, to sign a file you may either type “s” or
“sign”.

Each of the commands on this top-level menu is described below.

Sign a File
To sign a file:

1. Enter “s” at the top-level menu.
2. You will be prompted in succession for:

• the name and location of the file to be signed

• the name of the file you want to create to hold the signature

• the private key used for signing

3. Once this information is supplied, BDEMO uses the private key to create a
signature.

Envelope a File
To create an envelope for a file:

1. Enter “e” at the top-level menu.
2. You will be prompted in succession for:

• the name and location of the file to be signed and enveloped

• the names of the files for storing the encrypted DES key, the initialization
vector (IV), and the encrypted data

• a seed for generating the random DES key and the IV
2 8 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Command-Line Demo User’s Guide
3. Once this information is supplied, BDEMO encrypts the DES key using the
recipient’s public key, saving the IV, encrypted DES key, and the encrypted
content in the previously specified files.

Verify a Signed File
To verify the signature for a file:

1. Enter “v” at the top-level menu.
2. You will be prompted in succession for:

• the name and location of the file to be verified

• the digital signature file

• the signer’s user number (1 or 2; you may also choose 3 if you have
generated a key pair)

3. BDEMO uses the signer’s public key to verify the signature. If the signature is
valid, BDEMO prints “Signature verified.”; otherwise, BDEMO prints
“ERROR: Invalid signature while verifying file.”

Open an Enveloped File
To open an enveloped file:

1. Enter “o” at the top-level menu.
2. You will be prompted in succession for:

• the name and location of the file that contains the encrypted data

• the name and location of the of the file that contains the encrypted DES key

• the name and location of the of the file that contains the IV

• the name of the file where the decrypted content should be stored. To print
the content to the screen instead, use a hyphen (-) as the file name

• the recipient’s user number

3. BDEMO uses the recipient’s private key to recover the DES key. It then uses the
DES key to decrypt the data and saves it to the specified file. If a hyphen was
entered as the output file name, it prints the decrypted data to the screen instead
of saving it to a file.

Generate a Key Pair
You can use BDEMO to generate a new RSA key pair. However, this is only for
demonstration purposes, and does not generate cryptographically secure RSA keys. BDEMO
will generate an RSA public/private key pair, but the keys are lost when you exit
A p p e n d i x A C o m m a n d - L i n e D e m o s 2 8 5

Command-Line Demo User’s Guide
BDEMO.

To generate a key pair:

1. Enter “g” at the top-level menu.
2. You will be prompted in succession for:

• the key size in bits

• some seed information

3. BDEMO generates the key pair and keeps it as the key pair for User 3. Once a
keypair has been generated, you may not generate another during the same
BDEMO session.

Depending on the key size and the speed of the computer, key pair generation may
take from a few seconds to several minutes.

BDEMODSA

Running BDEMODSA

Command Line mode
To start BDEMODSA, enter the following after the system prompt:

> bdemodsa

Input Redirection mode
You may also run BDEMODSA in input redirection mode where your responses to
the menu prompts are read from a file. For example, to read commands from a file
named testsgn, enter the following after the system prompt:

> bdemodsa -s < testsgn

Notice that this uses ’<’ to redirect testsgn as the input to BDEMODSA.
BDEMODSA’s -s option is used to omit the menu prompts when input is taken from
a file.

Any line that is blank or begins with ’#’ is ignored. This means that the file used in
response file mode may contain blank lines and comment lines that begin with ’#’.
2 8 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Command-Line Demo User’s Guide
Using BDEMODSA
When you use BDEMODSA in command-line mode, you will be prompted to
generate a DSA key pair for your BDEMODSA session. To do this:

1. Start BDEMODSA by typing “bdemodsa” at the system prompt
The request “Enter seed to generate DSA keypair (blank to cancel):” is
displayed.

2. Enter any arbitrary string of printable characters.
The message “Generating DSA Keypair, please wait...” is displayed.
Depending on the computer and level of code optimization, key generation will
take from several seconds to several minutes.
When the key pair has been generated, the message “DSA public key and
private key are now ready to use” is displayed.

Once a key pair has been generated, the following top-level menu is displayed:

S - Sign a file using DSA/SHA
V - Verify a DSA signed file
Q - Quit
 Enter choice:

Commands may be entered in either upper or lower case, and all but the initial letter
of a command is ignored. So, for example, to sign a file you may either type “s” or
“sign”.

The commands on this top-level menu are described below.

Sign a File
To sign a file:

1. Enter “s”
2. You will be prompted in succession for:

• the name and location of the file to be signed

• the name of the file that will hold the signature

3. BDEMODSA uses the private key generated at the beginning of the session to
create a signature and places the result in the specified file.

Verify a Signed File
To verify the signature for a file:

1. Enter “v”
A p p e n d i x A C o m m a n d - L i n e D e m o s 2 8 7

Command-Line Demo User’s Guide
2. You will be prompted in succession for:

• the name and location of the file that was signed

• the name and location of the file containing the digital signature

3. BDEMODSA uses the public key generated at the beginning of the session to
verify the signature. If the signature is valid, BDEMODSA prints “Signature
verified.”; otherwise, BDEMODSA prints “ERROR: Invalid signature
while verifying file”.

Note: If the signature was generated during a previous execution of BDEMODSA, it
is necessary to re-use the seed from signature signing, otherwise verification
will fail.

BDEMOEC
BDEMOEC provides the same functionality as BDEMO, but uses elliptic curve for its
algorithms. The algorithm used for sealing and opening digital envelopes is ECAES to
encrypt the DES symmetric key. Digital signatures are created and verified using
ECDSA with SHA1.

A set of elliptic curve parameters are hard-coded in the demo along with two key
pairs generated with that curve. A new key pair can be generated, but since the size of
the key pair is dependent on the elliptic curve parameters used, the user cannot
specify the desired key size.

Running BDEMOEC

Command Line mode
To start BDEMOEC, enter the following after the system prompt:

> bdemoec

Input Redirection mode
You may also run BDEMOEC in input redirection mode where your responses to the
menu prompts are read from a file. For example, to read commands from a file named
testin, enter the following after the system prompt:

> bdemoec -s < testec

Notice that this uses ’<’ to redirect testin as the input to BDEMOEC. The -s option
to BDEMOEC eliminates the menu prompts when BDEMOEC is taking input from a
2 8 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Command-Line Demo User’s Guide
file.

Any line that is blank or begins with ’#’ is ignored. This means that the file used in
response file mode may contain blank lines and comment lines that begin with ’#’.

Using BDEMOEC
The menu options and procedures for BDEMOEC are identical for those for BDEMO.
See “Using BDEMO” on page 284 for a description of the menu commands.
A p p e n d i x A C o m m a n d - L i n e D e m o s 2 8 9

File Reference
File Reference
The C source code files for the demo programs provide a convenient means to learn
Crypto-C by example and are a good starting point for your own Crypto-C
applications.

The source files for the demo programs are described in Table A-1:

Table A-1 Demo Program Source Files

File(s) Description

bdemo.c This file contains BDEMO’s main function, menu interpreter, and drivers for
each of the menu commands. This file uses the standard C library functions
such as printf, fopen, etc.

bdemodss.c This file contains BDEMODSA’s main function. It is entirely analogous to
bdemo.c.

bdemoec.c This file contains BDEMOEC’s main function. It is entirely analogous to
bdemo.c. The elliptic curve parameters used for this demonstration, along with
two key pairs, are hard-coded in the beginning of this file.

bslite.c and
bslite.h

bslite.c contains a collection of routines that enable BDEMO to interface to
the Crypto-C cryptographic library. The routines are written in straightforward,
easy-to-read portable C code. These routines also illustrate the coding of
interfaces to a number of common Crypto-C library functions. A developer may
wish use this module as a starting point for developing an application. Refer to
“blreadme” (in the demosrc directory) for extended descriptions of routines
contained in bslite.c.

bsliteds.c and
bsliteds.h

bsliteds.c contains routines used by BDEMODSA to interface to the Crypto-
C library. These routines illustrate how to code portable interfaces to Crypto-C’s
implementation of the Digital Signature Algorithm.

bslec.c and
bslec.h

bslec.c contains routines used by BDEMOEC to interface to the Crypto-C
library. These routines are analogous to bslite.c and bslite.h. However,
not all functions in bslite.c have a counterpart in bslec.c.

choosc.c and
demochos.h

These files define the DEMO_ALGORITHM_CHOOSER which may be used as a
default for the algorithmChooser argument to Crypto-C routines.
DEMO_ALGORITHM_CHOOSER is externally declared in demochos.h for
inclusion by applications that need access to the DEMO_ALGORITHM_CHOOSER.

filebsl.c,
filebsl.h,
fileio.c and
fileio.h

These files call on the BSLite routines in bslite.c and handle the file I/O for
each operation. These files use the standard C library functions such as
printf, fopen, etc.
2 9 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

File Reference
fbslec.c,
fbslec.h,
fileio.c and
fileio.h

These files are used by BDEMOEC. These files call on the routines in bslec.c
and handle the file I/O for each operation. These files use the standard C library
functions such as printf, fopen, etc. The files fbslec.c and fbslec.h are
analogous to filebsl.c and filebsl.h used by BDEMO.

tstdlib.c This file contains memory, I/O, and buffer manipulation routines needed by
Crypto-C, such as T_malloc and T_memcmp. This file illustrates how these
routines can be implemented on most platforms. However, some of these
routines may need alteration for different platforms. For example, Crypto-C
requires that T_free perform no function if it is passed NULL_PTR, but some
library implementations of free may not satisfy this convention. Therefore, an
explicit check for NULL_PTR may be needed in T_free.

tstdlib.c uses the constant MEMMOVE_PRESENT. If the platform’s C library
provides memmove, MEMMOVE_PRESENT should be defined as 1; otherwise, it
should be defined as 0. In tstdlib.c, default values are given for these
constants, but they may be overridden by a compiler flag. For example:

-DMEMMOVE_PRESENT=0

Table A-1 Demo Program Source Files

File(s) Description
A p p e n d i x A C o m m a n d - L i n e D e m o s 2 9 1

BSLite
BSLite
BSLite is a collection of routines that interface with the Crypto-C library. BSLite
demonstrates how to call Crypto-C to execute various cryptographic procedures. The
routines are written in straightforward, easy-to-read portable C and is provided to all
Crypto-C customers in source form. BSLite includes a number of the most popular
functions the Crypto-C library supports:

• symmetric key generation

• symmetric block and stream encryption

• Diffie-Hellman parameter generation

• Diffie-Hellman key agreement

• message digest computation

• RSA key generation

• RSA digital signature creation and verification

• RSA digital envelope sealing and opening

• password-based private key protection/encryption

A single C source file, bslite.c, with a single header file, bslite.h, contains the
entire BSLite Code. For more information on BSLite, see the file blreadme.
2 9 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Appendix B

References and Reading Material
1. The Public-Key Cryptography Standards (PKCS), RSA Laboratories.
(http://www.rsa.com/rsalabs/pubs/PKCS/)

2. Frequently Asked Questions (FAQ) About Today’s Cryptography, available from RSA
Data Security, Inc. See RSA’s web site at http://www.rsa.com.

3. The following Internet Standard documents:
• RFCs 1421, 1422, 1423, 1424 on Privacy Enhancement for Internet

Electronic Mail

• RFCs 1319 (MD2), 1321 (MD5).

4. The following CCITT Recommendation documents:
• X.690: Specifications for the Basic Encoding Rules (BER) for Abstract

Notation One (ASN.1).

• X.509: The Directory — Authentication Framework.

5. Rivest, Shamir, and Adleman, A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120-126, February
1978.

6. A. Shamir, How to share a secret. Communications of the ACM, 22(11):
612-613, November 1979.

7. W. Diffie and M. E. Hellman, New directions in cryptography. IEEE Transactions
on Information Theory, IT-22:644-654, 1976.
A p p e n d i x B R e f e r e n c e s a n d R e a d i n g M a t e r i a l 2 9 3

8. Data Encryption Standard, FIPS Pub 46-2, National Institute of Standards and
Technology. Available from http://www.nist.gov.itl/div897/pubs/index.htm.

9. DES Modes of Operations, FIPS Pub 81, National Institute of Standards and
Technology, 1980.

10. Digital Signature Standard and Secure Hashing Algorithm (DSS and SHA)
• FIPS Pub 180-1

• X9.30 Part III

11. The following reports from RSA Laboratories (http://www.rsa.com/rsalabs):
• Stream Ciphers

• MD2, MD4, MD5, SHA and Other Hash Functions

• On Pseudo-collisions in MD5

• Results from the RSA Factoring Challenge

• Recommendations on Elliptic Curve Cryptosystems

• Recent Results for MD2, MD4, and MD5

12. The following OAEP specifications:
• SET Secure Electronic Transaction Specification. Book 3: Formal Protocol

Definition, version 1.0. SETCo, 1997. (http://www.setco.org/)

• PKCS #1: RSA Cryptography Specifications. Version 2.0. RSA Data Security,
Inc., 1998. (http://www.rsa.com/rsalabs/pubs/PKCS/)

13. The following ANSI Financial Services Industry documents:
• X9.31 (RSA signatures, reversible DSA)

• X9.52 Draft (Triple DES)

• X9.62 Draft and X9.63 Draft (Elliptic Curves)

14. IEEE Standard Specifications for Public-Key Cryptography on
http://stdsbbs.ieee.org/groups/1363/index.html.

15. B. Schneier, Applied Cryptography, John Wiley & Sons, Inc., New York, 1994.
16. G. Simmons, Contemporary Cryptography, IEEE Press.
17. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996. Chapter 2 of this book, which covers all
aspects of modern cryptography, provides mathematical background on finite
fields.

18. A. Menezes, I. Blake, X. Gao, R. Mullin, S. Vanstone, and T. Yaghoobian.
Applications of Finite Fields. Kluwer Academic Publishers, 1993. Provides further
reference material on finite fields, including techniques for representing elements.
2 9 4 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

19. A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers,
1993.

20. Joseph H. Silverman and John Tate, Rational Points on Elliptic Curves, Springer-
Verlag New York, Inc., 1992.
A p p e n d i x B R e f e r e n c e s a n d R e a d i n g M a t e r i a l 2 9 5

2 9 6 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

Index
A
acceleration table 243
Adelman, Leonard 50
AI See algorithm info type
algorithm chooser 15, 118–120

hardware 276
hardware chooser 133
RC4 sample chooser 119
RSA algorithm chooser 119

algorithm info type 11, 103
ASCII-encoding types 106
BHAPI 114, 134
message authentication types 106
message digest types 106
public-key types 110–113
random number types 107
secret-sharing types 113
symmetric-key types 107–109

algorithm method 15, 118
listing in chooser 15

algorithm object 9, 10, 11, 103
hardware and 133

applications of cryptography 83–86
ASCII encoding 82, 127

algorithm info types 106
example 154–158
output considerations 155, 157

asymmetric key cryptography See public-key
cryptography

attacks 179
dictionary 48
man-in-the-middle 84
timing 96

authentication 55, 83

B
base

Diffie-Hellman key agreement 62
Digital Signature Algorithm 58
elliptic curve 70

basis See elliptic curve cryptography
BER encoding 125–127

algorithm info types 104
examples

Diffie-Hellman key agreement 224–
225

RC4 125–127
RSA key pair 190–192
SHA1 141–142

BHAPI 133–135, 276–280
algorithm chooser 276
algorithm info types 114
example 277–280
key token 133

binary data
encoding to ASCII 154–158
memory management and 125
output considerations 157
printing 24

blinding 96, 195
block cipher 36

algorithm info types 107–109
examples 160–178
initialization vector 40
input constraints 127
key info types 115
key management 87
modes of operation 40
output considerations 36, 128
padding 36
selecting 88
See also DES, DESX, RC2, RC5, Triple DES

Bloom-Shamir secret sharing See secret
sharing

BSAFE 2.x 9
BSAFE Hardware API See BHAPI, hardware
BSLite 292

C
CBC See modes of operation
certificate authority 60
certificate See digital certificate
CFB See modes of operation
characteristic See elliptic curve cryptography
chooser See algorithm chooser
Cipher Block Chaining See modes of

operation
Cipher Feedback See modes of operation
I n d e x 2 9 7

collision 47
collision-free 47
communicating with other packages See BER

encoding
compatibility

BSAFE 2.x 9

D
database applications 85
decoding

BER vs. ASCII 127
DEMO_ALGORITHM_CHOOSER 15, 118
DER See BER encoding
DES 37, 88

communication with other algorithms 87
example 160–165
key 97, 130
parity bits 130
weak and semi-weak keys 94

DESX 38, 88
Developer Support 5
dictionary attack 48
Diffie, Whitfield 61
Diffie-Hellman key agreement 64, 98

algorithm info types 112
applications 84, 85
base 62
discrete logarithm problem and 64
examples

key agreement 225–229
parameter distribution 222–225
parameter generation 219–222

key 99
parameters 62, 220
private value 62, 225
public value 62
timing attacks and blinding 96

digest See message digest
digital certificate 60, 85, 86
Digital Encryption Standard See DES
digital envelope 54, 86, 193

key agreement vs. 88
digital signature 55–58, 72, 185, 193

applications 86
examples

Digital Signature Algorithm 209–218
RSA algorithm 198–204

signing 56
verifying 56
See also Digital Signature Algorithm,

ECDSA
Digital Signature Algorithm 56, 58–60

algorithm info types 112
base 58

examples
key pair generation 211–213
parameter generation 209–211
signing 213–216
verifying 216–218

key 98, 99, 209
generating 58

key info types 116
parameters 59, 209
subprime 58
timing attacks and blinding 96

Digital Signature Standard (DSS) 58
discrete logarithm problem 64
DSA See Digital Signature Algorithm
DSS See Digital Signature Standard

E
ECAES See Elliptic Curve Authenticated

Encryption Scheme
ECB See modes of operation
ECDSA 72–75

example 254–260
output considerations 257
signing 72
verfiying 73

EDE 37
effective key 38, 167, 168
Electronic Codebook (ECB) See modes of

operation
Elliptic Curve Authenticated Encryption

Scheme 75–77
example 260–266
output considerations 263

elliptic curve cryptography 64–78
algorithm info types 112
curve generation 232
examples

acceleration table 243–250
key pair generation 238–240
key retrieval 241–242
parameter generation 230–234
parameter retrieval 234–237

interoperability 90
key 72, 100, 232
key info types 116
output considerations 245
recommendations 90
RSA algorithm vs. 90
scalar multiplication 69
See also ECDSA, Elliptic Curve

Authenticated Encryption Scheme,
Elliptic Curve Diffie-Hellman key
agreement, elliptic curve parameters

Elliptic Curve Diffie-Hellman key
2 9 8 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

agreement 77–79
example 250–254
output considerations 252
private value 77, 253
public value 77

elliptic curve discrete logarithm problem 64
elliptic curve parameters 65–70

base point 70
characteristic 66, 67, 90
coefficients 67–68
cofactor 70
even characteristic 66–67

optimal normal basis 71
polynomial basis 71
representation 71

example 230–234
field 66
odd prime 66
order 69, 100
point 69
point at infinity 68, 69
summary 70

emergency access See key escrow, secret
sharing 89

encoding
BER vs. ASCII 127

entropy 93
envelope See digital envelope
error code 10, 129
examples

ASCII encoding 154–158
BER encoding 125–127
BHAPI 277–280
DES with CBC 160–165
Diffie-Hellman key agreement 219–229
Digital Signature Algorithm 209–218
ECDSA 254–260
Elliptic Curve Authenticated Encryption

Scheme 260–266
Elliptic Curve Diffie-Hellman 250–254
HMAC 143–146
message digest (SHA1) 138–142
password-based encryption 178–183
random numbers 147–153
RC2 with CBC 165–172
RC4 9
RC5 with CBC 172–178
RSA algorithm 186–208
secret sharing 267–272
surrender function 121

F
factoring 53, 99
FAQ, cryptography 5

feedback mode 40

H
hardware 114, 276–280

See also BHAPI
hash function See message digest
hash-based message authentication code

(HMAC) 47
example 143–146

Hellman, Martin 61
HMAC See hash-based message

authentication code

I
include files

choos_c.c 118
tstdlib.c 17, 291

initialization vector 40, 161
uniqueness 94

input constraints 127
RSA algorithm 205

K
key 98

DES 97
DSA 58
elliptic curve 72, 100
RC2 38, 99
RC4 87, 100
RC5 100, 172
recovery 89
registering 60
RSA 51, 53, 98, 99
size 98, 129
token (hardware) 114, 133
Triple DES 100
weak and semi-weak DES keys 94
See also public-key cryptography,

symmetric-key cryptography
key agreement 77

applications 85
digital envelopes vs. 88
See also Diffie-Hellman key agreement,

Elliptic Curve Diffie-Hellman Key
Agreement

key derivation function (KDF) 75
key escrow 81

secret sharing vs. 89
key info type 14, 115

block cipher types 115
DSA types 116
elliptic curve types 116
generic key types 115
RSA algorithm types 116
I n d e x 2 9 9

key management 81, 87
key object 13, 115
KI See key info type
Koblitz, Neal 64

L
local file encryption 83

M
MAC See message authentication code
man-in-the-middle 84
MD 47
MD2 47
MD5 47
memory management 122, 123

security considerations 92
T_free 21
T_malloc 17
tstdlib.c and 123

message authentication code 46
algorithm info types 106
HMAC 47, 143
password-based encryption 48
RC4 and 46

message digest 46–47
algorithm info types 106
BER encoding 141
collision 47
digital signature 56, 199
example 138–142
See also MD, MD2, MD5, SHA1

Miller, Victor 64
modes of operation 40

Cipher Block Chaining (CBC) 41
examples 160–165, 165–172

Cipher Feedback (CFB) 42
Electronic Codebook 40
Output Feedback (OFB) 44

modular math 51
modulus See RSA algorithm

O
OFB (Output Feedback mode) See modes of

operation
one-way hash function See message digest
optimal normal basis (ONB) See elliptic curve

parameters
output considerations 127

ASCII to binary 155, 157
block cipher 36
ECDSA 257
elliptic curve 245
Elliptic Curve Authenticated Encryption

Scheme 263

Elliptic Curve Diffie-Hellman key
agreement 252

Output Feedback mode (OFB) See modes of
operation

P
padding 36, 128, 162

RSA algorithm 193
parameters

Diffie-Hellman key agreement 62, 99, 219
Digital Signature Algorithm 59, 209
surrender context and 120
See also elliptic curve parameters

parity bits 130
password 93
password-based encryption 48

algorithm info types 109
dictionary attack 48
example 178–183
key 180
salt 179

PBE See password-based encryption
PEM encoding 104
point See elliptic curve parameters
point-to-point applications 83, 84
polynomial basis See elliptic curve

parameters
prime 51, 58
privacy 83
Privacy Enhanced Mail See PEM encoding
public exponent 51
public-key cryptography 49–79

algorithm info types 110–113
digital certificate 60
digital signature 56
security 92
signing 185
symmetric-key vs. 50, 87
See also Diffie-Hellman key agreement,

Digital Signature Algorithm, elliptic
curve cryptography, RSA algorithm

R
random number

algorithm info types 107
entropy 93
example 147–153
examples

hardware generation 277–280
generating 47
hardware 114

random numbers
multiple streams of randomness 152

random seed 47, 92, 149
3 0 0 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

generating 93
RC2 38, 88

effective key 38, 99, 167, 168
examples 165–172, 179–183

RC4 45
algorithm chooser 119
applications 84
BER example 125
example 9
key 95
key size 100
MAC with 46

RC5 39, 88
block size 172
example 172–178
key 100, 172
rounds 39, 100, 172
version number 173
word size 39, 172

Rivest, Ronald 38, 39, 45, 50
rounds 39, 100, 172
RSA algorithm 50–54

algorithm info types 110–111
applications 85
digital envelope 193
digital signature 56, 58, 193, 199
elliptic curve cryptography vs. 90
examples

ANSI X9.31 digital signature 204–208
decryption 195–197
digital signature 198–204
distributing a key pair 189–192
encryption 192–195
generating a key pair 186–189
raw RSA 197–??

factoring and 53, 99
input constraints 128, 193, 197–??, 199, 205
key 51, 53, 98, 99, 130, 187
key escrow 81
key info types 116
modulus 51, 99, 130, 187
output considerations 193, 196
raw RSA 193
sample algorithm chooser 119
security 53
timing attacks and blinding 96, 195
See also public-key cryptography

RSA Data Security, Inc.
FAQ 54
web site 47

S
salt 48, 94

iterations 179

sample program files
berder.c 125
descbc.c 160
dhagree.c 226
dhparam.c 219
dintorex.c 25
dsasign.c 209
ecdh.c 250
ecdsadig.c 254
eces.c 260
ecparam.c 230, 243
encdec.c 154
hmac.c 143
introex.c 9
mdber.c 141
mdigest.c 138
pbe.c 178
rc2.c 166
rsapkcs.c 186
rsasign.c 199
scrtshar.c 267
signver.c 205

secret key
See symmetric-key cryptography

secret sharing 79, 267
algorithm info types 113
example 267–272
key escrow vs. 89

Secure Hash Algorithm
See SHA1

security 92–100
DES weak keys 94
key size 97
passwords and 93
random seed and 92

seed 47, 92, 93, 149
entropy 93
zeroizing 152

sensitive data 124
zeroizing 20, 30, 92, 152, 181

SHA1 47
DSA and 58
ECAES and 76
examples 138–142

random numbers 147–153
hash-based message authentication

and 47, 143
Shamir, Adi 50
signature See digital signature 56
six-step sequence 8, 32
stream cipher 45–46

algorithm info types 107
attacks 95
key 87
See also RC4
I n d e x 3 0 1

subprime 58
surrender context 16, 120–122

example 121
parameter generation 120

symmetric-key cryptography 35–46
algorithm info types 107–109
examples 159–178
password-based encryption 48
public-key vs. 87
See also block cipher, stream cipher

T
T_free 123
T_malloc 123
TDES See Triple DES
threshold scheme 79, 267
timing attack 96, 195
token key See BHAPI
Triple DES 37

key 37, 100

V
verifying See digital signature

W
Web Site 5
word size 39, 172

Y
Year 2000 4

Z
zeroizing sensitive data 20, 30, 92, 181

random seed 152
3 0 2 R S A B S A F E C r y p t o - C U s e r ’s M a n u a l

	Crypto-C
	Contents
	Figures and Tables
	Introduction
	The Crypto-C Toolkit
	Cryptographic Standards and Crypto-C
	Crypto-C and the Year 2000
	How to Reach RSA Data Security, Inc.
	Developer Support
	Web Site

	Conventions Used in This Manual

	Quick Start
	Organization
	The Six-Step Sequence
	Introductory Example
	Putting It All Together

	Decrypting the Introductory Example
	Multiple Updates
	Summary of the Six Steps

	Cryptography
	Cryptography Overview
	Symmetric-Key Cryptography
	Figure 2-1 Symmetric-Key Encryption and Decryption
	Block Ciphers
	Figure 2-2 Triple DES encryption as implemented in Crypto-C
	Figure 2-3 Electronic Codebook (ECB) Mode
	Figure 2-4 Cipher-Block Chaining (CBC) Mode
	Figure 2-5 Cipher Feedback (CFB) Mode
	Figure 2-6 Output Feedback Mode (OFB)

	Stream Ciphers
	Figure 2-7 RC4 Encryption or Decryption

	Message Digests
	Message Digests and Pseudo-Random Numbers
	Hash-Based Message Authentication Codes (HMAC)

	Password-Based Encryption
	Figure 2-8 DES Key and IV Generation for Password Based Encryption

	Public-Key Cryptography
	Figure 2-9 Public-Key Cryptography
	The RSA Algorithm
	Table 2-1� Calculation of 827 mod 55

	Digital Envelopes
	Figure 2-10 Digital Envelope

	Authentication and Digital Signatures
	Figure 2-11 RSA Digital Signature

	Digital Signature Algorithm (DSA)
	Digital Certificates
	Diffie-Hellman Public Key Agreement
	Figure 2-12 The Diffie-Hellman Key Agreement Protocol

	Elliptic Curve Cryptography
	Elliptic Curve Parameters
	The Finite Field
	Elliptic Curve Coefficients
	The Point P and its Order
	Summary of Elliptic Curve Terminology
	Table 2-2� Elliptic Curve Parameters

	Representing Fields of Even Characteristic

	Elliptic Curve Key Pair Generation
	Creating the Key Pair

	ECDSA Signature Scheme
	Signing a Message
	Verifying a Signature
	The Math

	Elliptic Curve Authenticated Encryption Scheme (ECAES)
	Encrypting a Message Using the Public Key
	Decrypting a Message Using the Private Key

	Elliptic Curve Diffie-Hellman Key Agreement
	Phase 1
	Phase 2
	Figure 2-13 Elliptic Curve Diffie-Hellman Key Agreement

	The Math

	Secret Sharing
	Figure 2-14 Secret Sharing — Key Share Assignment
	Figure 2-15 Secret Sharing — Full Key Generation From Shares

	Working with Keys
	Key Generation
	Key Management
	Key Escrow

	ASCII Encoding and Decoding

	Applications of Cryptography
	Local Applications
	Point-To-Point Applications
	Client-Server Applications
	Peer-To-Peer Applications

	Choosing Algorithms
	Public-Key vs. Symmetric-Key Cryptography
	Stream vs. Block Symmetric-Key Algorithms
	Block Symmetric-Key Algorithms
	Key Agreement vs. Digital Envelopes
	Secret Sharing and Key Escrow
	Elliptic Curve Algorithms
	Interoperability
	Elliptic Curve Standards

	Security Considerations
	Handling Private Keys
	Temporary Buffers
	Pseudo-Random Numbers and Seed Generation
	Choosing Passwords
	Initialization Vectors and Salts
	DES Weak Keys
	Table 2-3� DES weak and semi-weak keys

	Stream Ciphers
	Timing Attacks and Blinding
	Choosing Key Sizes
	Table 2-4� Summary of Recommended Key Sizes
	RSA Keys
	Diffie-Hellman Parameters and DSA Keys
	RC2 Effective Key Bits
	RC4 Key Bits
	RC5 Key Bits and Rounds
	Triple DES Keys
	Elliptic Curve Keys

	Using Crypto-C
	Algorithms In Crypto-C
	Information Formats Provided by Crypto-C
	Basic Algorithm Info Types
	BER-Based Algorithm Info Types
	PEM-Based Algorithm Info Types
	BSAFE1 Algorithm Info Types

	Summary of AIs
	Table 3-1� Message Digests
	Table 3-2� Message Authentication
	Table 3-3� ASCII Encoding
	Table 3-4� Pseudo-Random Number Generation
	Table 3-5� Symmetric Stream Ciphers
	Table 3-6� Symmetric Block Ciphers (Continued)
	Table 3-7� RSA Public-Key Cryptography (Continued)
	Table 3-8� DSA Public-Key Cryptography�
	Table 3-9� Diffie-Hellman Key Agreement
	Table 3-10� Elliptic Curve Public-Key Cryptography (Continued)
	Table 3-11� Bloom-Shamir Secret Sharing
	Table 3-12� Hardware Interface

	Keys In Crypto-C
	Summary of KIs
	Table 3-13� Generic Keys
	Table 3-14� Block Cipher Keys
	Table 3-15� RSA Public and Private Keys
	Table 3-16� DSA Public and Private Keys
	Table 3-17� Elliptic Curve Keys
	Table 3-18� Token Keys

	System Considerations In Crypto-C
	Algorithm Choosers
	An Encryption Algorithm Chooser
	An RSA Algorithm Chooser

	The Surrender Context
	A Sample Surrender Function

	When to Allocate Memory
	Memory-Management Routines
	Memory-Management Routines and Standard C Libraries
	Memory Allocation
	Binary Data

	BER/DER Encoding
	Input and Output
	Symmetric Block Algorithms
	The RSA Algorithm
	General Considerations

	Key Size
	DES Keys
	RSA Keys

	Using Cryptographic Hardware
	Interfacing with a BHAPI Implementation
	Figure 3-1 Algorithm Object in a Software Implementation
	Figure 3-2 Algorithm Object with Hardware

	Hardware Issues

	Non-Cryptographic Operations
	Message Digests
	Creating a Digest
	BER-Encoding the Digest

	Hash-Based Message Authentication Code (HMAC)
	Generating Random Numbers
	Generating Random Numbers with SHA1
	Generating Independent Streams of Randomness

	Converting Data Between Binary and ASCII
	Encoding Binary Data To ASCII
	Decoding ASCII-Encoded Data

	Symmetric-Key Operations
	Block Ciphers
	DES with CBC
	Decrypting

	RC2
	Decrypting

	RC5
	Decrypting

	Password-Based Encryption
	Decrypting

	Public-Key Operations
	Performing RSA Operations
	Generating a Key Pair
	Distributing an RSA Public Key
	Crypto-C Format
	BER/DER Encoding

	RSA Public-Key Encryption
	RSA Private-Key Decryption
	Raw RSA
	RSA Digital Signatures
	Computing a Digital Signature
	Verifying a Digital Signature

	ANSI X9.31-Compliant RSA Digital Signatures
	Computing A Digital Signature
	Verifying A Digital Signature

	Performing DSA Operations
	Generating DSA Parameters
	Generating a DSA Key Pair
	DSA Signatures
	Computing a Digital Signature
	Verifying a Digital Signature

	Performing Diffie-Hellman Key Agreement
	Generating Diffie-Hellman Parameters
	Distributing Diffie-Hellman Parameters
	Crypto-C Format
	BER Format

	Diffie-Hellman Key Agreement

	Performing Elliptic Curve Operations
	Generating Elliptic Curve Parameters
	Retrieving Elliptic Curve Parameters
	Generating an Elliptic Curve Key Pair
	Retrieving an Elliptic Curve Key
	Generating Acceleration Tables
	Generating a Generic Acceleration Table
	Public-Key Acceleration Table

	Performing EC Diffie-Hellman Key Agreement
	Performing ECDSA
	Generating EC Parameters
	Generating an EC Key Pair
	Computing a Digital Signature
	Verifying a Digital Signature

	Using ECAES
	Using Elliptic Curve Parameters
	Using an EC Key Pair
	ECAES Public-Key Encryption
	ECAES Private-Key Decryption

	Secret Sharing Operations
	Secret Sharing
	Generating Shares
	Reconstructing The Secret

	Cryptographic Hardware
	Using Hardware Registration
	Retrieving Random Numbers

	Command-Line Demos
	Overview of the Demos
	Command-Line Demo User’s Guide
	BDEMO
	Starting BDEMO
	Specifying User Keys
	Using BDEMO

	BDEMODSA
	Running BDEMODSA
	Using BDEMODSA

	BDEMOEC
	Running BDEMOEC
	Using BDEMOEC

	File Reference
	Table A-1� Demo Program Source Files

	BSLite

	References and Reading Material
	Index

