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Introduction
Dear Crypto-C Developer:

Congratulations on your purchase of RSA BSAFE® Crypto-C 4.2, the state-of-the-art 
in cryptographic software toolkits! Crypto-C provides developers with the most 
important privacy, authentication, and data integrity routines. Crypto-C contains a 
full palette of popular cryptographic algorithms. This toolkit enables you to develop 
applications for a wide range of purposes, including electronic commerce, home 
banking, Webcasting, and enterprise security. 

Crypto-C is written in C and is intended to be completely portable. It is available on a 
number of platforms and can be ported to most platforms with a minimum of effort. 
Crypto-C is a toolkit, not an application; it is intended to be integrated into operating 
systems, communications systems, and other applications. Therefore, you have a 
modest amount of work ahead of you. We have tried to make this task as clear as 
possible without limiting your alternatives. This User’s Manual, with its code samples 
and tutorials, is the best place to start.

Thanks, and welcome to the RSA family.

Sincerely,

The Crypto-C Development Team
RSA Data Security, Inc.
1 R S A  B S A F E  C r y p t o - C  U s e r ’s  M a n u a l



Introduction  
The Crypto-C Toolkit
Crypto-C provides developers with a state-of-the-art implementation of the most 
important privacy, authentication, and data integrity routines. The following 
algorithms are implemented in Crypto-C 4.2: 

Symmetric Ciphers
• DES

• Triple-DES

• DESX

• RC2

• RC4

• RC5

Message Digests 
• MD

• MD2

• MD5

• SHA1

Message Authentication
• HMAC

Random Number Generation
• MD2

• MD5

• SHA1

Public-Key Algorithms
• RSA Public Key Cryptosystem

• Diffie-Hellman Key Agreement

Digital Signatures
• DSA
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The Crypto-C Toolkit
• RSA Digital Signatures

Elliptic Curve Public-Key Algorithms
• Elliptic Curve Digital Signature Algorithm (ECDSA)

• Elliptic Curve Diffie-Hellman Key Agreement

• Elliptic Curve Authenticated Encryption Scheme (ECAES)

Secret Sharing
• Bloom-Shamir Secret Sharing
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Introduction  
Cryptographic Standards and Crypto-C
Crypto-C is a general-purpose programming tool that developers can use to write a 
wide variety of applications. Crypto-C was built to permit developers to make use of 
the Public-Key Cryptography Standards (PKCS) series of documents, which specify a 
standard way of performing basic cryptographic operations. Several higher-level 
standards, such as S/MIME, SET, IPSec, and SSL, require implementation of various 
PKCS standards. Since Crypto-C complies with PKCS, developers should find 
integrating Crypto-C into software implementing these standards to be a fairly easy 
task. 

To obtain copies of the PKCS electronically on the Internet, see the PKCS section of 
RSA Data Security, Inc.’s web site, which is accessible via 
http://www.rsa.com/rsalabs. Alternatively, you may contact our sales department 
for a diskette.

Crypto-C and the Year 2000 
Software applications that rely only on the last two digits of the current date field 
might behave erratically in the next century when the date changes to the year 2000. 
RSA Data Security, Inc. is frequently asked about how our products will handle the 
Year 2000 issue and what assurances we can provide our software development 
partners.

Crypto-C does not invoke time and date services, so it does not inherently have any 
Year 2000 issues to deal with.

However, Crypto-C accounts for only a portion of any particular application, and 
those applications might introduce Year 2000 bugs independent of the Crypto-C code. 
In turn, those applications might rely on the underlying platform and operating 
system for time and date services, which might introduce their own Year 2000 bugs 
into any application that uses our toolkits.
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How to Reach RSA Data Security, Inc.
How to Reach RSA Data Security, Inc.

Developer Support
RSA Data Security, Inc. is committed to helping you effectively integrate our security 
into your applications. For details on our support plans, please contact a Telesales 
Representative at 650-295-7600, or view our support options online at 
http://support.rsa.com.

Web Site
In addition, you can reach the RSA Data Security, Inc. Web site at 
http://www.rsa.com. RSA Data Security, Inc. has pages for security bulletins, coming 
events, free software and publications, and an ftp site. RSA Data Security, Inc. also has 
a developer's corner at http://www.rsa.com/rsa/developers/. If you are interested 
in cryptography, RSA Data Security, Inc.'s Cryptography FAQ is available at 
http://www.rsa.com/rsalabs/faq/.
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Introduction  
Conventions Used in This Manual
Italic is used for:

• new terms where they are introduced

• the names of manuals and books

Lucida Typewriter Sans is used for:

• anything that appears literally in a C program, such as the names of structures 
and functions supplied by Crypto-C: for example, B_DecodeInit

Lucida Typewriter Sans Italic Bold is used for:

• function parameters and placeholders that indicate that an item is replaced by 
some actual value in your own program: for example, randomAlgorithm

Lucida Typewriter Bold is used for:

• text the user types in command line demos and text that is printed to the screen 
by the demos ( only) 

Structures and routines defined by Crypto-C are boxed:

Application code and samples are displayed in a box with a shaded outline:

Some Crypto-C functions are only available when used with a hardware 
application that has a BSAFE Hardware API interface (BHAPI). These 
functions are marked with the icon of a hammer.

/* Structures defined by Crypto-C */

/* Application code and samples */
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Chapter 1

Quick Start
Organization
Chapter 1, the Quick Start, uses a code example to describe the basic encryption and 
decryption operations in Crypto-C.

Chapter 2 presents a brief outline of the basic cryptographic principles and 
terminology that are used in this manual.

Chapter 3 presents a brief description of the Crypto-C algorithm info types and key 
info types by functionality. It also covers system considerations when using Crypto-C. 

Chapters 4-7 present sample code for the major Crypto-C operations.

Chapter 8 presents sample code for the BSAFE Hardware API (BHAPI).

 describes the command line demos.

 lists reference documents.
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The Six-Step Sequence
The Six-Step Sequence
The Crypto-C model generally follows a six-step sequence:

1. Create
2. Set
3. Init
4. Update
5. Final
6. Destroy

In addition, for every application, you must include the necessary header files; we 
will call this Step 0. 

The six-step sequence makes it easier to maintain your code. For example, if you have 
implemented a message digest routine using MD2 and wish to use SHA1 instead, you 
simply need to make changes in Steps 2 and 3, Set and Init. The rest of your code can 
be reused. Similarly, if you originally programmed a routine under the assumption 
that it would get all the data from a single buffer, and you wish to modify it to take 
data from multiple buffers, you can simply change Step 4, Update.

Note: In some cases, an algorithm may not require an Update step.

The sections in this chapter show the following:

• a six-step encryption example

• a six-step decryption example

• using multiple Updates

• a summary of the six-step process
8 R S A  B S A F E  C r y p t o - C  U s e r ’s  M a n u a l



Introductory Example
Introductory Example
The CD containing the Crypto-C library distribution also includes sample source code 
to accompany this User’s Manual. One of the files on that CD, introex.c, is an 
example converting the Introductory Example into a program. Later in this manual 
are instructions on writing code for many Crypto-C operations. There are sample 
programs on the CD to accompany all the topics covered.

With the Crypto-C Library Reference Manual handy, we will encrypt the sentence, 
“Encrypt this sentence.” To do this, we will use what is called a stream cipher, that is, 
an encryption method that encrypts data a character at a time, in a single stream. The 
cipher we will use is called RC4. This cipher can take a key size from 1 to 256 bytes. 
RC4 creates a “key stream” based on the key and XORs the stream of data with the 
key stream to create ciphertext.

The example in this section corresponds to the file introex.c. 

Step 0: Include Files
You must include the necessary header files and the Crypto-C library in every 
application you write using Crypto-C:

When writing a Crypto-C application, include aglobal.h and bsafe.h in that order. If 
you wish to use the DEMO_ALGORITHM_CHOOSER (see “Selecting an Algorithm Chooser” 
on page 15), include demochos.h after bsafe.h. In addition, you must compile and 
link in tstdlib.c, which contains the memory management functions called by the 
Crypto-C library.

Note: For backward compatibility, the BSAFE 2.x include file names, global.h and 
bsafe2.h, are still valid. If your source code contains the older names, you 
should not have any problems.

Step 1: Creating an Algorithm Object
Whatever operation Crypto-C performs, it does so from an algorithm object. An 
algorithm object is used to hold information about an algorithm’s parameters and to 
keep a context during a cryptographic operation such as encryption or decryption. 

#include “aglobal.h”
#include “bsafe.h”
#include “demochos.h” 
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Introductory Example
For our example, we will build an algorithm object that performs encryption. 

You build an algorithm object in Steps 1 to 3. As you go through these steps, you 
specify the type of algorithm that is being used, supply any special information or 
parameters that the algorithm requires, and generate or supply a key for algorithms 
that need one.

In Step 1, we simply create the object. We do this by declaring a variable to be an 
algorithm object and calling B_CreateAlgorithmObject.

In this case, we name our algorithm object rc4Encrypter and declare it as follows:

The data type B_ALGORITHM_OBJ is defined in bsafe.h:

typedef POINTER B_ALGORITHM_OBJ;

where POINTER is defined in aglobal.h:

typedef unsigned char *POINTER;

and NULL_PTR is also defined in aglobal.h:

#define NULL_PTR ((POINTER)0)

So our variable, rc4Encrypter, is a pointer. To prevent problems when the algorithm 
object is destroyed, it is a good idea to initialize it to NULL_PTR. See Step 6 for details.

To create an algorithm object, we call B_CreateAlgorithmObject. Chapter 4 of the 
Library Reference Manual gives the function prototypes and descriptions of all the 
Crypto-C calls. For B_CreateAlgorithmObject, we find:

Because B_CreateAlgorithmObject takes a pointer to a B_ALGORITHM_OBJ as its 
argument, we have to pass the address of rc4Encrypter. The return value is an int. 
Most Crypto-C calls return either a 0 (zero), which indicates success, or a non-zero 
error code. After the call, look at the return value: if it is 0, continue; if not, stop. At 

B_ALGORITHM_OBJ rc4Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

int B_CreateAlgorithmObject (
  B_ALGORITHM_OBJ *algorithmObject                 /* new algorithm object */
);
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RSA Data Security, Inc., the tradition is to name the return value status:

Standard RSA Data Security, Inc., coding practices use the above do-while construct 
to make it easy to break out of a sequence when encountering an error. If a Crypto-C 
function returns a non-zero value, break will exit the do-while, and further code 
dependent on the offending call will not be executed. However, any clean-up code, 
such as overwriting sensitive memory with zeroes (see Step 6), can follow the do-
while and will always execute, whether or not there was an error.

Step 2: Setting the Algorithm Object
The variable rc4Encrypter is now an algorithm object, but we have not yet determined 
what type of operations it can perform. In Step 2, we associate the algorithm object 
with an algorithm and supply any special information or parameters the algorithm 
requires. We do this with B_SetAlgorithmInfo. Chapter 4 of the Library Reference 
Manual gives this function’s prototype and description:

The first argument is rc4Encrypter. But what are the next two? The second argument 
is an algorithm info type, or AI. In Crypto-C, you specify the type of operation an 
algorithm object performs by setting the object to a particular AI. Chapter 2 of the 
Library Reference Manual describes the available AIs. Each AI description also lists the 
information that must accompany that AI when setting an algorithm object. That 
accompanying information is the third argument of B_SetAlgorithmInfo. 

For our example, we want to choose a stream cipher AI. A stream cipher processes 
data in a stream of arbitrary length. This is in contrast to another common type of 
cipher, the block cipher, which processes data in blocks of a fixed size. In Crypto-C, 

int status;
do {
  if ((status = B_CreateAlgorithmObject (&rc4Encrypter)) != 0)
    break;

.

.

.
} while (0);

int B_SetAlgorithmInfo (
  B_ALGORITHM_OBJ algorithmObject,                     /* algorithm object */
  B_INFO_TYPE     infoType,               /* type of algorithm information */
  POINTER         info                            /* algorithm information */
);
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there is a single stream cipher, RC4, and a number of AIs that can be used to 
implement it. For this example we will use AI_RC4; we pass this as the second 
argument to B_SetAlgorithmInfo. 

The third argument is information that is specific to the AI we chose. For complex 
algorithms, this is input that is required by the algorithm, such as: parameters for 
algorithms that require them, “salt” and the desired number of iterations for 
password-based encryption, or an “initialization vector” for block ciphers. In our 
example, AI_RC4 is a simple algorithm that does not require any parameters; its entry 
in Chapter 2 of the Library Reference Manual states that the format of the info supplied 
to B_SetAlgorithmInfo is NULL_PTR.

Thus, we can make the call to B_SetAlgorithmInfo:

Note: Once you have set an algorithm object, do not set it again. If you need an 
algorithm object to perform another type of operation, create a new one.

Step 3: Init
Now that we have created and set our algorithm object, rc4Encrypter, it is ready to 
encrypt. Actually, since we haven’t called B_EncryptInit, it is ready to decrypt as 
well. In Step 3, we choose the operations our algorithm object can perform by 
supplying the desired function pointers to the Crypto-C library; we also create and set 
a key object that will supply the key data the algorithm needs.

Note: An algorithm object can be used for either encryption or decryption, but not 
for both. You should create separate algorithm objects to handle each case.

Look at the entry for AI_RC4 in Chapter 2 of the Library Reference Manual:

From this, you can see that AI_RC4 can be used with encryption or decryption 
procedures; that is, it can be used to encrypt or to decrypt. We want to encrypt, so in 
Step 3, we will call B_EncryptInit to initialize our algorithm object to perform 

if ((status = B_SetAlgorithmInfo
      (rc4Encrypter, AI_RC4, NULL_PTR)) != 0)
  break;

Crypto-C procedures to use with algorithm object:
B_EncryptInit, B_EncryptUpdate, B_EncryptFinal; 
and B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal. 
You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.
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encryption. This call will also associate a key with the algorithm object. 

See the description and prototype in Chapter 4 of the Library Reference Manual for 
B_EncryptInit:

As in Step 2, the first argument is the algorithm object; once again, we use 
rc4Encrypter. The next three arguments are new. 

Step 3a: Creating a Key Object
The second argument is a key object, which is used to hold any key-related 
information, such as the RC4 key, and to supply this information to functions that 
require it. Before we can pass a key object as an argument, we must create and set it. 
Creating a key object is similar to creating an algorithm object. We name our key 
object rc4Key and declare it as follows:

where B_KEY_OBJ is defined in bsafe.h:

typedef POINTER B_KEY_OBJ;

Chapter 4 of the Library Reference Manual gives the description and prototype of 
B_CreateKeyObject:

For our example, we use:

int B_EncryptInit (
  B_ALGORITHM_OBJ     algorithmObject,                 /* algorithm object */
  B_KEY_OBJ           keyObject,                             /* key object */
  B_ALGORITHM_CHOOSER algorithmChooser,               /* algorithm chooser */
  A_SURRENDER_CTX    *surrenderContext                /* surrender context */
);

B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;

int B_CreateKeyObject (
  B_KEY_OBJ *keyObject                                  /* new key object */
);

if ((status = B_CreateKeyObject (&rc4Key)) != 0)
  break;
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Step 3b: Setting a Key Object
We have a key object, but it is not yet distinguished as an RC4 key. For that we need to 
use B_SetKeyInfo. See Chapter 4 of the Library Reference Manual for this function’s 
description and prototype:

This function is similar to B_SetAlgorithmInfo. The first argument is the key object 
just created, rc4Key. The second argument is a key info type (KI), and the third 
argument is information that must accompany the given KI. We want to use a KI 
compatible with RC4 encryption, so we return to the entry for our AI, AI_RC4, in 
Chapter 2 of the Library Reference Manual:

Key info types are described in Chapter 3 of the Library Reference Manual. Under the 
entry for KI_ITEM we find that the format of info supplied to B_SetKeyInfo is a 
pointer to an ITEM structure: 

len is the length of the key in bytes. RC4 takes key sizes of one to 256 bytes. A ten-byte 
key is generally sufficient for most applications. data is the key data. A real 
application would use a random number generator to produce ten bytes for the key 
(see “Generating Random Numbers” on page 147). For this example, we can simply 

int B_SetKeyInfo (
  B_KEY_OBJ   keyObject,                                     /* key object */
  B_INFO_TYPE infoType,                         /* type of key information */
  POINTER     info                                      /* key information */
);

Key info types for keyObject in B_EncryptInit or B_DecryptInit:
KI_Item that gives the address and length of the RC4 key.

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;
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use:

Now we can complete the call to B_SetKeyInfo:

As with algorithm objects, once you have set a key object, you should not set it again. 
If you need another key object, you should create a new one.

Note: In a real application, for security reasons, you might want to zeroize and free 
your key data immediately after setting the key.

Now that we have created and set our key object, rc4Key, we can pass it as the second 
argument to B_EncryptInit.

Selecting an Algorithm Chooser
The third argument to B_EncryptInit is an algorithm chooser; this is a structure that 
specifies which algorithm methods to link in. An algorithm method (AM) is the 
underlying code that actually performs the cryptographic operation. Because many 
AIs can perform more than one cryptographic function (for example, AI_RC4 can 
perform encryption and decryption), an application often has a choice of which 
underlying algorithm method(s) need to be linked in. 

An algorithm chooser lists all the AMs the application will use; only these AMs will 
be linked in. Crypto-C comes with a demonstration application containing the 
algorithm chooser DEMO_ALGORITHM_CHOOSER. You can use this algorithm chooser in 
any Crypto-C application as long as the module which defines it (choosc.c) is 
compiled and linked in. However, DEMO_ALGORITHM_CHOOSER will link in all the 
algorithm methods available, even though an application might use only two or three. 

A developer can write an algorithm chooser for the specific application to make the 
executable image smaller. See “Algorithm Choosers” on page 118. in this manual for 

static unsigned char rc4KeyData[] = {
  0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
};

ITEM rc4KeyItem;
rc4KeyItem.data = rc4KeyData;
rc4KeyItem.len = sizeof(rc4keyData);

if ((status = B_SetKeyInfo
      (rc4Key, KI_Item, (POINTER)&rc4KeyItem)) != 0)
  break;
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instructions on writing an algorithm chooser. For this example, we will use 
DEMO_ALGORITHM_CHOOSER as the third argument of B_EncryptInit.

Surrender Context
The fourth argument of B_EncryptInit is a surrender context, which controls when 
and how the application surrenders control during time-consuming operations. The 
application developer can put together an A_SURRENDER_CTX structure containing a 
surrender function and other information. Crypto-C applications call this surrender 
function at regular intervals. 

The surrender function can simply print out information to the user that indicates that 
the Crypto-C operation is currently executing, or it can provide the user with a means 
of halting the operation if it is taking too much time. A surrender context is not 
required; if none is desired, simply pass a properly cast NULL_PTR. See “The Surrender 
Context” on page 120. for a more detailed description of the A_SURRENDER_CTX 
structure. For this example, we will use (A_SURRENDER_CTX *)NULL_PTR.

We can now complete our call to B_EncryptInit:

Step 4: Update
In Steps 1 through 3, we created our algorithm object and initialized it with the 
information that it needs to perform RC4 encryption. In Step 4, we can enter the data 
to encrypt with the B_EncryptUpdate function. Chapter 4 of the Library Reference 
Manual provides the following description and prototype:

if ((status = B_EncryptInit
      (rc4Encrypter, rc4Key, DEMO_ALGORITHM_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

int B_EncryptUpdate (
  B_ALGORITHM_OBJ  algorithmObject,                    /* algorithm object */
  unsigned char   *partOut,                          /* output data buffer */
  unsigned int    *partOutLen,                    /* length of output data */
  unsigned int     maxPartOutLen,            /* size of output data buffer */
  unsigned char   *partIn,                                   /* input data */
  unsigned int     partInLen,                      /* length of input data */
  B_ALGORITHM_OBJ  randomAlgorithm,                  /* random byte source */
  A_SURRENDER_CTX *surrenderContext                   /* surrender context */
);
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The first argument is our algorithm object, rc4Encrypter. 

The other arguments call for the plaintext input and encrypted output. Because the 
output depends on the input, we start with the fifth and sixth arguments, which 
describe the input.

We name our input dataToEncrypt and declare it as follows:

Crypto-C needs to know how many bytes our input is, so we use strlen:

If your data is not a string — that is, if it does not end with a NULL terminating 
character — do not use strlen to determine its length.

The output is described by the second, third, and fourth arguments. 

The second argument is described in the prototype as unsigned char *partOut. This 
does not mean you simply declare a variable to be unsigned char * and pass it as the 
argument. The output argument that you pass is a pointer to a buffer of allocated 
memory. This is an important point; see “Algorithm Choosers” on page 118 for a 
detailed discussion of this topic. 

For now, we declare:

For a stream cipher, the length of the encrypted (output) data is equal to the length of 
the input data. So we allocate dataToEncryptLen bytes with T_malloc:

The code above uses the Crypto-C routine T_malloc. Crypto-C supplies its own 
memory management routines to increase code portability and to meet the special 
requirements of handling encrypted data. The Crypto-C memory management 
routines reside in the file tstdlib.c; make sure this file is compiled and linked in. 

static char dataToEncrypt[] = “Encrypt this sentence.”;

unsigned int dataToEncryptLen;
dataToEncryptLen = (unsigned int)strlen (dataToEncrypt) + 1;

unsigned char *encryptedData = NULL_PTR;

encryptedData = T_malloc (dataToEncryptLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
  break;
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These routines are described in Chapter 4 of the Library Reference Manual and in 
“Memory-Management Routines” on page 123 of this manual.

In our example, the T_malloc routine from tstdlib.c returns a pointer to the 
allocated memory. If, for some reason, it cannot allocate memory (for example, when 
there is not enough memory available), T_malloc will return NULL_PTR. It is 
imperative to always check the return value of T_malloc, even if you are allocating 
only a small number of bytes. T_malloc also sets an unsigned char * variable; it is a 
good idea to initialize this variable to NULL_PTR. See “Step 6: Destroy” on page 20. for 
more information.

The third argument to B_EncryptUpdate is a pointer to an unsigned int. 
B_EncryptUpdate returns a value indicating how many bytes it placed into the output 
buffer. It will place this value at the address specified by the pointer to the unsigned 
int. Make the proper declaration:

Crypto-C might not encrypt all the input data during a call to B_EncryptUpdate. Any 
unprocessed data will be saved in a buffer inside the algorithm object created by 
Crypto-C and encrypted during a subsequent call to Update (see “Multiple Updates” 
on page 28) or during the call to B_EncryptFinal (see “Step 5: Final” on page 19). This 
is why it is important to keep track of how many bytes Crypto-C wrote to the output 
buffer.

The fourth argument to B_EncryptUpdate is the size of the output buffer. The Update 
function must know the size of the buffer. The Update function will not attempt to 
place data into unallocated memory; instead, it returns an error if it needs to place 
more bytes into the buffer than are allocated. In our example, we will use 
dataToEncryptLen as our output data size.

The seventh argument is a random algorithm. Recall that in Chapter 2 of the Library 
Reference Manual, the description of AI_RC4 states:

That is exactly what we will supply in our example. 

For the eighth argument, once again, we pass a properly cast NULL_PTR as the 

unsigned int outputLenUpdate;

You may pass (B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.
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surrender context. When we put this all together, our Update call is:

Note the warning in the Library Reference Manual Chapter 2 entry for AI_RC4:

This simply means that you should not use the same key for two different encryption 
sessions.

Step 5: Final
B_EncryptFinal finalizes the encryption process by encrypting any data that 
B_EncryptUpdate could not. See Chapter 4 of the Library Reference Manual for the 
function’s description and prototype:

For our example, the first argument is rc4Encrypter. 

The second argument is a pointer to the output buffer that we created for 
B_EncryptUpdate. However, B_EncryptUpdate has already placed some data into that 
buffer, so we must pass the address of the next byte that is available after the already 
filled bytes to B_EncryptFinal. That is the address of the beginning of the buffer plus 

if ((status = B_EncryptUpdate
      (rc4Encrypter, encryptedData, &outputLenUpdate,
      dataToEncryptLen, dataToEncrypt, dataToEncryptLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

encrypted DataLen = outputLenUpdate + outputLenFinal

Due to the nature of the RC4 algorithm, security is compromised if multiple data 
blocks are encrypted with the same RC4 key. Therefore, B_EncryptUpdate cannot be 
called after B_EncryptFinal. To begin an encryption operation for a new data block, 
you must call B_EncryptInit and supply a new key.

int B_EncryptFinal (
  B_ALGORITHM_OBJ  algorithmObject,                    /* algorithm object */
  unsigned char   *partOut,                          /* output data buffer */
  unsigned int    *partOutLen,                    /* length of output data */
  unsigned int     maxPartOutLen,            /* size of output data buffer */
  B_ALGORITHM_OBJ  randomAlgorithm,                  /* random byte source */
  A_SURRENDER_CTX *surrenderContext                   /* surrender context */
);
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the number of bytes that B_EncryptUpdate filled, or encryptedData + outputLenUpdate. 

The third argument is a pointer to an unsigned int; B_EncryptFinal will set that 
unsigned int to the number of bytes it encrypted. 

The fourth argument is the size of the buffer available to B_EncryptFinal. Because 
B_EncryptUpdate has already written to part of the buffer, this value will be the total 
size of the buffer minus the number of bytes B_EncryptUpdate has used, or 
dataToEncryptLen - outputLenUpdate. 

Once again, we can pass properly-cast null pointers for the fifth and sixth arguments, 
which are the random algorithm and surrender context. 

Then, for our example, we have:

Step 6: Destroy
When you are done with an algorithm or key object, you must destroy it. The Destroy 
function frees up any memory that was allocated by Crypto-C and zeroizes any 
sensitive memory. Because you will always want to destroy the objects, place these 
function calls after the do-while construct. That way, even if there is an error 
somewhere and the program breaks out of the do-while before executing all the calls 
within the do-while, the Destroy functions will execute. In case the error occurs 
before an object has been created, it is a good idea to initialize objects to NULL_PTR. If 
an object is NULL_PTR, the Destroy function does nothing.

Chapter 4 of the Library Reference Manual gives the description and prototype of the 
Destroy functions:

if ((status = B_EncryptFinal
      (rc4Encrypter, encryptedData + outputLenUpdate,
      &outputLenFinal, dataToEncryptLen - outputLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

void B_DestroyKeyObject (
  B_KEY_OBJ       *keyObject                      /* pointer to key object */
);
void B_DestroyAlgorithmObject (
  B_ALGORITHM_OBJ *algorithmObject          /* pointer to algorithm object */
);
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For our example, we use the following:

In addition to destroying any objects that you created, any memory you allocated 
must be freed when you are done with it. This means that each T_malloc must have a 
corresponding T_free. Placing the T_free after the do-while guarantees that it will be 
called even if there is an error somewhere. However, there is a concern that if there is 
an error before the T_malloc and the program breaks out of the do-while before 
memory is allocated, then T_free will be called without a corresponding T_malloc. 
That is why it is important to initialize the pointer to NULL_PTR. If the argument to 
T_free is NULL_PTR, the extra call to T_free does nothing. 

See Chapter 4 of the Library Reference Manual for the T_free prototype:

For this example, call T_free as follows:

Note: Using T_free means you can no longer access the data at that address. Do not 
free a buffer until you no longer need the data it contains. If you will need the 
data later, you might want to save it to a file first.

You may want to zeroize any sensitive data before you free it. To do this, duplicate 
the following sequence after the do-while. If there is an error inside the do-while 
before you zeroize and free, you are still guaranteed to perform this important task:

B_DestroyKeyObject (&rc4Key);
B_DestroyAlgorithmObject (&rc4Encrypter);

void T_free (
  POINTER block                                           /* block address */
);

T_free (encryptedData);

if (rc4KeyItem.data != NULL_PTR) {
  T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
  T_free (rc4KeyItem.data);
  rc4KeyItem.data = NULL_PTR;
  rc4KeyItem.len = 0;
}
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Putting It All Together
Now we can put Steps 0 through 6 into a program. This program can be found in the 
file introex.c:

#include "aglobal.h"
#include "bsafe.h"
#include "demochos.h"

void PrintBuf PROTO_LIST ((unsigned char *, unsigned int));

void main()
{
  B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;
  B_ALGORITHM_OBJ rc4Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

  /*  The RC4 key is hard-coded in this example. In a real application, 
      use a random number generator to produce the key.  */
  unsigned char rc4KeyData[10] = {
      0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
  };

  static char dataToEncryp[] = "Encrypt this sentence.";
  unsigned char *encryptedData = NULL_PTR;
  unsigned int dataToEncryptLen, encryptedDataLen;
  unsigned int outputLenUpdate, outputLenFinal;
  unsigned int status;

  do {
    dataToEncryptLen = strlen (dataToEncrypt) + 1;

    /*  Step 1:  Create an algorithm object.  */
    if ((status = B_CreateAlgorithmObject (&rc4Encrypter)) != 0)
      break;

    /*  Step 2:  Set the algorithm to a type that does rc4 encryption.
                 AI_RC4 will do.  */
    if ((status = B_SetAlgorithmInfo
         (rc4Encrypter, AI_RC4, NULL_PTR)) != 0)
      break;

    /*  Step 3a:  Create a key object.  */
    if ((status = B_CreateKeyObject (&rc4Key)) != 0)
      break;
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    /*  Step 3b:  Set the key object with the 10-byte key.  */
    rc4KeyItem.data = rc4KeyData;
    rc4KeyItem.len = rc4KeyDataLen;

    if ((status = B_SetKeyInfo
          (rc4Key, KI_Item, (POINTER)&rc4KeyItem)) != 0)
      break;

    if (rc4KeyItem.data != NULL_PTR) {
      T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
      T_free (rc4KeyItem.data);
      rc4KeyItem.data = NULL_PTR;
      rc4KeyItem.len = 0;
    }

    /*  Step 3:  Init  */
    if ((status = B_EncryptInit
          (rc4Encrypter, rc4Key, DEMO_ALGORITHM_CHOOSER,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    /*  Step 4:  Update  */
    encryptedData = T_malloc (dataToEncryptLen);
    if ((status = (encryptedData == NULL_PTR)) != 0)
      break;

    if ((status = B_EncryptUpdate
          (rc4Encrypter, encryptedData, &outputLenUpdate,
          dataToEncryptLen, (unsigned char *)dataToEncrypt,
          dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    /*  Step 5:  Final  */
    if ((status = B_EncryptFinal
          (rc4Encrypter, encryptedData + outputLenUpdate,
          &outputLenFinal, dataToEncryptLen - outputLenUpdate,
          (B_ALGORITHM_OBJ)NULL_PTR,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    encryptedDataLen = outputLenUpdate + outputLenFinal;
    printf ("Encrypted data (%u bytes):\n", encryptedDataLen);    
    PrintBuf (encryptedData, encryptedDataLen);
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You may find it a useful exercise to compile and link this program. Also, it could also 
be instructive to add some print statements. For instance, what are the values of 
outputLenUpdate and outputLenFinal? 

While it is possible to print the encryptedData, it will not be an ASCII string — it is not 
any kind of string, because there is no NULL terminating character. The encrypted data 
is binary data, so it may be more useful to print out the result byte-by-byte in hex-
ASCII strings. For an example of a function that does this, see the PrintBuf() routine 
in the sample program. In addition, note that when writing Crypto-C output to (and 
reading it from) files, it is usually more useful (in some cases, even necessary) to open 
the files in binary mode.

To run this exercise, first compile introex.c, tstdlib.c, and choosc.c. Then link the 
object files with bsafe.lib or the equivalent platform-specific library.

  } while (0);

  /*  Done with the key and algorithm objects, so destroy them.  */
  B_DestroyKeyObject (&rc4Key);
  B_DestroyAlgorithmObject (&rc4Encrypter);

  /*  Free up any memory allocated, save it to a file or print it out first
      if you need to save it.  */
  if (rc4KeyItem.data != NULL_PTR) {
    T_memset (rc4KeyItem.data, 0, rc4KeyItem.len);
    T_free (rc4KeyItem.data);
    rc4KeyItem.data = NULL_PTR;
    rc4KeyItem.len = 0;
  }

  if (encryptedData != NULL_PTR){
    T_memset (encryptedData, 0, dataToEncryptLen);
    T_free (encryptedData);
    encryptedData = NULL_PTR;
  }

} /*  end main  */
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Decrypting the Introductory Example
Decrypting data is similar to encrypting. RC4 is symmetric-key encryption, which 
means the key that was used to encrypt will be the key needed for decryption.

The example in this section corresponds to the file dintroex.c.

Step 1: Creating an Algorithm Object

Step 2: Setting the Algorithm Object
Use the same AI and parameters as for encryption:

Step 3: Init
Use the same key data as for encryption. Once again, we must create and set the key 
object.

Step 3a: Creating the Key Object
As before, we name our key object rc4Key and declare it as follows:

Then we allocate space for the key object using B_CreateKeyObject:

B_ALGORITHM_OBJ rc4Decrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc4Decrypter)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
      (rc4Decrypter, AI_RC4, NULL_PTR)) != 0)
  break;

B_KEY_OBJ rc4Key = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&rc4Key)) != 0)
  break;
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Step 3b: Setting the Key Object
We need to fill our key with the same ten bytes of data we used for encryption. We 
must make sure that we use the same key as we used to encrypt. For our sample 
application, we can simply re-create the key data we had before:

Now we can complete the call to B_SetKeyInfo:

Step 4: Update
Here, we must set the buffer that will store the decrypted data; for RC4, it should be 
the same size as the encrypted data’s buffer:

static unsigned char rc4KeyData[] = {
  0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10
};

if ((status = B_SetKeyInfo
    (rc4Key, KI_Item, (POINTER)&rc4KeyData)) != 0)
  break;

unsigned char *decryptedData = NULL_PTR;

decryptedData = T_malloc (encryptedDataLen);
if ((status = (decryptedData == NULL_PTR)) != 0)
  break;

if ((status = B_DecryptUpdate
      (rc4Decrypter, decryptedData, &decryptedLenUpdate,
      encryptedDataLenTotal, encryptedData, outputLenTotal,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 5: Final

In the “Introductory Example” on page 9, the plaintext was a string. Therefore, we can 
compute the sum of decryptedLenUpdate and decryptedLenFinal to determine how 
many characters make up the decryption. 

Note: For some algorithms, the decrypted data may not be a string — for example, 
when the NULL terminating character was not encrypted. In these cases, if you 
want to print the decrypted data, you will not be able to because the data is in 
binary form, not ASCII. You could print the ginary data using PrintBuf(), or 
you can convert the decrypted data. Crypto-C offers encoding and decoding 
functions to convert between binary and ASCII. See “Converting Data 
Between Binary and ASCII” on page 154 for more information.

Step 6: Destroy
Always destroy objects when you no longer need them:

if ((status = B_DecryptFinal
      (rc4Decrypter, decryptedData + decryptedLenUpdate,
      &decryptedLenFinal, encryptedDataLen - decryptedLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyAlgorithmObject (&rc4Decrypter);

if (decryptedData != NULL_PTR) {
  T_memset (decryptedData, 0, encryptedDataLen);
  T_free (decryptedData);
  decryptedData = NULL_PTR;
}
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Multiple Updates
An application can do multiple Updates before the Final call. For example, suppose 
you have data from three different files that you want to encrypt into a single buffer. 
You could do this in three steps: read the contents of the first file into a buffer; read 
the next file, appending the contents to the end of the existing buffer; then append the 
contents of the third. But that would be clumsy if the contents of the three files are 
already in three buffers.

You do not have to put data together into a single buffer to encrypt it. Instead, call 
B_EncryptUpdate with the first buffer, call it a second time with the second buffer, and 
one last time with the third buffer. Then call B_EncryptFinal once, after you have 
finished all Updates. Similarly, you can call B_DecryptUpdate more than once with 
blocks of encrypted data.

Multiple updates can also be useful for encrypting or decrypting large amounts of 
data. If you need to process a one-megabyte file, you could allocate a megabyte of 
memory, put the entire file into that memory buffer, and call Update once. But using 
such a large amount of memory is impractical or even impossible in some situations. 
An application is more robust if it allocates a smaller buffer — say, 64, 128 or 1024 
bytes — transfers data from the file in increments, and processes each unit with a 
separate call to Update. Then it can call Final once for all Updates.

Crypto-C does not always encrypt or decrypt an entire block during an Update call. 
One reason it might not handle the whole block is because of padding. Padding is 
used with block ciphers to ensure the data satisfies input restrictions and may add 
bytes to the original data. See “Padding” on page 36 for more information.  Padding 
and pad operations (encrypting or decrypting the padding and/or stripping the pad) 
take place in Final, so Crypto-C may keep the last few bytes of any input to an Update 
call in a buffer. If there is another call to Update, then the bytes in that buffer were not 
the last bytes of input, and Crypto-C continues to encrypt or decrypt. If the next call is 
to Final, the bytes in the buffer are the last bytes of input, so Crypto-C adds the pad 
and encrypts it, or decrypts the final bytes and strips the pad.

Note: The output of a particular Update may very well be larger than the input, 
because Crypto-C may be processing the current input plus some data in the 
buffer. Hence, an output buffer of an Update call should always be larger than 
the input length. For block ciphers, for example, the size of the output buffer 
may be as large as the length of the input plus the block size.

The following example demonstrates multiple Updates. It corresponds to the file 
multencr.c; a similar example for decryption is in the file multdecr.c. Assume that 
the subroutine GetDataFromFile gets at most a specified number of bytes from a file, 
2 8 R S A  B S A F E  C r y p t o - C  U s e r ’s  M a n u a l



Multiple Updates
places them into the given buffer, and sets a flag indicating whether the bytes 
returned are the last ones in the file or not. Assume also that the subroutine 
AppendDataToFile appends output data to a file. Finally, assume we have already 
called B_CreateAlgorithmObject, B_SetAlgorithmInfo, and B_EncryptInit:

#define UPDATE_SIZE         64
#define UPDATE_OUTPUT_SIZE  (UPDATE_SIZE + 16)

  FILE *inputFile = (FILE *)NULL_PTR;
  FILE *outputFile = (FILE *)NULL_PTR;

  unsigned char dataToEncrypt[UPDATE_SIZE];
  unsigned char blockOfEncryptedData[UPDATE_OUTPUT_SIZE];
  unsigned int dataToEncryptLen, totalBytesSoFar;
  unsigned int outputLenUpdate, outputLenFinal;
  unsigned int sizeToUpdate = UPDATE_SIZE;
  int endFlag, status;

  do {

    totalBytesSoFar = 0;

    while ((status = GetDataFromFile
            (inputFile, sizeToUpdate, dataToEncrypt,
             &dataToEncryptLen, &endFlag)) == 0) {
      printf ("dataToEncryptLen = %i \n", dataToEncryptLen);
      PrintBuf (dataToEncrypt, dataToEncryptLen);
      if ((status = B_EncryptUpdate
           (encryptionObject, blockOfEncryptedData,
            &outputLenUpdate, UPDATE_OUTPUT_SIZE, dataToEncrypt,
            dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
            (A_SURRENDER_CTX *)NULL_PTR)) != 0)
        break;

      /*  Save the encrypted data.  */
      if ((status = AppendDataToFile
           (outputFile, blockOfEncryptedData,
            outputLenUpdate)) != 0)
        break;

      totalBytesSoFar += outputLenUpdate;
      if (endFlag == 1)
        break;
    } /*  end while  */
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In the above code, we took dataToEncryptLen bytes of data to encrypt and passed them 
to B_EncryptUpdate. The number of bytes of output may or may not be 
dataToEncryptLen; check outputLenUpdate to see. If fewer than dataToEncryptLen bytes 
were output, the as-yet-unencrypted input waits in a buffer.

Notice that we did not allocate memory, but used the stack; we did this by declaring 
our buffers to be arrays of unsigned char. This means that the operating system will 
do the allocating and freeing. 

Also notice the call to T_memset, another memory management routine from 
tstdlib.c. T_memset sets all the bytes of a buffer to a particular value; in this case, it 
wrote a 0 to every byte in dataToEncrypt. T_memset is described in Chapter 4 of the 
Library Reference Manual. When memory is freed, whether by a call to T_free or 
automatically by the operating system, the data still exists at that location; the 
operating system has simply marked that area as available for use. For security, 
overwrite any memory that held sensitive data when you are done with it. This 

    /*  If there was an error in the above while loop, break out of the
          do-while construct.  */
    if (status != 0)
      break;
    
    /*  Call B_EncryptFinal once after all Updates.  */           
    if ((status = B_EncryptFinal
         (encryptionObject, blockOfEncryptedData, &outputLenFinal,
          UPDATE_OUTPUT_SIZE, (B_ALGORITHM_OBJ)NULL_PTR,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    /*  Save the encrypted data.  */
    if ((status = AppendDataToFile
         (outputFile, blockOfEncryptedData,
          outputLenFinal)) != 0)
      break;

    totalBytesSoFar += outputLenFinal;
    
  } while (0);

  /*  Free up any memory allocated, save it to a file or print it out first
      if you need to save it.  */

  T_memset (dataToEncrypt, 0, sizeof (dataToEncrypt));
3 0 R S A  B S A F E  C r y p t o - C  U s e r ’s  M a n u a l



Multiple Updates
prevents attackers from reconstructing secrets by examining your computer’s 
memory.
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Summary of the Six Steps
A typical implementation uses the six steps as follows:

Step 0: Include
Include the necessary header files. In addition, make sure that:

• your compiler can locate the Crypto-C header files

• your compiler can locate and link in the Crypto-C library

• you compile and link in the file containing the definitions for the T_ functions; an 
example is provided in tstdlib.c.

Step 1: Create
Create an algorithm object by declaring a variable to be an algorithm object and 
calling B_CreateAlgorithmObject.

Step 2: Set
Use B_SetAlgorithmInfo to associate the algorithm object with an algorithm and to 
supply any special information or parameters the algorithm requires. 

Step 3: Init
Choose the operations the algorithm object can perform by supplying the desired 
algorithms methods from the Crypto-C library. If the algorithm requires a key, create 
and set a key object that will supply the key data that the algorithm needs.

Step 4: Update
Initiate an action. The action depends on the algorithm. Update is the only step that 
can be performed more than once on the same object. For example:

• For an encryption or decryption algorithm, an Update step encrypts or decrypts 
all or part of the data. You can use multiple Update steps to encrypt or decrypt 
data. 

• For a message digest, the Update step is used to enter the data to digest.

• For a random number generator, the Update step is used to seed the random 
number generation. 
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• For some algorithms, such as generating a public/private key pair, there is no 
Update step. 

Step 5: Final
Finalize the action initiated in Step 4. Again, the finalization depends on the 
algorithm; for some algorithms, Final is replaced by Generate. For example:

• For an encryption or decryption algorithm, the Final step encrypts or decrypts the 
final portion of the data. For some algorithms, this data may need special 
handling, such as “padding,” that is different from the Update step.

• For a message digest, the digest action takes place during Final.

• For a random number generator, the Final (or Generate) step generates the 
random bytes.

• For generating a public/private key pair, the key pair generation takes place in 
the Generate step.

Step 6: Destroy
Free any memory allocated in the previous steps and overwrite any sensitive memory 
with zeroes. The Destroy step is crucial to the security of an application.
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Chapter 2

Cryptography 
This section presents a brief outline of the basic cryptographic principles and 
terminology used throughout this manual. The publications listed in , “References 
and Reading Material”, on page 293 provide more comprehensive discussions of 
cryptographic functions and operations.

Cryptography Overview

Symmetric-Key Cryptography
In symmetric-key cryptography, as Figure 2-1 shows, the data used to build the 
encrypting key is the same data required to build the decrypting key. Using any other 
key to decrypt will produce incorrect results. Symmetric-key cryptography is also 
sometimes called secret-key cryptography, because the key used to both encrypt and 
decrypt must be kept secret.

There are two categories of symmetric encryption algorithms, block ciphers and stream 
ciphers. As the name implies, a block cipher processes data in blocks. A stream cipher, 
on the other hand, processes a unit of data at a time, where a unit is generally a bit or 
byte. This allows a stream cipher to take in a variable length stream of data, encrypt it, 
and output a stream of ciphertext the same length as the input. Crypto-C offers DES, 
Triple DES, DESX, RC2, and RC5 as block ciphers and RC4 as a stream cipher.
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Figure 2-1 Symmetric-Key Encryption and Decryption

Block Ciphers
Block ciphers encrypt data block-by-block. They can encrypt each block separately as 
in ECB mode, or they can use other modes to make the cipher less vulnerable to 
attacks based on regular patterns. A mode of operation usually combines the 
underlying cipher with feedback and other simple operations. The security remains a 
function of the cipher and not of the mode. See “Modes of Operation” on page 40 for 
more information.

Padding
When you encrypt a message using a block cipher, usually your message length will 
not be a multiple of the block size. Some modes can deal with variable size blocks, but 
others require the message be a multiple of the block size. For these modes, padding is 
a way to deal with this problem. To pad, you add a regular pattern of bytes to the end 
of the last block to make it a complete block. With padding, the actual number of 
bytes encrypted can be as much as one block more than the original data.

Ciphers

Crypto-C implements the following block ciphers: 

• DES

• Triple DES
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• RC2

• RC5

• DESX

DES
The Digital Encryption Standard, DES, is a commercial encryption US standard that 
has been available for over 15 years. The federal standard document FIPS PUB 46-2 
describes the algorithm. DES, in most cases, is not an exportable algorithm.

For DES, the block size is eight bytes. Therefore, the input must be a multiple of eight 
bytes, or else it must be padded to be a multiple of eight bytes for DES to operate in 
CBC or ECB modes properly. The key consists of 56 random bits and 8 parity bits, 
forming a 64-bit, or 8-byte, key.

Triple DES
Triple DES executes DES three times, which triples the number of bits in an 
encryption key. A number of different methods achieve this function. The technique 
that Crypto-C uses is depicted in Figure 2-2 on page 38.

This technique is known as EDE, or “Encrypt-Decrypt-Encrypt.” The decryption 
process in the middle stage of Triple DES encryption provides compatibility with 
DES. If the three keys are the same, the Triple DES operation is equivalent to a single 
DES encryption. That way, an application that has only DES capabilities can still 
communicate with applications that use Triple DES. If the three keys are different, the 
decryption in the middle will scramble the message further; it will not decrypt the 
first stage. Triple DES decryption is the inverse operation of the above sequence, that 
is, DES decryption followed by DES encryption and then another DES decryption. 
Triple DES is generally not exportable.
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Figure 2-2 Triple DES encryption as implemented in Crypto-C

DESX
DESX is an RSA Data Security, Inc. proprietary extension of the DES encryption 
algorithm that increases the effective number of key bits from 56 to 120 bits. Crypto-C 
includes DESX for backward compatibility with BSAFE 1.x versions, or as a faster 
alternative to Triple DES.

RC2
RC2 was developed by Ronald Rivest as an alternative to DES encryption; it is 
proprietary to RSA Data Security, Inc. RC2 has an eight-byte block size. Therefore, the 
input must be a multiple of eight bytes, or be padded to be a multiple of eight bytes, 
for RC2 to operate properly in CBC or ECB modes. 

The RC2 input key can be of any length from 1 to 128 bytes. The algorithm uses the 
input key to generate an effective key that is actually used for encryption purposes. 
Internally, the algorithm builds a key table based on the bits of the key data; the 
chosen number of effective key bits limits the number of possible key tables. The 
effective key size is variable and takes values from one bit up to 1024 bits.

Control over your effective key size benefits you as follows:

• You can generate up to 128 bytes of key data and set the algorithm to use a smaller 
number of effective bits, such as 80. Then, in the future, if you want to increase the 
effective key bits, you do not have to change the code that generates the key data, 
only the effective key bit parameter. 
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• In code that is being exported, you only need to modify the number of effective 
key bits instead of making extensive modifications to your code. RC2 can 
generally be approved for export under a limited key size of 40 – 48 bits; 
applications with 40 bits will usually be expedited.

RC5
RC5 was developed by Ronald Rivest as an alternative to DES encryption; it is 
proprietary to RSA Data Security, Inc. It is a block cipher with the block being either 4 
bytes, 8 bytes, or 16 bytes, depending on the word size. The input must be a multiple 
of the block size, or it must be padded to a multiple of the block size for RC5 to 
operate properly. RC5’s speed and security are dependent on input parameters 
determined by the user. These parameters are:

• word size

• rounds

• key size

Word size generally refers to the size of a hardware register. For hardware 
implementations of RC5, developers can take advantage of larger registers to increase 
speed. On chips with smaller registers, the word size can be emulated in software. 
RC5 version 1.0 accepts word sizes of 16, 32, or 64 bits. Crypto-C accepts a word size 
of 32 or 64 bits; however, the 64-bit implementation is an unoptimized evaluation 
implementation. The block size is twice the word size. For a word size of 32 bits, the 
block size is 64 bits, or 8 bytes, the same as for DES and RC2. For a word size of 64 bits, 
the block size is 128 bits, or 16 bytes.

The number of rounds is the number of times the operation employs the inner 
encryption function. Varying the number of rounds allows developers to make a 
tradeoff between speed and security. The greater the number of rounds, the greater 
the security, but the slower the execution. The number of rounds can be anywhere 
from 0 (zero) to 255. For RC5 with a 32-bit word size, RSA Data Security, Inc. 
recommends at least 12 rounds for applications; while no practical attacks are known 
for 12-round RC5-32, recent cryptanalytic work suggests 16 rounds is now a more 
conservative choice. For RC5 with a 64-bit word size, RSA Data Security, Inc. 
recommends at least 16 rounds; a conservative choice for the 64-bit version is 20 
rounds. Note that the Crypto-C implementation of the 64-bit word is for evaluation 
purposes only.

The key size can be as little as 0 (zero) and as many as 255 bytes. This variable key size 
is intended to make it easier to obtain export permission. RC5 uses the secret key 
bytes to generate an expanded key table during the Init phase. The key table is then 
used during encryption or decryption. Hence, key length will have no appreciable 
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effect on algorithm speed.

RC5 is more formally described as RC5 w/r/b. For instance, RC5 with a 32-bit word, 
12 rounds, and a 10 byte key would be described as RC5 32/12/10.

Modes of Operation

When you use a block cipher to encrypt a message of arbitrary length, you can also 
choose a mode of operation. 

Modes of operation can use techniques such as feedback or chaining to make identical 
plaintext blocks encrypt to different ciphertext blocks. Modes are designed so that 
they do not weaken the security of the underlying cipher, but they may have 
properties in addition to those inherent in the basic cipher. 

Most of the modes of operation in Crypto-C are feedback modes. Feedback modes use 
the previous block of output to alter the current block of input before encrypting. In 
this way, encrypting the same block of plaintext twice will virtually never produce the 
same ciphertext. 

A feedback algorithm requires an initialization vector, or IV, to alter the first block. The 
IV has no cryptographic significance. It is used to alter the first block of data before 
any encryption takes place; therefore, it does not need to be secret. It should be 
random, though, so that the first block of encrypted data is not predictable. In order to 
start the decryption process, it is necessary to use the IV that was employed in the 
encryption process. 

Four Modes

Crypto-C offers four modes:

• Electronic Codebook (ECB) mode

• Cipher Block Chaining (CBC) mode

• Cipher Feedback (CFB) mode

• Output Feedback (OFB) mode

A brief description of these modes follows. Most cryptography texts, such as Bruce 
Schneier’s Applied Cryptography [15], provide full descriptions of the various modes.

Electronic Codebook (ECB) Mode
ECB is not a feedback mode; it encrypts each block of input independently of all other 
blocks. Plaintext patterns are not concealed; instead each identical block of plaintext 
yields an identical block of ciphertext. This could help an eavesdropper break the 
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code. In addition, the plaintext can be easily manipulated by removing, repeating, or 
interchanging blocks. The speed of each encryption operation is identical to that of the 
block cipher. ECB mode is as secure as the underlying block cipher.
 

Figure 2-3 Electronic Codebook (ECB) Mode

Cipher Block Chaining (CBC) Mode
With CBC mode, each plaintext block is XORed with the previous ciphertext block, 
then encrypted. CBC mode is as secure as the underlying block cipher against 
standard attacks. In addition, any patterns in the plaintext are concealed by the 
XORing of the previous ciphertext block with the plaintext block.

The decryptor follows the same sequence of steps to decrypt, using the same (secret) 
key and IV.
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Figure 2-4 Cipher-Block Chaining (CBC) Mode

An initialization vector is added to the beginning of the plaintext before encryption. 
This gives you something to XOR the first block with and ensures that identical 
plaintexts encrypt to different ciphertexts.

Cipher Feedback (CFB) Mode
In cipher feedback (CFB) mode, the cipher object acts as a byte generator. CFB mode 
encrypts the previous block of ciphertext, and XORs the plaintext with this block to 
produce ciphertext. For the first block, the initialization vector is encrypted. CFB 
mode is as secure as the underlying cipher against standard attacks. In addition, any 
patterns in the plaintext are concealed by XORing the previous ciphertext block with 
the plaintext block.
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Figure 2-5 Cipher Feedback (CFB) Mode

To encrypt a plaintext using CFB mode:

1. Generate your key and your IV.
2. Encrypt the IV with the key to get a block of output, B1.

3. XOR B1 with the first block of your plaintext, P1, to get the first block of 
ciphertext, C1. 

4. Encrypt C1 with the key to get the second block of output, B2.

5. XOR B2 with the second block of your plaintext message, P2, to get the second 
block of ciphertext, C2. 

6. Repeat Steps 4 and 5 until the entire text is encrypted.

To decrypt the ciphertext, the decryptor uses the same (secret) key and initialization 
vector and follows the same sequence of steps. 

CFB mode does not require padding. If your data length is not a multiple of the block 
size, simply truncate the final block of output to be the same size as the final segment 
of the data, and then XOR. You can use CFB to encrypt a stream of data.
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Output Feedback (OFB) Mode
Output feedback mode is similar to CFB mode, except that the quantity XORed with 
each plaintext block is generated independently of both the plaintext and the 
ciphertext.

To encrypt a plaintext using OFB, first generate the “output” used for encryption. 
This is intermediate data that is used in the encryption process. In OFB, the output 
depends only on the key and the initialization vector.

1. Generate your key and your IV.
2. Encrypt the IV with the key to get a block of output, B1.

3. Encrypt B1 with the key to get the second block of output, B2.

4. Continue encrypting recursively: encrypt Bi to get Bi+1.

This process gives you an arbitrarily long sequence of pseudo-random blocks that you 
can use to encrypt the data. To use the output to encrypt:

5. XOR your plaintext with the output, block by block. The result of the XOR is the 
ciphertext.

OFB does not require padding. If your data length is not a multiple of the block size, 
simply truncate the final block of the output to be the same size as the final segment of 
the data, and then XOR.

The decryptor can use the same (secret) key and IV to generate the same sequence of 
output blocks, and XOR the sequence with the ciphertext to recover the plaintext.
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Figure 2-6 Output Feedback Mode (OFB)

Stream Ciphers
A stream cipher processes the input data a unit at a time. A unit of data is generally a 
byte, or sometimes even a bit. In this way, encryption or decryption can execute on a 
variable length of input. The algorithm does not have to wait for a specified amount 
of data to be input before processing, or append and encrypt extra bytes.

RC4
RC4 is a symmetric stream-encryption algorithm developed by Ronald Rivest and 
proprietary to RSA Data Security, Inc. It is actually a keyed pseudo-random sequence. 
It uses the provided key to produce a pseudo-random number sequence which is then 
XORed with the input data. This means that the encryption and decryption 
operations are identical.

The number of key bits is variable and ranges from eight to 2048 bits. An application 
that uses RC4 with a key size of 40 – 48 bits is generally exportable; a key size of 40 
bits is usually expedited. RC4 with a key size less than 40 bits is not recommended.

Because RC4’s encryption is an XOR between the message bytes and the pseudo-
random byte stream generated from the key, the same key should not be used more 
than once. Otherwise, if some of the bytes of one input message are known (or easy to 
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guess), an attacker would be able to determine some of the original message bytes by 
XORing two sets of cipher bytes.

Figure 2-7 RC4 Encryption or Decryption

RC4 with MAC
The RC4 with MAC algorithm is an extension of RC4. It provides data integrity by 
using a Message Authentication Code (MAC) in conjunction with the RC4 encryption 
algorithm. The authentication code does not provide cryptographic authentication; 
rather, it provides the equivalent of a checksum that can be used to determine if any 
errors were introduced within the cipher bytes. The MAC guards against 
transmission or retrieval errors but may not detect deliberate tampering with the 
data.

Message Digests
A message digest (also sometimes referred to as a one-way hash function) is a fixed-
length computationally unique identifier corresponding to a set of data. That is, each 
unit of data (a file, a string, a buffer, etc.) will map to a particular short block, called a 
message digest. It is not random: digesting the same unit of data with the same 
message digest algorithm will always produce the same short block.

A good message digest algorithm possesses the following qualities:

• The algorithm accepts any input data length.

• The algorithm produces a fixed length output for any input data.
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• It is computationally infeasible to produce data that has a specific digest. In other 
words, given a particular block of the proper size, it will be virtually impossible to 
determine a unit of data that will digest to that particular block.

• It is computationally infeasible to produce two different units of data that 
produce the same digest. In other words, given some data, it is virtually 
impossible to create different data that will digest to the same block as the first. 
This quality is also called collision-free.

Message digests have many uses. They can authenticate data, for instance. To create 
an digest for authentication, digest the data and save the digest. Later, if you need to 
see if the data has been altered, digest it again and compare the new digest to the old. 
If the digests are different, the data is different. Although there will exist other sets of 
data that will digest to the original value, it is virtually impossible to find them. Minor 
changes in data will produce very different digests.

Crypto-C includes the MD, MD2, MD5, and SHA1 message digest algorithms. MD is 
included for backward compatibility with BSAFE 1.x. MD, MD2, and MD5 produce a 
16-byte digest for any input message; SHA1 produces a 20-byte digest. MD5 is the 
fastest message digest algorithm implemented in Crypto-C. 

Recent cryptanalytic work has discovered a collision in MD2’s internal compression 
function, and there is some chance that the attack on MD2 may be extended to the full 
hash function. The same attack applies to MD. Another attack has been applied to the 
compression function on MD5, though this has yet to be extended to the full MD5. 
RSA Data Security, Inc. recommends that before you use MD, MD2, or MD5, you 
should consult the RSA Laboratories web site at http://www.rsa.com/rsalabs to be 
sure that their use is consistent with the latest information. One bulletin that discusses 
this issue is Recent Results for MD2, MD4, and MD5; it can be found at http://
www.rsa.com/rsalabs/html/bulletins.html.

Message Digests and Pseudo-Random Numbers
Random number generation (for software implementation, usually pseudo-random 
number generation) is a key component of cryptographic operations. Random 
numbers are usually used as cryptographic keys or as a basis for generating keys. 
Crypto-C uses message digest algorithms with a random seed for generating random 
numbers. See “Pseudo-Random Numbers and Seed Generation” on page 92 for a 
discussion of the security considerations of random number generation.

Hash-Based Message Authentication Codes (HMAC)
A hash-based message authentication code (HMAC) combines a secret key with a 
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message digest to create a message authentication code. This method of creating a 
MAC makes it possible to update the underlying message digest if a new attack 
makes the original message digest unsecure. Crypto-C provides an HMAC 
implementation based on SHA1. 

Recall that SHA1 produces a 20-byte digest; in addition, we need to know that SHA1 
takes input in 64-byte blocks. 

Given a message M and a key k, the HMAC of M is computed as follows:

1. Create two different fixed strings that are used in the calculation:
ipad = the byte 0x36 repeated 64 times
opad = the byte 0x5C repeated 64 times 

2. Extend k to 64 bytes in length by appending zeros to the end of k. For example, if k 
is 25 bytes, append 39 copies of the zero byte 0x00. We will call the extended key 
k’.

3. Compute the following:

SHA1(k’ XOR opad || (SHA1(k’ XOR ipad) || M))

where || denotes concatenation.

The same key can be used for multiple authentications, but the key should be replaced 
periodically. For security considerations, the key should be at least as long as the 
message digest output. For SHA1, this means an HMAC key should be at least 20 
bytes. If the key is “weakly random”, that is, if knowing some of the key bits might 
help an attacker generate other key bits, then a longer key should be used.

Password-Based Encryption
Password-Based Encryption (PBE) generates a symmetric key from a password, and 
encrypts data using that generated key. Usually, though, a password will not have 
enough effective random bits to qualify as a candidate for a key or even a random 
seed to generate a key. For example, each character of an 8-byte alphanumeric 
password that also allows case-sensitive letters has the equivalent of slightly less than 
six bits of randomness. For eight-character passwords, this is far less than the required 
key size of a block cipher such as DES.

Therefore, a good PBE implementation not only uses the password, but mixes in a 
random number, known as a salt, to create the key. Normally, the mixing is a message 
digest. This makes the task of getting from password to key very time-consuming for 
an attacker. Digesting a password with a salt helps thwart dictionary attacks. An 
attacker could put together a “dictionary” of keys generated from likely passwords, 
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and try out each key on encrypted data. This would greatly reduce the amount of 
work necessary to find the key and may make it feasible to recover encrypted 
material. With a salt, the attacker would have to create a dictionary of keys generated 
from each password, but each password would then have to have a dictionary of each 
possible salt.

Crypto-C uses the methods described in the PKCS document #5 to implement 
password-based encryption. The methods use a message digest algorithm with a 
specific means of padding to increase the search space for dictionary attacks against 
the key.

Figure 2-8 DES Key and IV Generation for Password Based Encryption

Public-Key Cryptography
In 1976, Stanford graduate student Whitfield Diffie and Stanford professor Martin 
Hellman invented public-key cryptography. In this system, each person owns a pair of 
keys, called the public key and the private key. The key pair’s owner publishes the 
public key and keeps the private key secret.

Suppose Alice wants to send a message to Bob. She finds his public key and encrypts 
her message using that public key. Unlike symmetric-key cryptography, the key used 
for encryption will not decrypt the message. That is, knowledge of Bob’s public key 
will not help an eavesdropper. To decrypt a message, Bob uses his private key. If Bob 
wants to respond to Alice, he can encrypt his message using her public key. 

To get a flavor of this idea, think of taking a number to a power. For instance, given 
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values x and y, compute z = xy. To recover x, you would not compute zy, but rather 
z1/y. You end up with the original x, because z1/y = (xy)1/y = xy·1/y= x1 = x. You need 
two values to perform this exercise, a “public key,” y, to compute the encrypted value, 
and the inverse of the public key, or a “private key,” 1/y, to recover the original value.

This example, of course, is not practical because if you made y public, anyone could 
easily compute 1/y and know your private key. Therefore, a good public-key 
cryptosystem relies on a key pair for which it is impossible (or at least intractable) to 
derive the private key from the public key.

Figure 2-9 Public-Key Cryptography

In practice, public-key algorithms are slow compared to symmetric-key algorithms. 
Therefore, they are more often used for shorter messages, such as encrypting the 
symmetric key for a message encrypted with a symmetric cipher, or for encrypting a 
digest.

The RSA Algorithm
RSA is a public-key cryptosystem for both encryption and authentication that MIT 
professors Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman invented in 1977. 
It is actually similar to the example in the previous section that takes numbers to a 
power, except that it works in modular math. 
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Modular Math
Modular math uses a positive integer as a modulus; the only numbers under 
consideration are the integers from 0 to one less than the modulus. So for mod n, only 
the integers from 0 to (n–1) are valid operands and the results of operations will 
always be numbers from 0 to (n–1). When an operation such as addition or 
multiplication would give a result that is greater than the modulus, the remainder of 
the result after division by n is used instead. Therefore, two numbers are equal mod n 
if and only if their difference is an even multiple of n.

For example, think of military time where the modulus is 2400. For instance, 2200 
hours (10:00 P.M.) plus 4 hours is not 2600, but 0200 hours, or 2:00 in the morning. 
Likewise, if we start at 0, or midnight, 6 times 5 hours (say six 5-hour shifts) is not 
3000, but 0600, or 6:00 A.M. the following day. 

Another aspect of modular math is the concept of an inverse. Two numbers are the 
inverse of each other if their product equals 1. For instance, 7·343 = 2401, but if our 
modulus is 2400, the result is (7·343) mod 2400 ≡ 2401 – 2400 = 1 mod 2400.

Prime Numbers
The RSA algorithm also employs prime numbers, or primes. A prime number is a 
number that is evenly divisible by only 1 and itself. For instance 10 is not prime 
because it is evenly divisible by 1, 2, 5, and 10. But 11 is prime, because its only factors 
are 1 and 11.

The RSA Algorithm
The RSA algorithm works as follows: take two large primes, p and q, and find their 
product n = pq; n will be the modulus. Choose a public value, e (also known as the 
public exponent), that is less than n. There are other constraints on e described later. To 
compute ciphertext c from a plaintext message m, find

c = m
e
 mod n

To decrypt, determine the private key d, the inverse of e, and compute

m = c
d
 mod n

The relationship between e and d insures that the algorithm correctly recovers the 
original message m, because

c
d
 = (m

e
)

d
 = m

ed
 ≡ m

1 = m mod n

Only the entity that knows d can decrypt.
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The security of the system relies on the fact that if you know p, q and e, it is easy to 
compute d, but if you know only n and e it is more difficult to determine d. This is due 
to the following property of the math: the value d is actually not the inverse of e mod 
n, but rather the inverse of e mod (p–1)(q–1). The value you pick for e must be 
relatively prime to (p–1)(q–1), which means e and (p–1)(q–1) share no common factors, 
so that there exists d such that

ed ≡ 1 mod (p–1)(q–1)

In other words, you find the private value using a modulus of (p–1)(q–1), but when 
you apply the RSA algorithm to encryption or decryption, you use a modulus of 
n = p·q.

Why, if d is the inverse of e mod (p–1)(q–1), does cd = (me)d = med = m1 = m mod n? 
Aren’t we mixing moduluses? That is the quirk of the math; it may seem 
counterintuitive, but that “mixing of moduluses” is what makes the algorithm work. 
A complete proof of this fact is beyond the scope of this publication, so if you want to 
learn more about the underlying mathematical principle, find a math book that 
discusses Euler’s phi-function.

Incidentally, in practice you would generally pick e, the public exponent first, then 
find the primes p and q which satisfy the requirement that e be relatively prime to (p–
1)(q–1).

Consider the following example with small numbers. Choose public exponent e = 3. 
Then, let p = 5 and q = 11, which means n = 55 and (p–1)(q–1) = 40. This is a valid p and 
q combination because 3 is relatively prime to 40. The inverse of 3 mod 40 is 27.

(3·27) = 81
81 – (2·40) = 81 – 80 = 1
3·27 = 1 mod 40

Apply the RSA algorithm with these parameters to the “plaintext message” m = 2.

c = m
e

= 23 = 8 mod 55

This yields an encrypted message of 8.

To decrypt, raise the message to the power of the inverse of 3, which is 27.

c
d

= 827 mod 55

Rather than computing 827 directly, a shortcut would be to compute:

816+8+2+1 = 816·88·82·81 = 2 mod 55
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The calculation is shown in Table 2-1:

Summary
Take two large primes, p and q, and find their product n = p · q. Set n to be the 
modulus. Choose a public exponent, e, less than n and relatively prime to (p–1)(q–1). 
Find d, the inverse of e mod (p–1)(q–1), that is, ed ≡ 1 mod (p–1)(q–1). The pair (n,e) is 
the public key; d is the private key (or the private exponent). The primes p and q must 
be kept secret or destroyed.

To compute ciphertext c from a plaintext message m, find c = me mod n. To recover the 
original message, compute m = cd mod n. Only the entity that knows d can decrypt.

Note: In public-key cryptography, it is also possible to encrypt using a private key. 
In this case, the sender takes the plaintext input and the private key and 
follows the same steps need to decrypt an encrypted file. This creates a 
ciphertext that can be read using the public key; to read it, the recipient 
follows the same steps needed to encrypt with the public key and restores it 
to the plaintext. This is used in authentication and digital signatures.

Security
The security of the RSA algorithm relies on the difficulty of factoring large numbers. 
In theory, it is possible to obtain the private key d from the public key (n,e), by 
factoring n into p and q. In order to find d, one must know the product (p–1)(q–1). But 
to find that value, one must know p and q. For example, in the earlier example, an 

Table 2-1 Calculation of 827 mod 55

80 1 mod 55

81 8 mod 55

82 81 · 81 = 8 · 8 = 64 64 – 55 = 9 9 mod 55

84 82 · 82 = 9 · 9 = 81 81 – 55 = 26 26 mod 55

88 84 · 84 = 26 · 26 = 676 676 – (12 · 55) = 16 16 mod 55

816 88 · 88 = 16 · 16 = 256 256 – (4 · 55) = 36 36 mod 55

81 · 82 8 · 9 = 72 72 – 55 = 17

(81 · 82) · 88 17 · 16 = 272 272 – (4 · 55) = 52 52 mod 55

(81 · 82 · 88) · 816 52 · 36 = 1872 1872 – (34 · 55) = 2 2 mod 55
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eavesdropper would know that p · q = 55, but what is (p–1)(q–1)? Factoring 55 into its 
component primes is easy: the answer is 5 and 11. 

However, for very large numbers, factoring is very difficult. The RSA Laboratories 
publication, Frequently Asked Questions About Today’s Cryptography (the FAQ), describes 
the state of the art in factoring. Factoring numbers takes a certain number of steps, 
and the number of steps increases exponentially as the size of the number increases. 
Even on supercomputers, the time to execute all the steps is so great that for large 
numbers it could take years to compute. Within a short period of time, the current 
threshold of general numbers that can be factored will probably rise to 155 digits, 
approximately the size of a 512-bit RSA modulus. Currently, the limit to the size of an 
RSA modulus in Crypto-C is 2048 bits.

Digital Envelopes
A digital envelope is a way of combining the advantages of symmetric- and public-key 
cryptography. In general, public-key algorithms are slower than symmetric-key 
ciphers, and for some applications may be too slow to be of practical use, while for 
symmetric-key ciphers, there is the problem of transmitting the key. A digital 
envelope provides a solution to this dilemma. The sender encrypts the message using 
a symmetric-key encryption algorithm, then encrypts the symmetric key using the 
recipient’s public key. The recipient then decrypts the symmetric key using the 
appropriate private key and decrypts the message with the symmetric key. In this 
way, a fast encryption method processes large amounts of data, yet secret information 
is never transmitted unencrypted.
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Figure 2-10 Digital Envelope

Authentication and Digital Signatures
Suppose Alice and Bob are disputing a contract. Alice says that Bob must uphold 
certain obligations because he agreed to them in a contract. Bob says that this is not 
the contract he signed. He offers as evidence his copy of the contract and sure enough, 
it differs from Alice’s. One of them has altered their copy of the contract, but who? Or 
maybe the dispute centers on Bob’s assertion that he never signed a contract, that the 
signature at the bottom is not his. In that case, either Bob is not telling the truth or 
Alice forged his signature.

If the contract was signed physically, there are ways to determine the truth. Contracts 
are often filed with government agencies, so comparing Bob’s and Alice’s copies with 
the third party’s copy reveals who made alterations. Witnesses may also sign the 
contract and later testify that both parties did sign it, and the signatures are not 
forgeries. For electronic documents, there is also a method to determine if a document 
has been altered or if someone truly did sign it. This method is the digital signature.

There are two types of signature algorithms. The first is a public-key cryptosystem 
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that can perform block encryption, while the second is only capable of digital 
signatures. The RSA algorithm is an example of the first type. The Digital Signature 
Algorithm, DSA, is an example of an algorithm of the second type. Crypto-C includes 
the RSA and DSA signature methods.

A digital signature uses a public/private key pair to sign a document. First the signer 
digests the document, as described in “Message Digests” on page 46, then encrypts it 
with their private key. A good digital signature algorithm possesses the following 
properties:

• Only the owner of a private/public key pair can generate a signature. Knowledge 
of the public key does not enable anyone else to forge a signature.

• Knowledge of the public key enables anyone to verify the signature.

• The digital signature guarantees the authenticity of the message and its author.

The digital signature is computationally unique for each message and signer. 
While a normal signature can be imitated, a digital signature is immune to 
imitation.

• Any altering of the message renders the signature invalid.

Note: If a digital signature is invalid, you cannot be sure it was a deliberate forgery. 
Transmission errors will also produce errors in a digital signature.

For example, to create a digital signature on a contract:

1. Alice and Bob compose a contract in digital format. The file can be in any form, 
such as a word processing file or an ASCII file. 

2. Each party digests the file and encrypts the digest with their private key. 
3. That encrypted digest is their digital signature.
4. The contract now consists of the file and the two copies of the encrypted digest, 

one using Alice’s private key, the other using Bob’s private key. Everyone gets 
copies of this contract. 

The digital signature can be used to verify the data at a later time. Suppose that Bob 
produces a file that is different from Alice’s. To discover which copy has been altered:

1. Digest the new copy.
2. Decrypt each party’s encrypted digest with the corresponding public key. 
3. Compare the new digest to the old one. 
4. If one of the new digests does not match the old one, that is the altered file. 
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If a file has been altered, it will produce a different digest, because it is virtually 
impossible to produce data that will digest to a given value. Even if someone 
could manipulate the digest, it would be extremely difficult to produce data that 
has value to anyone.

The digital signature can also be used to verify that a message came from a given 
person. What if Bob claims Alice forged his digital signature on the original 
document? He might say her copy of his encrypted digest is not the true version. That 
is very unlikely. To do that, Alice would have had to have encrypted the digest of her 
choice with Bob’s private key, to which she has no access.

The following example shows how to verify a message and its signature. Suppose you 
have the following information:

• a message

• an entity who claims to have sent the message

• a block of data 96 bytes long that purports to be the encrypted digest

To verify the message and the sender:

1. Request the possible sender’s 768-bit (96-byte) RSA public key from a certification 
authority. 

2. Use that public key to decrypt the 96-byte block of data. 
3. If the decryption process results in a 16-byte output, you can say it is a message 

digest. There is a message that will digest to those 16 bytes, but you do not yet 
know what it is. 

4. Digest the message file.
5. If the digest matches the 16 bytes you obtained from decrypting the original 96-

byte block, the message is verified. That is, you can assume the 96-byte block is 
the file’s digest encrypted with the RSA private key associated with the public 
key you used. It would have been computationally infeasible to produce that 96-
byte block any other way.

There are other uses for a digital signature. Suppose that Bob wishes to buy 
something from Alice over the Internet. He emails her a credit card number. Alice can 
easily find out from the credit card issuer that the number she received is valid and 
indeed belongs to Bob. But how does she know that it was Bob who sent the number 
and not someone posing as Bob? She sends the purchaser a randomly generated 
message and asks him to digitally sign it with his private key. She then retrieves his 
public key from a certification authority and verifies the signature. Only the person 
with access to Bob’s private key will be able to generate a digital signature from the 
message she generated in such a way that Bob’s public key will verify it properly. In 
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this way, Alice authenticates Bob’s identity.

Figure 2-11 RSA Digital Signature

Digital Signature Algorithm (DSA)
The Digital Signature Algorithm (DSA) is part of the Digital Signature Standard 
(DSS), published by the National Institute of Standards and Technology (NIST), a 
division of the US Department of Commerce. It is the digital authentication standard 
of the US government. The DSS specifies the Secure Hash Algorithm (SHA1) as the 
message digest to use with DSA when generating a digital signature.

To generate a DSA key pair:

1. Find a prime, p, at least 512 bits long.
2. Find a second prime, q, exactly 160 bits long, that satisfies the property q|(p–1). q 

is called the subprime.
3. Generate a random value, h, the same length as p but less than p. 

4. Compute g = h(p-1)/q mod p. g is called the base.
5. Generate another random value, x, 160 bits long. x is the private value. 

6. Compute the public value: y ≡ gx mod p.

Message
Digest

RSA Private
Encryption

Signature

Private Key

Signature Operation

Original
Message

Message
Digest

Signature
Valid

Original
Message

RSA Public
Decryption

Signature
Not Valid

Public Key

Verification Operation

Signature

YES

NO

EQUAL?
5 8 R S A  B S A F E  C r y p t o - C  U s e r ’s  M a n u a l



Cryptography Overview
Note: The three values p, q, and g above (the prime, subprime, and base, 
respectively) are called the DSA parameters. The parameters are public and 
must be generated before you can sign a message.

To sign a message using DSA:

1. Digest the message using SHA1. This yields a 20-byte (160-bit) digest. 
2. Generate a random value, k, 160 bits long and less than q. 

3. Find the following values:

kinv = k
–1

 mod q

r = (g
k
 mod p) mod q

xr = (x · r) mod q
s = [kinv · (digest + xr)] mod q

4. Output the signature (r,s).

To verify a message:

1. Digest the message using SHA1. 
2. From the signature (r,s), compute:

sinv = s
–1

 mod q
u1 = (digest · sinv) mod q
u2 = (r · sinv) mod q

a = gu
1 mod p

b = yu
2 mod p

v = (a · b mod p) mod q
3. If v = r, the signature is verified. If v ≠ r, the signature is invalid.

The Math
To see that this is indeed the signature, consider the following. We have the values:

y = g
x
 mod p

and

u
2
 = r · sinv mod q

Make the following algebraic substitutions:

a · b mod p = gu
1 · gx·u

2 mod p

= gu
1
 + x·u

2 mod p
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= gdigest·sinv + x·r·sinv mod p

= gsinv(digest + x·r) mod p

= gk mod p

Recall that:

r = (gk mod p) mod q

This means that:

v = (a · b mod p) mod q

   = (gk mod p) mod q
   = r

Digital Certificates
Suppose you own an RSA public/private key pair. You must make your public key 
public, so that others can use it to verify your digital signature or to encrypt session 
keys when creating an RSA envelope. How do you publicize your key?

Probably the best way is to register public keys with a trusted authority. Then, this 
trusted authority can certify that a particular public key belongs to a particular entity. 
Currently, such a public key registration infrastructure exists in the form of digital 
certificates.

A certificate connects an entity to a public key. For instance, it can list an individual’s 
name, address, and public key. When people want to use a person’s public key, they 
look up the certificate associated with that person’s name and address. A certificate 
can contain a wide variety of information on its owner, such as the person’s 
organization or job title. This helps differentiate between people who have the same 
name. The certificate can also contain information on when it was issued or when the 
public key expires.

For a certificate system to work, there need to be individuals or organizations that 
issue and maintain the certificates. These are known as a certificate authorities, or CAs-. 
An individual can request a certificate by presenting a CA with a public key and a 
name and any other identifying information. It is then the CA’s responsibility to 
verify that the entity making the request is indeed the person identified by the 
information or is authorized to be associated with that key. The level of trust users 
place in a CA will depend on the level of verification it performs.

When you ask for an individual’s public key, the CA sends the certificate and signs it 
with the digest of the certificate encrypted with the CA’s private key. To verify that 
the certificate is genuine, you must digest the certificate and decrypt the signature 
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using the CA’s public key. Compare the two results: if they are the same, you have a 
proper certificate.

If the CA you deal with does not have a certificate for the individual in question, that 
CA can communicate with another CA that might have the right certificate. In fact, to 
find a particular certificate, a CA may have to go through a chain of CAs until it finds 
one that possesses the desired certificate.

Names that uniquely distinguish users are necessary for digital certificates to be of 
real use. The CCITT X.500 series of documents offer more discussion regarding 
naming conventions and related topics.

Diffie-Hellman Public Key Agreement
The Diffie-Hellman Public Key Agreement, invented by Whitfield Diffie and Martin 
Hellman in 1976, was the first true public-key algorithm. It provides a method for key 
agreement; that is, it allows two parties to each compute the same secret key without 
exchanging secret information. Diffie-Hellman key agreement does not provide 
encryption or authentication.

The Algorithm
The Diffie-Hellman algorithm is made up of three parts (see Figure 2-12 on page 62):

• Parameter Generation

• Phase 1

• Phase 2
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Figure 2-12 The Diffie-Hellman Key Agreement Protocol

Parameter Generation
A central authority selects a prime number p of length k bytes, and an integer g greater 
than 0 but less than p, called the base. The central authority may optionally select an 
integer l, the private-value length in bits, that satisfies 2

l–1
 ≤ p.

Phase 1
Each of the two parties executing the Diffie-Hellman protocol does the following:

1. Each party, i, i = 1 or 2, randomly generates a private value, which is a number, xi, 
greater than 0 but less than the prime. If the central authority has specified the 

length l, the private value shall satisfy 2
l–1

 ≤ xi < 2
l
.

2. Each party computes a public value yi = gx
i mod p. 

3. The two parties exchange the public values.

Parameters

Bob

Private value

Public value

Bob

Alice

Private value

Public value

Alice

Phase 1

Phase 2

Agreed upon
key

Agreed upon
key

=
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These private and public values correspond to the private and public key components 
of a key pair. The public value is generated in such a way that computing the private 
value from the public number is computationally infeasible.

Phase 2
Each participant computes the agreed-upon secret key, z, using: the other’s public 
value, y', their own private value, x, and the prime, p, as follows: 

z = (y')
x
 mod p.

Even with knowledge of the parameters and both public keys, an outside individual 
will not be able to determine the secret key. You must have one of the private values 
to determine the secret key. This means secret information is never sent over unsecure 
lines.

The Math
Even though the two parties involved are making computations using different 
private values, they will both end up with the same secret key, as illustrated by the 
following.

p: prime
g: base
x

1
: 1st party’s private value

x
2
: 2nd party’s private value

y
1
: 1st party’s public value

y
2
: 2nd party’s public value

z: secret key

In Phase 1, each party computes a private value, x
n
, and a public value, y

n
:

y
1
 = gx1 mod p

y
2
 = gx2 mod p

In Phase 2, the parties trade public values and compute the same secret key:

z = y
2
x

1 mod p

z = y
1
x

2 mod p

They both compute the same z, because:
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y
2
x

1 = (gx
2)x1 = (gx

1)x2 = y
1
x

2 mod p

Security
The security of Diffie-Hellman key agreement relies on the difficulty of computing 
nth roots modulo a prime number. It takes very little time to exponentiate a number 
modulo a prime, but it takes a great deal of time to compute its roots. This problem in 
modular arithmetic is called the discrete logarithm problem. (Recall that, in the real 
numbers, if you can compute the logarithm of a number, you can easily compute all of 
its roots.) The RSA Laboratories publication, Frequently Asked Questions About Today’s 
Cryptography, states, “The best discrete log problems have expected running times 
similar to that of the best factoring algorithms.” That is, the time it takes to compute 
discrete logs modulo a prime of a certain length is approximately equivalent to the 
time it takes to factor a number of that same length. See “The RSA Algorithm” on 
page 50 for a discussion of factoring.

Multiple-Party Key Agreement
The above protocol can be extended to more than two parties. For a multiple-party 
agreement, each individual chooses a private value, then uses the collection of public 
values from other parties to generate a common secret key.

Elliptic Curve Cryptography
Elliptic curves are mathematical constructs that have been studied by mathematicians 
for over 100 years. The application of elliptic curves to cryptosystems is more recent; 
in 1985, Neal Koblitz and Victor Miller independently devised a public-key system 
using a group of points on an elliptic curve.

The core of elliptic curve cryptosystems rests on the difficulty of a particular type of 
calculation. For some public-key algorithms, such as Diffie-Hellman key agreement, 
the security is based in part on the fact that given a modulus n, a number g, and gk 
mod n, it is difficult to determine k. This is called the discrete logarithm problem. 
Elliptic curve cryptosystems rest on a similar problem: given an elliptic curve E and 
two points on the curve, P and Q, such that Q = k · P for some number k, it is difficult 
to determine k. This is called the elliptic curve discrete logarithm problem. (See the next 
section, “Elliptic Curve Parameters”, for a discussion of these terms.) Many 
algorithms that are based on the discrete logarithm problem can be translated to 
analogous algorithms based on the elliptic curve discrete log problem.

Elliptic curves can be used for a variety of public-key cryptosystems. Crypto-C 
supports the following elliptic curve features:
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• Generation of elliptic curve parameters

• Elliptic curve key pair generation

• Elliptic Curve Signature Schemes (ECDSA)

• Elliptic Curve Authenticated Encryption Scheme (ECAES)

• Elliptic Curve Diffie-Hellman key agreement (ECDH)

Crypto-C also allows you to generate precomputed acceleration tables to speed up 
certain elliptic curve operations. For more information, see the example “Public-Key 
Acceleration Table” on page 247.

Elliptic Curve Parameters
A number of parameters are necessary for elliptic curve cryptosystems. These 
parameters must be generated before you generate a key pair, create an acceleration 
table, initiate encryption, or perform key agreement with these systems. You can use 
the same parameters to generate more than one key. These parameters include: 

• the finite field, Fq, over which the elliptic curve is defined

• two elements of Fq, a and b, which define the elliptic curve; a and b are also called 
the coefficients of the curve

• a point P of prime order on the elliptic curve E 

• the order, n, of P 

• the cofactor h = #E(Fq)/n. Here, E(Fq) means the set of points on the elliptic curve 
and #E(Fq) means the number of points in that set. See “The Order of an Elliptic 
Curve” on page 69 for more information

Note: In all discussions of elliptic curves, the upper case letters P and Q are used to 
denote points on an elliptic curve. The lower case letter p is used to denote a 
prime. 

The next section discusses these terms in detail. We will try to give enough of the 
math to give you a feel for what the underlying concepts are without going too deeply 
into the details. A full discussion of elliptic curve cryptography is far beyond the 
scope of this manual. For background on elliptic curves, see the book by J. Silverman 
and J. Tate, Rational Points on Elliptic Curves [20]. For more information on elliptic 
curves in cryptography, see the ANSI X9.62 and X9.63 Draft standards [13], the IEEE 
Standard Specifications for Public-Key Cryptography [14], and A. Menezes book, Elliptic 
Curve Public Key Cryptosystems [19].
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The Finite Field
The elliptic curves used in cryptography are always defined over a finite field, denoted 
Fq. There are two choices for this field:

• An odd prime field, Fp, where p is an odd prime.

• A field of even characteristic, F2m.

For more information about finite fields, see the book by A. Menezes, I. Blake, X. Gao, 
R. Mullin, S. Vanstone, and T. Yaghoobian, Applications of Finite Fields [18] and also 
Chapter 2 of Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone’ s book, 
Handbook of Applied Cryptography [17].

Odd Prime Fields
The odd prime field Fp is simply Zp, the integers mod p. Modular math is described in 
the section “The RSA Algorithm” on page 50. Recall that in modular math, we have 
addition and multiplication, with the additional twist that the numbers loop around, 
so that, for example, p+1 = 1 mod p.

Although you don’t need it to use the cryptosystem, a little background may help. 
Because p is prime, Fp has an interesting property that not all modular math systems 
have: except for 0, every number in Fp has a multiplicative inverse. That is, given any 
number c between 1 and p–1, there is another number d in the same range such that 
cd = 1 mod p. This is the crucial property that distinguishes Fp from other modular 
math systems and makes it a field.

Not all moduli will give you a field. For instance, our earlier example, arithmetic mod 
55, is not a field. You can see this by looking at the number 5 in this system. The first 
ten multiples of 5 are: 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. When we multiply 5 by 11, 
we get 55, which is just 0 mod 55. Now, when we multiply 5 by 12, we just fall back 
down to 60 = 60–55 = 5 mod 55. In fact, no matter what we multiply 5 by, we will just 
get a multiple of 5, which will reduce back down to the ten numbers listed above. 
There is no way we can get to 1 as a multiple of 5 in this particular modular system.

In fact, the only numbers that will give a field in modular arithmetic are the primes. 
So you can see that fields are fairly special. The crucial thing to remember is:

An odd prime field, Fp, is just modular arithmetic, where the modulus p is prime. 

Fields of Even Characteristic
The fields of even characteristic, also known as characteristic 2, are more complicated. If 
you were looking for a field of that size, you might start with the integers mod 2m. 
However, it turns out that integers mod 2m cannot be a field for any m>1.
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Why is this? Remember, we said every element in a field, except 0, has a 
multiplicative inverse. But, for example, 2m–1 cannot be invertible in the integers mod 
2m (except for m = 1). To see this, consider the product 2·2m–1= 2m ≡ 0 mod 2m. If 2m–1 
did have an inverse, I, then we would have:

0 = 0·I

≡ (2·2m–1)·I mod2m

= 2·(2m–1·I)

≡ 2·1 mod 2m

= 2

Instead, we create the field F2m in a completely abstract manner. We start by letting 
the elements of the finite field F2m be the bit strings of bit-length m. Mathematicians 
have shown that it is possible to create an addition and a multiplication that make 
these strings, called m-tuples, into a field. 

Addition is easy to define: to add two strings, just XOR them. This is the same as 
adding them bit by bit, with no carry. Notice that with this field addition rule, for 
every x in F2m, we have that x + x = 0. That is already very different from addition in 
the integers mod 2m. 

Note: If you look closely, you will see that we are trying to create a system where 2 
can equal 0. In fact, it is because of this property — that the number 1 added 
to itself two times gives us 0 — that we say this is a field of “characteristic 2” 
or “even characteristic”. The amazing thing is that not only can this can be 
done, but that we can get something useful out of it.

Multiplication is even more difficult to define. When you multiply two m-tuples, you 
can’t just multiply them bit-by-bit, or else you would never be able to invert any 
string that had a 0 in it somewhere. Instead, multiplication in F2m is a complicated 
operation involving ordinary multiplication and addition of cross terms.

The mathematics underlying the construction of F2m is deep, but it is very well-
understood by mathematicians. For an in-depth discussion of this field, see [18] and 
[17]. 

Elliptic Curve Coefficients
An elliptic curve, E, can be thought of as a particular type of equation. Elliptic curves 
look slightly different in the two different cases.

Coefficients Over an Odd Prime Field
An elliptic curve E over an odd prime field Fp is all the pairs of points (x,y) that satisfy 
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the equation:

y2 = x3 + ax +b

In this equation, x and y are elements of Fp, and so are a and b. The whole equation is 
evaluated over Fp. For computational reasons, there is also a “point at infinity”, Ο, 
that is included as well. 

The numbers a and b are called the coefficients of the elliptic curve; they are part of the 
elliptic curve parameters.

Coefficients Over a Field of Even Characteristic
An elliptic curve E over a field of even characteristic F2m is all the pairs of points (x,y) 
that satisfy the equation:

y2 + xy = x3 + ax2 +b

In this equation, x and y are elements of F2m, and so are a and b. The whole equation is 
evaluated over F2m. For computational reasons, there is also a “point at infinity”, Ο, 
that is included as well.

The numbers a and b are called the coefficients of the elliptic curve; they are part of the 
elliptic curve parameters.

Note: Note that the equation over F2m is different from the equation over Fp. Over 

F2m there is a quadratic term, ax2, instead of the linear term ax in the odd 
prime case, as well as a new cross-term, xy. The differences in the equation 
arise because of the differences in arithmetic between the two types of fields.

The Point P and its Order
Obviously, you can’t create a cryptosystem out of just any equation. The elliptic curve 
equation is important because it has special properties. One of these properties is that 
it is possible to set up an addition system that lets you add one point on the elliptic 
curve to another. The addition is complex and non-obvious, but it is possible to set up 
a system of equations that determine the sum of two points. Adding two points on an 
elliptic curve involves several operations in the underlying field, Fq, including 
multiplications, additions, and the computation of inverses. The complexity of the 
addition is what makes elliptic curve cryptosystems work — if you add a point P to 
itself k times to get kP, there is no known fast way to get k. 

To implement an elliptic curve cryptosystem, we need to specify a point P on our 
curve that has some special properties. To understand these properties, we need some 
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more concepts: the points on a curve, the order of a curve, and the order of a point on 
the curve.

The Points of an Elliptic Curve
For our field, Fq, and our elliptic curve E, determined by a and b, we can consider all 
the pairs (x,y) in Fq that satisfy the elliptic curve equation. Each such pair is called a 
point of the elliptic curve. The collection of all the points that satisfy the equation, 
along with the special point Ο mentioned earlier, is called the points of E over Fq; this 
is written E(Fq).

The Order of an Elliptic Curve
The addition system that makes the points on the elliptic curve into what is called a 
group has a number of properties. The first thing to notice is that there can only be a 
finite number of points on the curve. Even if every possible pair (x,y) were on the 
curve, there would be only p2 or (2m)2 = 22m possibilities. The total number of points, 
including the point Ο, is called the order of the elliptic curve. The order is written as 
#E(Fq).

The special point Ο  plays the role of the additive identity, zero, in the group of the 
elliptic curve.

The Order of a Point
Given any point on the curve, P, the addition rule lets you add that point to itself. 
Then you can add your new point to the old point, and so on. When you add a point 
to itself a number of times, it is called scalar multiplication. Although this is not 
multiplication in the usual sense — it is an iteration of point addition k times — it still 
has the usual math properties like commutativity and associativity over addition. 
Adding a point P to itself k times gives another point denoted kP.

No matter what P is, there is always some n such that nP = Ο. The smallest n that 
works for a given P is called the order of P. Not only does n exist, but it is always true 
that n evenly divides the order of the elliptic curve, #E(Fq).

The order n of P is important because it means that when we use P as the starting 
point of our calculations, we can apply the rules of arithmetic modulo n. That is, we 
have the following important fact:

r = r ’ mod n if and only if rP = r ’P

A Point of Prime Order
Now we have those concepts, we can go on to the next parameter. Given our elliptic 
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curve, E, defined over our finite field, Fq, we want to fix a special point that will be 
used to mask the private key in a public/private key pair. The properties of P are 
important to the security of our system. Not just any point will do: we need a point P 
whose order n is prime; the larger the prime, the more secure the cryptosystem.

Remember, P is of the form P = (x,y) where x and y satisfy the elliptic curve equation. 
To show that x and y are specific to P, we usually write them as xP and yP. Therefore, 
the special point P gives us two parameters:

• A point P = (xP,yP) of prime order

• The order n of P 

P is sometimes called the base point.

The Cofactor
We mentioned above that the prime number n that is the order of P must evenly 
divide the order of the elliptic curve. That is, we know that the number h = #E(Fq)/n is 
an integer. We call h the cofactor, and set it as our last parameter:

• The cofactor h = #E(Fq)/n

Summary of Elliptic Curve Terminology
Table 2-2 lists the elliptic curve parameters and gives a short description of each 
parameter. For a brief description, see above; for a detailed discussion, see [13], [14], 
and [19] in the list of references.

Table 2-2 Elliptic Curve Parameters

Notation Name Description

Fq base field Either:

Fp : {0,1,...,p–1} with arithmetic mod p
or
F2m : strings of m bits. Addition is bitwise XOR, 
multiplication exists, but has no quick description 

a, b coefficients of the curve a and b are elements of Fq. They determine an 
equation, which depends on the base field:

For Fp:y2 = x3 + ax +b

For F2m:y2 + xy = x3 + ax2 +b
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Representing Fields of Even Characteristic
For fields of even characteristic (fields of the form F2m), Crypto-C allows you to choose 
how you want the field to be represented. The representation you choose is internal to 
Crypto-C and affects how field arithmetic is performed. The choice of representation 
is also one of the formal elliptic curve parameters that must be transmitted along with 
the public key. Some representations lead to more efficient implementations in 
hardware or software.

When we talk about representations of F2m, we use the term basis to reflect the original 
mathematics underlying the construction of F2m. From our point of view, it is most 
important to know that a different basis corresponds to a different representation in 
Crypto-C. Crypto-C offers two types of representation for fields of even characteristic:

• Polynomial basis: this representation closely reflects how the field was originally 
constructed by mathematicians. Every field of even characteristic has a 
polynomial basis representation.

• Optimal normal basis (ONB): this representation is constructed to optimize certain 
multiplicative operations. Not all fields have an ONB representation; it can be 
constructed only for certain values of m. 

The difference in the choice of basis shows up most clearly in how multiplication is 
defined. For example, for any polynomial basis representation, the multiplicative 
identity is represented as (000…01). For any optimal normal basis, the multiplicative 
identity is (111…11). 

Note: Although arithmetic looks different when you choose a different 
representation, the field is still the same. Just as you can represent “normal” 

P point of prime order
or
base point

(xP,yP)

The pair xP, yP satisfies the curve equation.

n order of P The smallest nonzero number such that P added 
to itself n times is the zero point, Ο, on the curve.

n is prime.

h cofactor The order of the curve divided by the order of P:

#E(Fq)/n

Table 2-2 Elliptic Curve Parameters

Notation Name Description
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arithmetic using a hexadecimal or a decimal system, you can represent F2m in 
more than one way. 

Elliptic Curve Key Pair Generation
Elliptic curve parameters can be used to generate a public/private key pair. Elliptic 
curve parameters can either be common to several key pairs or specific to one key 
pair. The elliptic curve parameters can be public; the security of the system does not 
rely on these parameters being secret. 

Creating the Key Pair
To compute a public/private key pair:

1. Generate a random value, d, between 1 and n–1. 
2. Compute the elliptic curve point dP, that is, P added to itself d times. Call this 

point Q; it is a pair of field elements (xQ,yQ). 

The key pair is (Q,d): Q is the public key, d is the private key. As mentioned above, 
even if you know P and Q, you cannot easily calculate d.

ECDSA Signature Scheme
Once you have generated elliptic curve parameters and created a public/private key 
pair, you can use this information to create an elliptic curve analogue of the Digital 
Signature Algorithm (DSA). 

Signing a Message
The holder of the private key can sign a message as follows:

1. Digest the outgoing message using SHA1. This yields a 20-byte (160-bit) digest, e.
2. Compute a random value, k, between 1 and n–1.
3. Compute the elliptic curve point kP = (x1,y1).

4. Currently, the first coordinate, x1, is an element of the finite field. To perform 

further calculations, we must convert x1 to an integer, called . We do this as 

follows:

x1
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For Fp, x1 is an integer α in the range 0 to p–1. Let = α. (Essentially, no 

conversion is required.)

For F2m, x1 is a bit string of length m bits: s1s2...sm. Because F2m has a very strange 
arithmetic, we need a way to think of its elements as integers. To do this, let the 

integer  be a weighted sum of the bits of x1:

In either case, once you have calculated  , set r =  .

Note: Although this lets you take a member of the field F2m and represent it as an 
integer, it has some limitations. If you perform any arithmetic operations on 

, you will be using regular arithmetic. This is so different from arithmetic in 

F2m that, for example, . However, if you convert two field 

elements and perform operations on them that show they are equal after 
conversion, then they were equal before conversion.

5. Compute s = k–1(e+dr) mod n. Again, you must check that s is nonzero.

The signature for this message is the pair r and s. Notice that, as with DSA, the 
signature depends on both the message and the private key. This means no one can 
substitute a different message for the same signature.

Note: The above equation is merely an outline. For cryptographic purposes, it is 
necessary to verify that certain numbers are nonzero, or that they satisfy other 
conditions. Crypto-C makes the appropriate verifications when it generates 
your key pair.

Verifying a Signature
When a message is received, the recipient can verify the signature using the received 
signature values and the signer’s public key, Q. Because the pair (r,s) that has been 
received may not actually be a valid signature pair, it is customary to call the received 
pair (r’,s’) instead.

To verify a signature:

x1

x1

x1 2 m i–( ) si⋅

i 1=

m

∑=

x1 x1

x1

x1 x2+ x1 x2+≠
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1. First verify that r’ and s’ are between 1 and n-1. If they are not, the output is 
invalid.

2. Digest the received message using SHA1. This yields a 20-byte (160-bit) digest, e.

3. Compute c = (s’)-1. Remember, s’ is an integer mod n, so its inverse is also an 
integer mod n.

4. Compute u1 = ec mod n and u2 = r’c mod n.

5. Compute the elliptic curve point (x1,y1) = u1P +u2Q.

6. Convert x1 to an integer, . See Step 5 on page 73 for details.

7. Compute v =  mod n

If v = r’, the signature is verified. If they are different, the signature is invalid.

The Math
The ECDSA algorithm depends in part on the fact that if r = r’ mod n, then rP = r’P. 
(See “The Point P and its Order” on page 68.)

The following calculations are really just a series of substitutions that can be made by 
looking back at the definition. You may find it more convincing to go through the 
substitution steps yourself, by glancing back at the sections “Creating the Key Pair”, 
“Signing a Message”, and “Verifying a Signature” immediately above. 

If the message has been signed correctly, then s = s’. Expanding the elliptic curve 
point (x1,y1) = u1P +u2Q calculated by the recipient, we see that:

u1P +u2Q = es–1P + rs-1Q 

=s–1(eP + rQ)

Recall that Q = dP, so:

u1P +u2Q = s–1(eP + rQ)

= s–1(eP + rdP)

= s–1(e + rd)P

= s–1(e + dr)P

Now recall that s = k–1(e+dr) mod n, so:

u1P +u2Q = s–1(e + dr)P

= [k–1(e+dr)]-1(e + dr)P

x1

x1
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= (k–1)–1(e+dr)–1(e+dr)P
= kP

This is the point calculated by the recipient. But this is also the point generated by the 
sender. The recipient then checks that the x-coordinate of the calculated point is in fact 
the x-coordinate that was received.

Elliptic Curve Authenticated Encryption Scheme 
(ECAES)
You can use elliptic curves to create an authenticated encryption scheme with a 
public/private key pair. 

As always with elliptic curves, we assume that the elliptic curve parameters have 
been defined in advance. Suppose Bob has a key pair based on these parameters. The 
pair is (Q,k2), where Q = k2P, where P is the base point of prime order specified in the 
elliptic curve parameters. The point Q is the public value and the number k2 is the 
private value.

Encrypting a Message Using the Public Key
Anyone who wishes to send Bob an encrypted message can do so using the elliptic 
curve parameters and Q. To encrypt a message M, where the length (in bytes) of the 
message is f, another party follows these steps:

1. Compute a random value, k1, between 1 and n – 1.

2. Compute the elliptic curve point Q1 = k1P. This will be transmitted along with the 
encrypted message.

3. Compute the elliptic curve point S1 = k1Q. S1 is a pair (x1,y1). This is the secret 
information the sender uses to encode the message.

4. Compute a one time pad, otp, of length f, from x1 using a key derivation function 
(KDF). otp is a concatenation of a series of hashes; it is constructed using f, x1, and 
SHA1. otp is described below. The description uses the following notation: (1) || 
denotes the concatenation of two numbers, (2) for a number a, [a] denotes the 
integer part of a. In particular, [f/160] denotes the integer part of f/160.
a. Initiate a 32-bit, big-endian bit string counter. In hex, counter is intialized to 

0000000116.

b. For i = 1 to [f/160], create a series of hashes, as follows:
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Compute Hashi = SHA1(x1 ||  counter), that is, the SHA1 hash of the 
concatentation of x1 and counter.

Increment counter.
Increment i.

c. We want the length of the pad to be exactly the same as the length, f, of the 
message M. If f/160 is not an integer, we need to truncate the last hash to 
make the lengths equal. Therefore, we define Hash’[f/160] as follows:

d. Set otp to be the concatenation of the series of hashes:

otp = Hash1 || Hash2 ||…|| Hash[f/160]-1 || Hash’[f/160]

5. Compute M’ = otp XOR M. 

6. Compute an authentication tag, tag = SHA1 (x1 || M’). That is, tag is the SHA1 
hash of concatenation of the x-coordinate of the secret point k1Q and the message 
M’. Since tag is an SHA1 hash, tag is 20 bytes long.

7. Transmit the ciphertext c = (Q1,M’,tag). The total length of c in bytes is: 21+2 · (the 
length of a field element in bytes) + f.

Decrypting a Message Using the Private Key
A message that has been encrypted as above can be decrypted using the private key, 
as follows:

1. Parse the received ciphertext c = (Q1,M’,tag) into its components, Q1, M’, and tag.

2. Use the private key k2 to compute the elliptic curve point S2 = k2Q1. S2 is a pair 
(x2,y2). If the message was transmitted correctly and encoded with the correct 
public key, S2 is equal to S1.

3.  To verify that S2 is equal to S1, compute tag' = SHA1 (x2 || M'). If tag'  is different 
from tag, output an error and stop.

4. Compute a one time pad, otp’, of length f, from x2 using the key derivation 
function outlined in Step 4 on page 75. Use x2 instead of x1. Since x1 = x2, 
otp’ = otp.

Hash’[f/160] = { Hash[f/160] if f/160 is an integer

the [f/160] – (160 × [f/160]) 
leftmost bits of Hash[f/160]

if f/160 is not an integer
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5. Compute M = otp XOR M’.

Elliptic Curve Diffie-Hellman Key Agreement
It is possible to construct a version of the Diffie-Hellman key agreement that uses 
elliptic curves. (For more information on Diffie-Hellman key agreement, see “Diffie-
Hellman Public Key Agreement” on page 61.) Like Diffie-Hellman, EC Diffie-
Hellman provides for key agreement, but not encryption or authentication.

The elliptic curve Diffie-Hellman key agreement algorithm provides a method for two 
parties to each compute the same secret key without exchanging secret information. 
The algorithm is made up of two parts: Phase 1 and Phase 2. Before they begin, the 
two parties must agree on the elliptic curve parameters: a base field, an elliptic curve 
over the base field, and point P of prime order, along with its order n. See the section 
“Elliptic Curve Parameters” on page 65 for details.

Phase 1
The first party randomly generates a private value, a number k1, greater than 0 but 
less than n. Similarly, the second party generates a random private value, k2.

Each party then computes a public value. To do this, they each compute Ri = kiP. For 
each party, this is an elliptic curve point. The two parties exchange their public values.

These private and public values correspond to the private and public key components 
of a key pair. The public value is generated in such a way that computing the private 
value from the public value is computationally infeasible.

Phase 2
Each participant computes the agreed-upon secret key, z, from the other’s public 
value, Rj, and their own private value, ki. The parties compute kiRj to get the elliptic 
curve point S. This is a pair, (xS,yS). They then use the first coordinate of S, xS, as their 
secret value.

Even with knowledge of the parameters and both public keys, an outside individual 
will not be able to determine the secret key. One must have one of the private values 
to determine the secret key. This means secret information is never sent over unsecure 
lines.
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Figure 2-13 Elliptic Curve Diffie-Hellman Key Agreement

The Math
Even though the two parties involved are making computations using different 
private values, they will both end up with the same secret key, as illustrated by the 
following.

P: point on the elliptic curve
k1: 1st party’s private value
k2: 2nd party’s private value
R1: 1st party’s public value
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R2: 2nd party’s public value
xS: secret key

In phase 1, each party computes a private value, ki, and then a public value, Ri:

R1 = k1P

R2 = k2P

In phase 2, the parties trade public values and compute the same elliptic curve point 
S:

S = k1R2 = k1k2P

S = k2R1 = k2k1P

The first coordinate of S, xS, is their agreed-upon secret key. 

Secret Sharing
Secret sharing, also known as a threshold scheme, takes a message or other data and 
divides it up into pieces in such a way that while each piece means nothing 
individually, some or all of the pieces can be assembled to retrieve the secret. 
Typically, the secret is a key used for encrypting sensitive data.

A good secret-sharing algorithm allows an application to share the secret among a 
variable number of shares. It should also be possible to set how many of the shares are 
needed to recover the secret. That is, if the total number of shares is N, you should be 
able to decide in advance that any K of them can recover the secret. The number K, the 
required number of shares, is known as the threshold. 

With secret sharing, access can be split among several individuals, with 
reconstruction requiring a threshold number of shares. In this way, if one or more of 
the individuals are not available, it is still possible to recover the data. In addition, 
secret sharing contains some level of checks and balances: no one can recover data 
without at least one other individual knowing about it.

The algorithm used in Crypto-C is Bloom-Shamir secret sharing.

Figure 2-14 and Figure 2-15 show the schema for secret sharing and recovery.
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Figure 2-14 Secret Sharing — Key Share Assignment

Figure 2-15 Secret Sharing — Full Key Generation From Shares

Working with Keys

Key Generation
The techniques for generating public/private key pairs and symmetric keys are quite 
different. Symmetric-key algorithms generally require an arbitrary random-byte 
sequence, while a public/private key pair must satisfy a mathematical formula. Key 
generation depends on the availability of a good random number generator, and the 
security of a random number generator depends on the seed. See “Pseudo-Random 
Numbers and Seed Generation” on page 92 for more information.
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Key Management
The term key management refers to the collection of processes and methods for 
assigning the right keys to communication sessions, providing the right keys to the 
right persons, and making sure unauthorized personnel cannot gain access to keys. 
Key management is the most difficult security problem. To manage keys properly, an 
application must address the following issues.

• Generating keys

• Choosing appropriate values for the keys

• Guarding the privacy of keys transmitted between nodes

• Verifying the authenticity of keys transmitted between nodes

• Using keys in a software environment in an open system

• Keeping backup keys

• Dealing with compromised keys

• Destroying old keys

• Changing keys

Often, the bulk of a security application’s focus will be on key management. Crypto-C 
provides a rich suite of cryptographically secure algorithms, but it is up to the 
application designer to carefully consider how to manage the keys.

Key Escrow
Key escrow allows a designated authority or authorities to recover keys belonging to 
someone else. This can be a desirable feature when users lose access to their keys 
because they leave an organization or simply forget a password. Key escrow can be 
implemented through secret sharing or by encrypting keys with a security officer’s 
RSA public key and storing the encrypted copy. To recover the escrowed key, you 
must either assemble the necessary shares or have the security officer decrypt the 
encrypted key using the appropriate RSA private key.

Key escrow is never automatic with Crypto-C. There is no Crypto-C encryption 
method that offers key escrow as part of the algorithm; the developer must make key 
escrow part of the application. Crypto-C offers the techniques to implement key 
escrow, but it is the developer’s responsibility to decide whether it will be part of the 
application, and if so, how it will be executed.
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ASCII Encoding and Decoding
ASCII encoding and decoding is required when you need to send encrypted or signed 
data using communication protocols that allow transmission of printable characters 
only. In this case, the application must convert the encrypted 8-bit values to a string of 
printable characters. Crypto-C uses the Internet RFC1113 method for implementing 
ASCII-encoding. The Internet Draft RFC1113 is a publication that describes this 
system.
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Applications of Cryptography
Crypto-C offers application developers the tools to add privacy and authentication 
features to software and hardware systems. This section discusses a number of areas 
where such features are useful.

Historically, privacy has been the main use of cryptographic techniques. In these 
applications, cryptography is used to hide critical information from eavesdroppers or 
unauthorized personnel. Crypto-C provides algorithms and methods for encrypting 
data in a variety of applications.

Authentication is a cornerstone of the forever-pursued paperless office. Authentication 
enables users to prove authenticity and authorship of messages and non-tampering of 
data.

Cryptography can be useful in any of the following situations:

• Local applications, to control access and prevent tampering.

• Point-to-point applications, to protect the privacy of communications.

• Client-server applications, to control access and provide authentication.

• Peer-to-peer applications, to protect privacy between nodes.

Local Applications
One of the most basic applications of cryptography is local file encryption. There are 
many reasons why one would find it useful to encrypt files even if they are not being 
transmitted. For example, you can use cryptographic techniques to:

• Save files in encrypted form to protect against unauthorized access.

• Ensure file integrity and protect against tampering. Cryptographic techniques can 
be used to guarantee that only authorized personnel can modify or install certain 
files.

• Archive important data so that it can be accessed only by authorized personnel.

• Protect intellectual property.

Point-To-Point Applications
Applications that require establishing a secure link between two nodes are very 
common and may have different topologies. However, their similarities allow them to 
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be treated in a comparable manner. Secure point-to-point communication is needed if: 

• Communication takes place between exactly two nodes.

• The primary security consideration is to allow the two nodes to communicate 
privately and to prevent others from eavesdropping on the traffic.

Here are some applications that require secure point-to-point data communication:

• Computer hardware links connecting two nodes

• Satellite or cellular communications

• A single transaction between two nodes in a larger network

Here is a typical scenario for implementing applications in this class, using key 
agreement with stream-cipher encryption.

1. Compute the Diffie-Hellman parameters for both nodes. This must be done before 
a communication session is established. When a link is requested, the parameters 
should be waiting for the nodes. 
A new Diffie-Hellman parameter set is not necessary each time you generate a 
session key; it is safe to use one set of Diffie-Hellman parameters for many key-
agreement sessions. In addition, either of the nodes can generate the parameters 
and transmit the values over any channel.

2. Establish an agreed-upon secret value using Phase 1 and Phase 2 of the Diffie-
Hellman key-agreement protocol. See “Diffie-Hellman Public Key Agreement” on 
page 61 for an overview of this process.

3. Compute an RC4 key for the session using the agreed-upon secret value. The RC4 
key may be shorter than a Diffie-Hellman secret value. The application must 
determine the procedure for extracting the required bits. A single Diffie-Hellman 
agreement may also be used to generate multiple RC4 keys.

4. Perform the encryption and decryption using RC4 with the established key. If the 
application requires multiple session keys, use a message digest on the agreed-
upon secret value and a counter to generate a new key.

There is an attack against this kind of protocol known as “man-in-the-middle.” 
Someone could intercept all messages between the two parties and pose as each 
individual’s other participant. For example, if Alice wants to communicate with Bob, 
she sends a message to initiate a session. The man-in-the-middle intercepts Alice’s 
message, builds a secure session with Alice, and initiates his own session with Bob. 
Now, all messages Alice sends to Bob go through the attacker. The man-in-the-middle 
decrypts Alice’s messages based on the session he created with Alice and saves the 
results to examine later. He then reencrypts the message based on the session he 
created with Bob. If a particular application is vulnerable to such an attack, it is 
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advisable to use a peer-to-peer protocol (see page 86) instead.

Client-Server Applications
A client-server application is distinguished by one central server node that provides 
services to several client nodes. Many client-server applications have a need for 
cryptographic tools. For example:

• Network applications: Any network that connects several computer nodes to one 
central server, such as a local or wide area network, can use cryptography to 
establish secure communications between the clients and the server. The network 
can also employ authentication to guarantee that intruders do not have access to 
the network.

• Database applications: Multiple clients — in this case, database queries — need 
access to a server — the database. To ensure that not all fields in the database are 
accessible to all clients, restricted fields can be encrypted or signed. In addition, 
by distributing secret shares among authorized personnel, you can ensure that 
very sensitive data can be accessed only according to the security rules.

• Cryptographic smart cards: Here, you must authenticate users to service providers 
such as banks. A smart card holds the individual private keys and includes a 
processor that runs the cryptographic algorithms needed to achieve the 
appropriate authentication level.

In all these applications, the server generates a public/private key pair for use with all 
clients requiring secure communications. The server uses the private key to sign 
digital certificates for all nodes that require access to the server and its resources.

It also starts a public key table to register client RSA public keys. Each client computes 
an RSA public/private key pair when it is first established as a secure client. The 
public key is communicated to the server and an entry is made in the table maintained 
by the server for the public keys. 

As an alternative, the server can certify the public keys of the client nodes by 
generating a digital certificate to be signed by the server’s private key. In this case, the 
server only trusts messages from previously-certified keys. There is no table to 
maintain because the digital certificate can be used to verify the identity of a node 
each time a connection or request is needed.

There are two approaches to establishing a link between a client and the server.

In the first approach, the server and a client determine a session key using a Diffie-
Hellman key agreement protocol. The Diffie-Hellman parameters are established 
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once at the initial setup of the server, and communicated publicly to each client when 
a secure connection is requested. The session key is used for bulk-data encryption; the 
established client RSA key pair is used for authentication or for envelope 
communications. Any block or stream cipher can be used for encryption with the 
session key. For stream ciphers, a new key should be computed for each session; this 
prevents attacks that compare blocks of data encrypted with the same key.

In the second approach, the server uses the client’s RSA public key (contained in the 
digital certificate) to generate a digital envelope for the encrypted data sent from the 
server to the client. Likewise, the client uses the server’s public key (known to all 
nodes) to create a digital envelope. In addition, each message contains digital 
signatures to authenticate the originator.

Peer-To-Peer Applications
Unlike a client-server application, a peer-to-peer network application provides each 
node with access to any other node in the network. For example, users may wish to 
communicate privately with other known or unknown users through secure email. In 
the peer-to-peer situation, there is no single node capable of authenticating other 
client nodes.

Digital signatures can be used to provide proof of authorship to any recipient. Each 
node must generate its public/private key pair and obtain a digital certificate from 
some approved central authority. VeriSign can provide details about how to obtain a 
digital certificate.

Each message between any two or more nodes can be authenticated by attaching the 
originator’s digital certificate to the message. The recipient can verify the authenticity 
of the message and the originator by verifying the validity of the certificate.

Nodes on peer-to-peer applications can encrypt using digital envelopes. To do so, the 
sender obtains the digital certificate of each recipient and extracts the public key.
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In some cases, an application’s constraints determine the algorithm. In other cases, the 
developer can choose among a number of options and still produce a viable solution. 
This section presents suggestions to help you determine the best choice.

Public-Key vs. Symmetric-Key Cryptography
Because symmetric-key encryption algorithms are much faster than public-key 
algorithms, they are most suited for bulk data encryption.

Public-key encryption should not be used for encrypting large amounts of data. It is 
best used to encrypt keys for either a digital envelope method or for key escrow 
applications.

Stream vs. Block Symmetric-Key Algorithms
Crypto-C has only one stream encryption algorithm, RC4. RC4 produces an 
encrypted output the same size as the original input message and is significantly 
faster than block-encryption algorithms. However, once a key has been used to 
encrypt a particular message, it should not be used again. Hence, employing RC4 
requires using many keys. If managing many keys is difficult, RC4 may not provide 
the easiest solution.

Some applications do not save keys outside of the session. For these applications, RC4 
will generally be a good choice. For instance, in encrypted phone conversations, the 
symmetric key is a session key. It encrypts for one call; once the session is over, the 
key is discarded. Another example would be an email application where the session 
key is encrypted with an RSA public key and is a part of the data package. 

RC4 has a variable length key. If you set the key to be long enough, RC4 offers greater 
security than DES. The key can also be set to a level low enough to obtain export 
approval.

Block-encryption algorithms are best used for applications that require repeated 
encryptions without changing the value of the key. In addition, DES is a standard 
used by many applications. If an application must be able to communicate with other 
applications, DES is a safe choice for universal support.
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Block Symmetric-Key Algorithms
The following considerations may help when choosing between DES, DESX, Triple 
DES, RC2, and RC5 block algorithms.

DES is a standard algorithm in use by many applications. Using DES ensures wide-
spread connectivity. However, DES is limited to an effective key size of 56 bits. The 
cryptography community expects that, because of the continued increase in 
computing power, within a few years, DES will not be strong enough to withstand 
attacks. Triple DES is gaining in acceptance as a substitute for DES to counter this 
problem. 

DESX is viewed as a cheap and secure alternative to Triple DES.

RC2 is faster in software than DES and Triple DES and has gained momentum in the 
marketplace, although it is not as widely implemented as DES. In addition, RC2 
employs a variable key size, which allows you to increase the security beyond that 
supplied by DES or Triple DES, or to decrease security to the level necessary to obtain 
export permission.

RC5 is even faster than RC2; its speed and security can be increased or decreased 
through the word size, rounds, and key length parameters. It is a new algorithm, so 
does not have a history of withstanding attacks and analysis. Although the early 
reports are that it is just as secure, if not more so, than RC2, some developers may shy 
away from using it because of its youth.

If communication with other applications is not an issue, RC2 and RC5 offer greater 
security and are much faster in software than DES. RC2 is exportable, and RC5 is 
likely to receive export permission as well.

Key Agreement vs. Digital Envelopes
Both key agreement and digital envelopes allow two nodes communicating over an 
unsecure medium to establish a secret symmetric-encryption key.

Key agreement is easier and faster when the two nodes are in current contact, such as 
in a phone conversation. Crypto-C employs the Diffie-Hellman key agreement 
algorithm and the implementation requires an interactive session.

Digital envelopes are more convenient when the contact between nodes is not 
interactive, such as email. One node can send a message to another without waiting 
for the other node to respond. 

To thwart man-in-the-middle attacks, authentication by digital signatures should be 
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built into any communication system.

Secret Sharing and Key Escrow
Also known as emergency access, secret sharing and key escrow both allow for 
recovery of keys by parties other than the owner. Without some form of emergency 
access, data that is encrypted using a session key that is itself protected by password-
based encryption is inaccessible or even lost if the owner forgets the password or is 
unavailable.

To enable recovery using key escrow, you can encrypt all session keys with a security 
officer’s RSA public key. Any time access is required, the officer can decrypt the 
session key with the appropriate RSA private key. This method is the easiest to 
implement and execute. However, it requires trust in the security officer not to abuse 
this power, and it requires that a single individual be available.

With secret sharing, access can be split among several individuals, with 
reconstruction requiring a threshold number of shares. In this way, if one or more of 
the individuals are not available, it is still possible to recover the data. In addition, 
secret sharing contains some level of checks and balances: no one can recover data 
without at least one other individual knowing about it.

Elliptic Curve Algorithms
Elliptic curve cryptosystems have recently come into strong consideration, 
particularly by standards developers, as alternatives to established standard 
cryptosystems such as the RSA cryptosystem, Diffie-Hellman, and DSS. Elliptic curve 
cryptosystems have a number of interesting properties, which may make them 
appropriate tools for meeting security requirements in some cases, and not in others. 

From a cryptographic perspective, the primary motivation for development of elliptic 
curve cryptosystems is that they are based on a different hard mathematical problem 
than established systems, and appear to have a reasonable expectation of security, 
without significant additional cost. In particular, in certain applications, elliptic curve 
cryptosystems can provide security where other systems currently do not fit. 
However, the range of applications where they make a significant difference is 
limited. In typical applications of cryptography, public-key operations are employed 
in combination with other techniques. In particular, public-key operations often 
represent only a minor overhead in the total processing, whether in storage or in 
computation time. A “faster” or “smaller” public-key technique thus may have little 
overall impact in many applications. 
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Elliptic curve cryptosystems have, at this point, relatively fewer cryptanalytic results 
than established systems. It could be that the systems are stronger, or it could be that 
they are just not that well understood. In either case, this is an observation that calls 
for further study.

In conclusion, RSA Data Security, Inc., is currently recommending that elliptic curve 
cryptosystems continue to be studied as additional tools in the public-key repertoire, 
and that they be considered as near-term solutions in the particular cases where the 
alternative would be to have no security at all. 

For more information about elliptic curve cryptosystems, see the RSA Laboratories 
technical note, Recommendations on Elliptic Curve Cryptosystems, at http://
www.rsa.com/ecc/html/recommendations.html.

Interoperability
Elliptic curve public-key methods can be constructed in a number of ways. 
Parameters can be chosen over odd prime fields or fields of even characteristic. The 
underlying mathematics of these implementations is different enough that a 
successful implementation of only one of these approaches could not handle another 
implementation. In essence, this means that one could build two different 
cryptosystems, both using elliptic curve cryptography, but unable to interoperate 
with each other.

The two main interoperability issues for elliptic curve cryptosystems are:

• the choice of finite field over which the elliptic curve is defined

• the representation of elements in the finite field. 

There are two types of finite fields: finite fields with p elements, where p is an odd 
prime, denoted Fp, and called “odd prime fields,” and a finite field with 2m elements 
for some integer m, denoted Fm, and called “even characteristic.” It is not possible to 
convert between the two types of finite field, so the choice of finite field is critical to 
interoperability.

The even characteristic implementations offer greater gains in hardware 
implementation. However, the odd prime implementations can use the same special-
purpose circuitry that is available for implementations such as RSA. This can make 
the odd characteristic a better choice for situations where RSA hardware is already in 
place, or where a hardware developer wants to be able to provide a platform that 
supports both RSA and elliptic curve encryption.

For the even characteristic finite field, F2m, there is also a choice of representation. For 
these fields, elements can be represented using a polynomial basis, a normal basis, or 
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some other basis. For some values of m, elements can also be represented in an 
optimal normal basis, which is generally more efficient than an ordinary normal basis. 
In order for systems that use different bases to communicate, they need to convert 
from one representation to another. Each representation has advantages and 
disadvantages, including efficiency and potential patent coverage, so in current 
elliptic curve standards the choice is typically left to the implementation.

Elliptic Curve Standards
The elliptic curve algorithms in Crypto-C are based on a number of draft standards. 
Several standards bodies are already working on various elliptic curve cryptographic 
standards. These include the IEEE P1363, the ANSI X9 Financial Standards, and ISO/
IEC SC27. 
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Handling Private Keys
In public-key cryptography, only the owner of a private key can create a digital 
signature or open digital envelopes. However, if someone other than the owner is able 
to obtain the private key, the security fails. To ensure that no one other than the owner 
has access to a private key, it should be stored encrypted, generally with a password-
based encryption method. An application will decrypt the private key when it is 
needed. Always overwrite the memory that held a private key with zeroes or random 
bytes immediately after the key has performed its function.

Operating systems will frequently use the hard disk space as virtual memory and so 
an unencrypted private key may, through no intention of a user, end up on a hard 
disk. Hence, for key buffers, an application should use the operating system’s 
mechanisms that ensure allocation of core memory, and not virtual memory.

It is a good idea to generate new public/private key pairs every so often to thwart 
long-term factoring attacks. Material encrypted using the old key pair should be re-
encrypted with the new. However, an application may not have access to all material 
protected by an old key pair, so it may be necessary to retain old key pairs in a secure 
environment.

Temporary Buffers
Even though a temporary buffer may not contain a private key, it still may hold 
sensitive data, such as a message to be encrypted or a symmetric key. Such temporary 
buffers require the same security as private-key buffers. After using the data, 
overwrite the buffer with zeroes or random bytes. Make sure the operating system 
uses core memory and not hard disk virtual memory.

Pseudo-Random Numbers and Seed Generation
Crypto-C uses pseudo-random number algorithms for generating both symmetric 
keys and public/private key pairs. The random number generation algorithms are the 
same as the message digest algorithms, and are verified to have very high degree of 
randomness.

Any method that is employed to generate random values begins with a random seed. 
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The security issue then becomes one of making sure that an attacker cannot determine 
the seed. Generally, any random number generator will produce pseudo-random 
numbers, given any seed. Therefore, to generate random number, you do not need to 
start with a seed that is itself random. However, the seed should be “unrepeatable.” 
That is, no one should be able to apply some sort of algorithm which can “guess” the 
seed in a reasonable amount of time.

For instance, suppose that a message was encrypted using RC2 with 80 effective key 
bits from 10 bytes of key data, but that the key data was generated using an MD5 
random byte generating algorithm with a 4-byte seed. An attacker could try every 
possible 10-byte key combination to crack the message, or could try every 4-byte seed 
combination to generate 10 bytes of key data. Further, suppose that 4-byte seed was 
the time of day. Now the attacker has an even smaller range of possible seeds to test 
before finding the right one.

The seed should contain at least as many unrepeatable bits as the key. If the seed is 
based on a user’s typing a series of letters and characters on the keyboard, then an 
attacker can predict two or three of the bits in each seed byte. Bit 7, for instance, will 
always be 0. Furthermore, many of the keystrokes can be predicted: they will 
probably be lower-case letters that alternate between the left and right hand. Analysis 
of this issue has determined that there is only one bit of entropy from each keystroke 
(think of the term “entropy” as “unrepeatability”). When using keystrokes, use at 
least one for each bit of key size.

There are other schemes for finding seed bytes, including tracking mouse movements, 
timing keystrokes, “listening” to hardware noise, or capturing machine state 
information. Many schemes will provide more than one bit of entropy per byte of 
seed; however, it is an easy-to-remember rule of thumb to use as many bytes of seed 
data as bits of key.

Whatever the scheme, it may seem unusual to expend more effort to produce a seed 
than it will take to produce the random key data itself. Why not simply use the seed 
data in the key? The strength of cryptography relies on key data that is random or 
pseudo-random. If an attacker knows that the key data is not random, cracking the 
cipher becomes easier. The seed will almost certainly not be random. The 
eavesdropper may not be able to repeat the seed gathering process exactly, but non-
random key data leaves a cipher algorithm as a whole open to various attacks. Hence, 
use a large unrepeatable seed to generate pseudo-random data.

Choosing Passwords
In almost any security application, users are required to have passwords that indicate 
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authorized access to the system. Often, when given a choice, users choose the same 
password for various applications. For instance, they may use their login password to 
encrypt a private key. Many times, users will choose passwords an attacker can easily 
deduce. Therefore, it is a good idea for developers to build good password protocols 
into their applications. The following are a list of possible guidelines in choosing 
passwords.

• Enforce a minimum password length, generally eight characters.

• Inform users to avoid “easy to guess” passwords, such as common names or 
birthday dates.

• Check an entered password against a dictionary.

• Require a combination of numeric, special, and upper- and lower-case alphabetic 
characters.

• Include support for password expiration dates to limit the available searching 
time an attacker has to break into the system.

Initialization Vectors and Salts
Although IVs and salts are not secret information, it is still a good idea to use random 
values. If a salt is not random, an attacker will have much fewer precomputations to 
make in generating keys from possible password/salt combinations.

An IV should also be used for only one message. Using the same IV with the same key 
on two separate messages may provide an attacker with useful information. 

DES Weak Keys
Researchers over the years have found that some DES keys are more susceptible to 
attack than others. Some of these keys are known as “weak,” others, when used in 
pairs, as “semi-weak.” Using a weak key or a semi-weak pair may not necessarily 
pose a security risk; it could depend on the mode of DES. However, it is simply easier 
to avoid these keys (listed in Table 2-3) altogether.

Table 2-3 DES weak and semi-weak keys

0101010101010101

FEFEFEFEFEFEFEFE

1F1F1F1F1F1F1F1F

E0E0E0E0E0E0E0E0
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Stream Ciphers
A stream cipher (such as RC4) will create a stream of pseudo-random bytes based on 
the secret key; this is known as the key stream. To encrypt, you XOR the plaintext 
with the key stream, byte by byte. The XOR operation has the property that the 
ciphertext XORed with the same key stream decrypts, restoring the plaintext. This 
also means that an XOR operation between the plaintext and the ciphertext will 
reproduce the key stream. Hence, knowing or guessing part of the plaintext allows an 
attacker to determine the corresponding part of the key stream. This still will not 
enable the attacker to deduce the entire key or any more of the key stream, but this 
does pose a threat if the same key is used in two different messages. 

The same key always produces the same key stream. Therefore, if two messages use 
the same key, knowing part of the key stream in one message means knowing the 
same part of the key stream in the second message. An attacker can thus determine 
some of the plaintext in the second message. That is why you should never use the 
same stream cipher key twice.

Incidentally, this attack does not work on block ciphers. Knowledge of part of the 
plaintext does not automatically grant to the attacker knowledge of the key.

Another stream cipher attack involves a dictionary of key streams. Suppose you had 
an application you wanted to export and so kept the key size to 40 bits. An attacker 
could create a dictionary of the first eight bytes of the key stream from every possible 
40-bit (5-byte) key. Then, the attacker “decrypts” the first eight bytes of an intercepted 

01FE01FE01FE01FE

1FE01FE00EF10EF1

01E001E001F101F1

1FFE1FFE0EFE0EFE

011F011F010E010E

E0FEE0FEF1FEF1FE

FE01FE01FE01FE01

E01FE01FF10EF10E

E001E001F101F101

FE1FFE1FFE0EFE0E

1F011F010E010E01

FEE0FEE0FEF1FEF1

Table 2-3 DES weak and semi-weak keys
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message with each possible key stream, until one produces a reasonable result. The 
key that generated the stream that worked is the right one.

To thwart this attack, you can implement salting. Design the application to use an 80-
bit (10-byte) key, but send 40 bits in the clear. That 40 bits in the clear is known as a 
salt. For example, in an email application, encrypt the message using RC4 with a 10-
byte key. Then encrypt the first five bytes of the key using the recipient’s RSA public 
key. Now the RSA digital envelope consists of the public-key-encrypted five secret 
bytes, five salt bytes sent in the clear and the RC4-encrypted message. In this way the 
attacker’s dictionary is rendered useless. That dictionary is valid for 40-bit keys, but 
the message used an 80-bit key. Still, only 40 bits are kept secret to comply with export 
regulations. A dictionary of 80-bit key streams is not feasible — it would require 280 
entries. That is about 1.2 · 1024, or 1.2 times one trillion times one trillion.

Timing Attacks and Blinding
If the time it takes to execute a cryptographic operation varies based on the input 
parameters, then in theory, an attacker with access to accurate timings can determine 
unknown values. This is the case for RSA, Diffie-Hellman, and DSA operations. For 
instance, in an RSA signing operation, purportedly an attacker who knows the 
message being signed and exactly how long it takes to create the digital signature can 
determine the signer’s RSA private key.

Currently, there is no known successful implementation of such a procedure. 
Proposed algorithms under scrutiny either require several absolutely exact timings or 
thousands of inexact (but still accurate to the millisecond) timings to succeed. 
However, there are two simple ways to guard against this attack. One is to “equalize” 
private key operations, by padding shorter transactions with a few extra milliseconds 
to make sure that all times are the same. The second method is known as blinding.

For a timing attack to succeed, the eavesdropper must know that the input being 
processed is only altered before the operation is performed and that the true answer is 
recovered after the operation by reversing the alteration procedure.

For example, in an RSA signature operation, the input is the BER-encoding of the 
digest of the data to sign and some pad bytes. To blind the attacker, that input is 
modular multiplied by a secret random number. Then the product, not the input, is 
modular exponentiated. To produce the actual signature, the result is modular 
multiplied by the inverse of the random number.

In mathematical terms, instead of performing the usual RSA encryption process:

sig = md mod n
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pick a random value r and compute:

m' = mre mod n

where e is the public exponent. Now find:

s = (m')d mod n

Then to compute the actual signature, find:

sig = (r-1) · s mod n

In this way, the timing attack fails because the attacker does not know what value was 
exponentiated.

To see that the signature is the same in both cases, note that:

r(mre)d mod n = (r–1)(m)d(re)d 

                         = ( r)(red)(md) 

                         = ( r-1)(r)(md) 

                            = (1)(md) mod n

Crypto-C offers both blinding and non-blinding RSA private operations through 
separate algorithm methods. It currently offers no blinding technique in Diffie-
Hellman or DSA operations.

Crypto-C uses MD5 random number generation to produce the random value r. The 
seed is the following digest:

MD5(p || padP || MD5(q || padQ || m))

where p and q are the two primes, padP and padQ are paddings of zeros to make sure 
the length is a multiple of 64 bytes, and the symbol || means concatenation. An 
attacker will not know what r is without knowing what the seed is, and will not know 
what the seed is without knowing what p and q are. An attacker who knows p and q is 
not going to implement a timing attack to determine the private key, because 
knowledge of p and q is equivalent to knowledge of the private key already.

Choosing Key Sizes
In cryptography, security is measured in key size: the bigger the key, the greater the 
security. Key size, in turn, is measured in bits. However, that bit number might not 
describe the entire key. 

For instance, a DES key is 56 bits. However, that size refers to its cryptographic size, 
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not its “physical” size. To build a DES key, you need 64 bits, but because eight of 
those bits are “parity bits,” that is, bits that are known, out of the 64, you really only 
get 56 secret bits. Hence, a DES key, while consisting of 64 bits of data, is only 56 
cryptographic bits large.

An RSA key pair measurement describes the modulus length. When cryptographers 
talk about a “768-bit RSA key pair,” what they really mean is that the modulus is 768 
bits long. The security of an RSA key pair is tied up in how big the modulus is; hence, 
the measurement used is the bit size of the modulus. The actual keys themselves will 
contain more information than the modulus, so the “physical” size will be much 
larger.

In choosing a key size, if larger keys offer greater security, why not simply always 
choose the largest possible key? Larger RSA, Diffie-Hellman, DSA, and elliptic curve 
keys can slow down cryptographic operations. In addition, there are restrictions on 
key size for applications seeking export.

For RC2, RC4, and RC5, larger keys generally do not significantly degrade 
performance. However, larger keys do require more management.

Table 2-4 gives a summary of the recommended key sizes for the algorithms 
supported in Crypto-C. These recommendations were current at the time this manual 
went to press. Please note, however, that such recommendations are always 
provisional and can be affected by changes in the cryptographic state of the art. 

Table 2-4 Summary of Recommended Key Sizes

Algorithm User Key
Organizational or 
Long-Term Key Root Key

Diffie-Hellman 768-bit prime 1024-bit prime 2048-bit prime

DSA 768-bit prime 1024-bit prime 2048-bit prime

ECAES 160-170-bit modulus Not recommended
at this time

EC Diffie-Hellman 160-170-bit modulus Not recommended
at this time

ECDSA 160-170-bit modulus Not recommended
at this time

RC2 8-128 effective key bits   

RC4 8-128 effective key bits   
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RSA Keys
The security of the RSA algorithm is based on the difficulty of factoring large integers. 
Therefore, the choice for the key size depends on the efficiency of integer-factoring 
algorithms. Because users will probably want a key pair to last a few years, it is 
advisable to choose a size that will not only remain secure against current state of the 
art factoring, but will probably defeat improved factoring attempts of the future. The 
RSA Laboratories publication, “Frequently Asked Questions About Today’s Cryptography” 
describes current factoring capabilities.

For normal user data, RSA Data Security, Inc. recommends a modulus size of 768 bits. 
For organization keys or for long-term applications, a 1024-bit modulus is advisable. 
For root keys, RSA Data Security, Inc. recommends a 2048-bit modulus. This 
safeguards against progress in factoring algorithms and improvements in computing 
power.

Diffie-Hellman Parameters and DSA Keys
The security of the Diffie-Hellman algorithm and DSA are both dependent on the 
complexity of computing logarithms modulo a prime number. Generally, this is 
equivalent to the complexity of the factoring problem, because modern factoring 
algorithms generally apply to the discrete logarithm problem. Therefore, the designer 
is advised to use similar sizes for the Diffie-Hellman parameters and DSA keys as for 
RSA operations: a 768-bit prime for user keys, 1024-bit prime for organizational keys 
and a 2048-bit prime for root keys. 

Note: The Digital Signature Standard lists a maximum of 1024 bits for DSA, but the 
algorithm does not have an inherent limit. Crypto-C’s implementation allows 
up to 2048-bit DSA keys.

RC2 Effective Key Bits
A key with 80 to 128 effective key bits is sufficient for most applications using the RC2 
algorithm. Export regulations may limit the size to 48 effective bits. A key size of 40 

RC5 8-128 effective key bits with
16 rounds for 32-bit word or 20 rounds for 64-bit word 

RSA 768-bit modulus 1024-bit modulus 2048-bit modulus

Table 2-4 Summary of Recommended Key Sizes

Algorithm User Key
Organizational or 
Long-Term Key Root Key
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bits generally expedites the export permission.

RC4 Key Bits
An 80- to 128-bit key is sufficient for most applications using the RC4 algorithm. 
Export regulations may limit the size to 48 bits. A key size of 40 bits generally 
expedites the export permission.

RC5 Key Bits and Rounds
An 80- to 128-bit key is sufficient for most applications using the RC5 algorithm. Note 
also that the security of the RC5 algorithm is dependent on the number of rounds. For 
RC5 with a 32-bit word size, RSA Data Security, Inc. recommends at least 12 rounds 
for applications; while no practical attacks are known for 12-round RC5-32, recent 
cryptanalytic work suggests 16 rounds is now a more conservative choice. For RC5 
with a 64-bit word size, RSA Data Security, Inc. recommends at least 16 rounds; a 
conservative choice for the 64-bit version is 20 rounds. Note that the Crypto-C 
implementation of the 64-bit word is for evaluation purposes only.

Triple DES Keys
It is possible to implement Triple DES with one, two, or three keys. One key in EDE 
mode (encrypt-decrypt-encrypt) is equivalent to DES, and is used to provide 
compatibility with applications that only understand DES. There are known attacks 
against Triple DES using two keys, so RSA Data Security, Inc. recommends using 
three keys.

Elliptic Curve Keys
For prototyping and evaluation, RSA Data Security, Inc. recommends setting the 
order of the base point to be between 160 and 170 bits. Currently, RSA Data Security, 
Inc. does not recommend using elliptic curve cryptography for long-term 
applications. 
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Chapter 3

Using Crypto-C
Algorithms In Crypto-C
Whatever algorithm Crypto-C performs, it does so from an algorithm object. An 
algorithm object is used to hold information about an algorithm’s parameters and to 
keep a context during cryptographic operations.

To build an algorithm object, create an empty object with B_CreateAlgorithmObject. 
Then, use B_SetAlgorithmInfo to fill the object with the information necessary to 
distinguish it as an object performing the desired operation. The information for 
B_SetAlgorithmInfo consists of two elements: an Algorithm Info Type, or AI, and its 
specific accompanying info. This chapter gives a brief summary of the AIs categorized 
by function.

Chapter 2 of the Crypto-C Library Reference Manual (LRM) gives a complete listing of 
AIs in alphabetical order. Each entry in the Library Reference Manual contains a 
description of information that must accompany the AI, including keys and algorithm 
methods. 

Information Formats Provided by Crypto-C
There are four types of AIs in Crypto-C. These AIs differ in the format in which they 
provide information:
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• Basic algorithm info types, which provide information in Crypto-C’s internal 
format.

• BER-based algorithm info types, which provide information in a format that 
complies with Open Systems Interconnection’s Basic Encoding Rules.

• PEM based algorithm info types, which provide information in a format that 
complies with the Privacy Enhanced Mail draft standard.

• BSAFE1 algorithm info types, which provide information in a format that is 
backward compatible with BSAFE 1.x.

Basic Algorithm Info Types
The basic algorithm is used to start a new process because its info (the accompanying 
information specific to the AI) is the simplest to format.

BER-Based Algorithm Info Types
BER-based algorithms are algorithms that comply with Basic Encoding Rules, as 
defined in ANSI X.690. BER-based algorithms are necessary because the format of the 
info in a basic AI is not standard. Much of the data in cryptography is passed between 
two or more individuals. Not every cryptographic application uses Crypto-C, and 
other packages may not organize the necessary information the same way. When one 
person needs to tell another person which algorithm was used to encrypt, for 
instance, there needs to be a standard way to present the information. The standard 
description of information is known as Basic Encoding Rules, or BER, which is a 
product of Open Systems Interconnection and is defined in ANSI X.690. 

BER-based algorithms end with the letters BER. Such AIs will read in or output 
information according to the BER.

Unfortunately, BER is often complicated and it is difficult to determine the proper 
BER encoding without a translator. Therefore, it is simpler to use 
B_SetAlgorithmInfo to define algorithm objects with the basic algorithm AI, get the 
information in BER format using B_GetAlgorithmInfo, and send the BER-encoding to 
those who need the information. The recipient will translate the BER information into 
something they can understand. 

When a Crypto-C application receives information in BER format, it can set using the 
BER AI and build an algorithm object to match that information.

PEM-Based Algorithm Info Types
The Privacy Enhanced Mail (PEM) draft standard is a product of the Internet 
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Activities Board, Network Working Group (see RFC 1421-1424). It defines the proper 
formatting of information passed between entities in electronic mail. Formatting 
information to follow this standard is fairly simple.

BSAFE1 Algorithm Info Types
The fourth kind of AI ends with BSAFE1. These algorithm info types are only for 
backward compatibility with applications using the BSAFE 1.x formats.
C h a p t e r  3   U s i n g  C r y p t o - C 1 0 5



Algorithms In Crypto-C
Summary of AIs
Table 3-1 Message Digests
Not all message digests are recommended. See “Message Digests” on page 46 for details.

Algorithm Info Type Description Standards BER PEM

AI_MD2 MD2 message digest RFC 1319

AI_MD2_BER MD2 message digest; BER-encoded 
algorithm identifier

RFC 1319 ✓

AI_MD2_PEM MD2 message digest with PEM RFC 1423 ✓

AI_MD5 MD5 message digest RFC 1321

AI_MD5_BER MD5 message digest; BER-encoded 
algorithm identifier

RFC 1321 ✓

AI_MD5_PEM MD5 message digest, PEM-encoded 
algorithm identifier

RFC 1423 ✓

AI_MD Supplied for backwards 
compatibility with the BSAFE 1.x 
message digest algorithm

none

AI_SHA1 SHA1 message digest FIPS PUB 180-1

AI_SHA1_BER SHA1 message digest; BER-
encoded algorithm identifier

FIPS PUB 180-1

Table 3-2 Message Authentication

Algorithm Info Type Description Standards

AI_MAC BSAFE 1.x message authentication code; supplied for 
backwards compatibility with BSAFE 1.x

AI_HMAC Hashed-based Message Authentication Code SET Draft

Table 3-3 ASCII Encoding

Algorithm Info Type Description Standards

AI_RFC1113Recode ASCII/binary conversion RFC1113/RFC1421; RFC1521; MIME Base64
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Table 3-4 Pseudo-Random Number Generation

Algorithm Info Type Description

AI_MD2Random MD2 pseudo-random number generator

AI_MD5Random MD5 pseudo-random number generator

AI_SHA1Random Identical to AI_X962Random_V0. For forward compatibility, 
we recommend that you use AI_X962Random_V0.

AI_X931_Random Generates pseudo-random numbers for RSA key generation in 
conformance with ANSI X9.31 standard. This AI is intended for 
use with AI_RSAStrongKeyGen only. 

AI_X962Random_V0 SHA1 pseudo-random number generator based on X9.62 Draft 

Table 3-5 Symmetric Stream Ciphers
Some stream ciphers include message authentication codes to detect tampering with the data stream.

Algorithm Info Type Description BER MAC

AI_RC4 RC4 

AI_RC4_BER RC4 3

AI_RC4WithMAC RC4 with message authentication code 3

AI_RC4WithMAC_BER RC4 with message authentication code; 
BER-encoded algorithm identifier

3 3

Table 3-6 Symmetric Block Ciphers

Algorithm Info Type Description Padding   BER  PEM

General Purpose

AI_FeedbackCipher DES, Triple DES, DESX, RC2, or RC5 in 
ECB, CBC, CFB, or OFB feedback modes

DES

AI_DES_CBC_IV8 DES-CBC, 8-byte IV none

AI_DES_CBCPadIV8 DES-CBC, 8-byte IV PKCS #5
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AI_DES_CBCPadBER DES-CBC, 8-byte IV, BER-encoded 
algorithm identifier

PKCS #5 ✓

AI_DES_CBCPadPEM DES-CBC, 8-byte IV, PEM-encoded 
algorithm identifier

RFC 1423 ✓

AI_DES_CBC_BSAFE1 DES-CBC, 8-byte IV, padding optional; 
backward compatibility with BSAFE 1.x

Triple DES

All 3DES algorithms in Crypto-C use the encrypt-decrypt-encrypt (EDE) sequence.

AI_DES_EDE3_CBC_IV8 3DES-CBC

AI_DES_EDE3_CBCPadIV8 3DES-CBC, 8-byte IV PKCS #5

AI_DES_EDE3_CBCPadBER 3DES-CBC, 8-byte IV, BER-encoded 
algorithm identifier

PKCS #5 ✓

DESX

AI_DESX_CBC_IV8 DESX-CBC, 8-byte IV

AI_DESX_CBCPadIV8 DESX-CBC, 8-byte IV PKCS #5

AI_DESX_CBCPadBER DESX-CBC, 8-byte IV, BER-encoded 
algorithm identifier

PKCS #5 ✓

AI_DESX_CBC_BSAFE1 DESX-CBC, 8-byte IV, padding optional; 
backward compatibility with BSAFE 1.x

RC2

AI_RC2_CBC RC2-CBC, 8-byte IV

AI_RC2_CBCPad RC2-CBC, 8-byte IV PKCS #5

AI_RC2_CBCPadBER RC2-CBC, 8-byte IV, BER-encoded 
algorithm identifier

PKCS #5 ✓

AI_RC2_CBCPadPEM RC2-CBC, 8-byte IV, PEM-encoded 
algorithm identifier

RFC 1423 ✓

AI_RC2_CBC_BSAFE1 RC2-CBC, 8-byte IV, padding optional; 
backward compatibility with BSAFE 1.x

RC5

AI_RC5_CBC RC5-CBC, 8-byte IV

AI_RC5_CBCPad RC5-CBC, 8-byte IV PKCS #5

Table 3-6 Symmetric Block Ciphers (Continued)

Algorithm Info Type Description Padding   BER  PEM
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Initialization Vector

AI_CBC_IV8 Resets the IV in a CBC algorithm during 
an Update or a Final for all CBC AIs 
except AI_FeedbackCipher

AI_RESET_IV Resets the IV in a CBC algorithm during 
an Update or a Final for all CBC 
implementations of AI_FeedbackCipher

Password-Based Encryption

These composite algorithms generate a symmetric key by digesting a password with a salt, then use the 
key for block cipher encryption.

Not all message digests are recommended. See “Message Digests” on page 46 for details.

AI_MD2WithDES_CBCPad MD2 digest followed by DES-CBC PKCS #5

AI_MD2WithDES_CBCPadBER MD2 digest followed by DES-CBC, 
BER-encoded algorithm identifier

PKCS #5 ✓

AI_MD2WithRC2_CBCPad MD2 digest followed by RC2-CBC PKCS #5

AI_MD2WithRC2_CBCPadBER MD2 digest followed by RC2-CBC, 
BER-encoded algorithm identifier

PKCS #5 ✓

AI_MD5WithDES_CBCPad MD5 digest followed by DES-CBC PKCS #5

AI_MD5WithDES_CBCPadBER MD5 digest followed by DES-CBC, 
BER-encoded algorithm identifier

PKCS #5 ✓

AI_MD5WithRC2_CBCPad MD5 digest followed by RC2-CBC PKCS #5

AI_MD5WithRC2_CBCPadBER MD5 digest followed by RC2-CBC, 
BER-encoded algorithm identifier

PKCS #5 ✓

AI_MD5WithXOR MD5 digest followed by XOR for 
encryption

not 
needed

AI_MD5WithXOR_BER MD5 digest followed by XOR for 
encryption, BER-encoded algorithm 
identifier

not 
needed

✓

AI_SHA1WithDES_CBCPad SHA1 digest followed by DES-CBC PKCS #5

AI_SHA1WithDES_CBCPadBER SHA1 digest followed by DES-CBC, 
BER-encoded algorithm identifier

PKCS #5 ✓

Table 3-6 Symmetric Block Ciphers (Continued)

Algorithm Info Type Description Padding   BER  PEM
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Table 3-7 RSA Public-Key Cryptography

Algorithm Info Type Description Pad BER PEM

Key Generation

AI_RSAKeyGen Key generation for RSA key pair

AI_RSAStrongKeyGen Key generation for RSA key pair; the 
generated moduli are in accordance with 
the strength criteria of the FIPS X9.31 
standard

Encryption and Decryption

AI_PKCS_OAEP_RSAPrivate RSA private-key encryption/decryption 
with OAEP in accordance with PKCS #1 v2

PKCS #1 
v2 OAEP 

AI_PKCS_OAEP_RSAPrivateBER RSA private-key encryption/decryption 
with OAEP in accordance with PKCS #1 v2, 
BER-encoded algorithm identifier

PKCS #1 
v2 OAEP 

✓

AI_PKCS_OAEP_RSAPublic RSA public-key encryption/decryption with 
OAEP in accordance with PKCS #1 v2

PKCS #1 
v2 OAEP 

AI_PKCS_OAEP_RSAPublicBER RSA public-key encryption/decryption with 
OAEP in accordance with PKCS #1 v2, 
BER-encoded algorithm identifier

PKCS #1 
v2 OAEP 

✓

AI_SET_OAEP_RSAPrivate RSA private-key encryption with OAEP in 
accordance with the SET v1 protocol

SET v1 
OAEP

AI_SET_OAEP_RSAPublic RSA public-key encryption with OAEP in 
accordance with the SET v1 protocol

SET v1 
OAEP

AI_PKCS_RSAPrivate RSA private-key encryption/decryption 
according to PKCS #1

PKCS #1 
v1.5

AI_PKCS_RSAPrivateBER RSA private-key encryption/decryption 
according to PKCS #1, BER-encoded 
algorithm identifier

PKCS #1 
v1.5

✓

AI_PKCS_RSAPrivatePEM RSA private-key encryption/decryption 
according to PKCS #1, PEM-encoded 
algorithm identifier

PKCS #1 
v1.5

✓

AI_PKCS_RSAPublic RSA public-key encryption/decryption 
according to PKCS #1

PKCS #1 
v1.5
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AI_PKCS_RSAPublicBER RSA public-key encryption/decryption 
according to PKCS #1, BER-encoded 
algorithm identifier

PKCS #1 
v1.5

✓

AI_PKCS_RSAPublicPEM RSA public-key encryption/decryption 
according to PKCS #1, PEM-encoded 
algorithm identifier

PKCS #1 
v1.5

✓

AI_RSAPrivate Raw RSA private-key encryption; 
input must be a multiple of word size

none

AI_RSAPublic Raw RSA public-key encryption; 
input must be a multiple of word size

none

AI_RSAPrivateBSAFE1 BSAFE 1.x RSA private-key encryption, 
padding optional

AI_RSAPublicBSAFE1 BSAFE 1.x RSA public-key encryption

Digital Signatures 

Composite operations for signing data: digest the data, then encrypt the BER-encoding of the digest with 
RSA.

BER-encoded digest is 34 bytes for 16-bit digests (MD2, MD5); min RSA modulus is 45 bytes long;
BER-encoded digest is 35 bytes for 20-bytes digests (SHA1); min RSA modules is 46 bytes long.

AI_MD2WithRSAEncryption MD2 digest with RSA encryption PKCS #1

AI_MD2WithRSAEncryptionBER MD2 digest with RSA encryption, 
BER-encoded algorithm identifier

PKCS #1 ✓

AI_MD5WithRSAEncryption MD5 digest with RSA encryption PKCS #1

AI_MD5WithRSAEncryptionBER MD5 digest with RSA encryption, 
BER-encoded algorithm identifier

PKCS #1 ✓

AI_SHA1WithRSAEncryption SHA1 digest with RSA encryption PKCS #1

AI_SHA1WithRSAEncryptionBER SHA1 digest with RSA encryption, 
BER-encoded algorithm identifier

PKCS #1 ✓

Table 3-7 RSA Public-Key Cryptography (Continued)

Algorithm Info Type Description Pad BER PEM
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Table 3-8 DSA Public-Key Cryptography

Algorithm Info Type Description BER

Parameter Generation

AI_DSAParamGen DSA parameter generation

Key Generation

AI_DSAKeyGen DSA key generation

Digital Signatures

AI_DSA DSA sign/verify a 20-byte input

AI_DSAWithSHA1 SHA1 digest with DSA sign/verify

AI_DSAWithSHA1_BER SHA1 digest with DSA sign/verify, 
BER-encoded algorithm identifier

3

Table 3-9 Diffie-Hellman Key Agreement

Algorithm Info Type Description BER

Parameter Generation

AI_DHParamGen Diffie-Hellman parameter generation

Key Agreement

AI_DHKeyAgree Diffie-Hellman key agreement

AI_DHKeyAgreeBER Diffie-Hellman key agreement, BER-encoded 
algorithm identifier

✓

Table 3-10 Elliptic Curve Public-Key Cryptography

Algorithm Info Type Description

Parameter Generation

AI_ECParamGen EC parameter generation

AI_ECParameters EC parameter use and access
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Acceleration Tables

AI_ECAcceleratorTable Acceleration table use and access

AI_ECBuildAcceleratorTable Generates auxiliary data to speed EC operations

AI_ECBuildPubKeyAccelTable Generates auxiliary data to speed EC operations, including 
ECDH-specific operations

AI_ECPubKey Generates auxiliary data to speed EC operations for a 
specific public-key

Key Generation

AI_ECKeyGen EC key pair generation

Elliptic Curve Diffie-Hellman

AI_EC_DHKeyAgree Two-phase EC Diffie-Hellman key agreement

Elliptic Curve DSA

AI_EC_DSA Raw ECDSA signature/verification

AI_EC_DSAWithDigest SHA1 digest followed by ECDSA signature/verification

Elliptic Curve Authenticated Encryption System

AI_EC_ES EC Authenticated Encryption System

Table 3-11 Bloom-Shamir Secret Sharing

Algorithm Info Type Description

AI_BSSecretSharing Bloom-Shamir secret sharing

Table 3-10 Elliptic Curve Public-Key Cryptography (Continued)

Algorithm Info Type Description
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Table 3-12 Hardware Interface
For use with hardware devices, when present.

Algorithm Info Type Description

AI_HW_Random Provides access to random bytes generated by a hardware 
device

AI_KeypairTokenGen Generates the token form of an RSA or DSA public/private 
key pair

AI_SymKeyTokenGen Generates the token form of a DES, RC2, RC4, RC5, or TDES 
symmetric key

AI_PKCS_OAEPRecode RSA raw or hardware encryption/decryption with OAEP 
according to PKCS #1 v2

AI_PKCS_OAEPRecodeBER RSA raw or hardware encryption/decryption with OAEP 
according to PKCS #1 v2, 
BER-encoded algorithm identifier
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The key object is used to hold any key-related information and to supply this 
information to functions that require it. To build a key, create an empty key object 
with B_CreateKeyObject. Then, use B_SetKeyInfo to fill it with the information 
necessary to distinguish it as the desired key. That information for B_SetKeyInfo is 
made up of two items, a Key Info Type (KI) and its specific accompanying info.

Chapter 3 of the Crypto-C Library Reference Manual (LRM) gives a complete listing of 
KIs in alphabetical order. Each entry in the Library Reference Manual contains a 
description of the information that must accompany the KI. 

Summary of KIs
Table 3-13 Generic Keys

Key Information Type Description

KI_8Byte Generic 8-byte key

KI_Item Generic variable-length key

Table 3-14 Block Cipher Keys

Key Information Type Description

KI_DES8 8-byte DES key satisfying DES parity requirement

KI_DES8Strong 8-byte DES key satisfying DES parity requirement; 
checks for weak DES keys

KI_24Byte 24-byte 3DES key

KI_DES24Strong 24-byte 3DES key; checks for weak 3DES keys

KI_DES_BSAFE1 8-byte DES in BSAFE1.x format

KI_DESX DESX key

KI_DESX_BSAFE1 DESX key in BSAFE 1.x format

KI_RC2_BSAFE1 RC2 key in BSAFE 1.x format

KI_RC2WithBSAFE1Params RC2 key with additional parameters in BSAFE 1.x 
format
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Table 3-15 RSA Public and Private Keys

Key Information Type Description BER

KI_PKCS_RSA_Private PKCS #1-compatible RSA private key

KI_PKCS_RSA_PrivateBER BER encoding of an RSA private key of type PKCS #8 
PrivateKeyInfo

✓

KI_RSAPrivate RSA private key

KI_RSAPrivateBSAFE1 RSA private key in BSAFE 1.x format

KI_RSA_CRT RSA key with Chinese Remainder Theorem (CRT) 
parameters

KI_RSAPublic RSA public key

KI_RSAPublicBER BER encoding of an RSA public key of type X.509 
SubjectPublicKeyInfo

✓

KI_RSAPublicBSAFE1 RSA public key in BSAFE 1.x format

Table 3-16 DSA Public and Private Keys

Key Information Type Description BER

KI_DSA_Private DSA private key 

KI_DSA_PrivateBER BER-encoding of a DSA private key of type PKCS #8 ✓

KI_DSA_Public DSA public key

KI_DSA_PublicBER BER-encoding of a DSA private key of type X.509 
SubjectPublicKeyInfo

✓

KI_DSAPrivateX957BER BER encoding of a DSA private key of type ANSI 
X9.57 PrivateKeyInfo that contains an RSA Data 
Security, Inc. DSAPrivateKey type

✓

KI_DSAPublicX957BER the encoding of a DSA public key that is encoded as 
ANSI X9.57 SubjectPublicKeyInfo type.

✓

Table 3-17 Elliptic Curve Keys

Key Information Type Description

KI_ECPrivate EC private key and underlying EC parameters

KI_ECPrivateComponent Private component of an EC private key

KI_ECPublic EC public key and underlying EC parameters

KI_ECPublicComponent Public component of an EC public key
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Table 3-18 Token Keys
For use with hardware devices, when present.

Key Information Type Description

KI_ExtendedToken Software-based token form of symmetric keys

KI_KeypairToken Software-based token forms of RSA or DSA public and private 
keys

KI_Token Hardware-based token forms of symmetric and public/private 
keys
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System Considerations In Crypto-C

Algorithm Choosers
When you use an AI, it in turn calls one or more algorithm methods. An algorithm 
method (or AM) is the underlying code that will actually perform the cryptography. 
Because many AIs can perform more than one cryptographic function (for instance, 
both encryption and decryption, as with AI_FeedbackCipher), an application will 
often have a choice of which underlying cryptographic code to link in. An algorithm 
chooser lists all the AMs the application can use. That is, it chooses in advance which 
AMs to link in. 

Crypto-C comes with a demonstration application containing the algorithm chooser 
DEMO_ALGORITHM_CHOOSER. You can use this algorithm chooser in any Crypto-C 
application as long as the module that defines it (choosc.c) is compiled and linked in. 
However, DEMO_ALGORITHM_CHOOSER will link in all the algorithm methods available, 
even though an application may use only two or three. A developer can write an 
algorithm chooser tailored for the specific application to make the executable image 
smaller. 

The section “Defining an Algorithm Chooser” in the Library Reference Manual says:

From this we see that an algorithm chooser is a pointer to an array. This array 
contains pointers to algorithm methods, which are the AMs the application will use.

To determine which AMs to include in your algorithm chooser, you need to know 
which AIs you will use in your application. Then, for each AI, find the Chapter 2 entry 
in the Library Reference Manual and look at the AMs listed under “Algorithm methods 
to include in application’s algorithm chooser.” Then, based on how your application 
uses the given AI, decide which of those AMs you need to include in your algorithm 
chooser.

An Encryption Algorithm Chooser
The section “Introductory Example” on page 9 describes a program that encrypted 
data and did nothing else. It did not decrypt data, generate random numbers, execute 
the Diffie-Hellman key agreement protocols, or use elliptic curve cryptography. 

An algorithm chooser is an array of pointers to B_ALGORITHM_METHOD values. 
The last element of the array must be (B_ALGORITHM_METHOD *)NULL_PTR.
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Therefore, the only cryptographic tools the program needed was encryption code. 
And the only kind of encryption code it needed was RC4 encryption, not DES, RC2, 
RC5, or RSA encryption. So we could have built an algorithm chooser that included 
only one AM, the one we used for RC4 encryption.

To find the AM we need, look at the Library Reference Manual, Chapter 2, for the entry 
on the AI in use. We used AI_RC4. The Library Reference Manual states that for this AI, 
the possible AMs are AM_RC4_ENCRYPT for encrypting and AM_RC4_DECRYPT for 
decrypting. Because we did not decrypt, our algorithm chooser only needs to include 
AM_RC4_ENCRYPT:

The last entry of an algorithm chooser must be (B_ALGORITHM_METHOD *)NULL_PTR.

As an argument in a Crypto-C function call, it would look like this.

An RSA Algorithm Chooser
In this example, we will build an algorithm chooser for the example in “Performing 
RSA Operations” on page 186. We want to include all the AMs for generating an RSA 
key pair, encrypting, and decrypting. We need: a random number generator, a key 
pair generator, an RSA public encryption algorithm, and an RSA private decryption 
algorithm. (Although the example doesn’t directly include a random-number 
generator, it calls on the one from “Generating Random Numbers” on page 147.)

The AIs used in the example are: AI_X962Random_V0 (also known as AI_SHA1Random), 
AI_RSAKeyGen, AI_PKCS_RSAPublic, and AI_PKCS_RSAPrivate. 

Note: AI_SHA1Random is identical to AI_X962Random_V0. The name 
AI_SHA1Random is used in the demo applications; however, AI_SHA1Random 
may change in future versions of Crypto-C. For forward compatibility, we 
recommend that you do not use the name AI_SHA1Random in your 
applications; use AI_X962Random_V0 instead.

B_ALGORITHM_METHOD *INTRODUCTORY_CHOOSER[] = {
  &AM_RC4_ENCRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_<function> (
     <arguments>, INTRODUCTORY_CHOOSER,
     <other arguments>)) != 0)
  break;
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From the corresponding entries in Chapter 2 of the Library Reference Manual, you can 
construct the following algorithm chooser. Note that you should reference the 
description of AI_X962Random_V0 instead of AI_SHA1Random:

Note: The above algorithm chooser lists AM_RSA_CRT_DECRYPT. This AM will not 
perform blinding (see “Timing Attacks and Blinding” on page 96). If you 
want your application to perform blinding, use AM_RSA_CRT_ENCRYPT_BLIND 
or AM_RSA_CRT_DECRYPT_BLIND.

The Surrender Context
Some Crypto-C functions are time-consuming. When an application calls one of these 
functions, it can appear as if the computer has crashed or frozen. A lengthy Crypto-C 
function can tie up the computer, forcing other applications or programs to wait until 
the Crypto-C function is finished to continue their execution. The surrender context is 
a way for an application to allow Crypto-C to surrender control.

In general, it is a good idea to include a surrender context whenever a function takes 
several seconds to execute. The following functions are extremely time-consuming: 

• functions for parameter generation

• functions for key generation

• functions for creating acceleration tables

Other functions are less time-consuming and might not need a surrender context in 
your application. These include many of the block- and stream-cipher symmetric-key 
operations as well as message digests.

The surrender context information is contained in an A_SURRENDER_CTX structure. 
aglobal.h gives the definition; this is described in Chapter 1 of the Library Reference 

B_ALGORITHM_METHOD *RSA_SAMPLE_CHOOSER[] = {
  &AM_SHA_RANDOM,
  &AM_RSA_KEY_GEN,
  &AM_RSA_ENCRYPT,
  &AM_RSA_CRT_DECRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
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Manual:

Chapter 1 also gives the form that a surrender function must have:

If you define a surrender function within the surrender context, Crypto-C functions 
will call it at regular intervals during execution. Depending on the application, the 
surrender function can perform one of a number of operations. 

For example, a surrender function can:

• Notify the user of the current status of execution, either once at the beginning or 
once every second, for instance. 

• Allow the user to cancel the operation.

• Suspend the Crypto-C function to allow other operations to execute.

Even when you do not need a surrender function to manage lengthy function calls, 
you can create one to perform other tasks. For example, you could use a surrender 
function to allow other applications to cut into a Crypto-C routine, no matter how 
quickly it executed. A surrender context can be a potent tool in debugging as well.

A Sample Surrender Function
As an example, we will construct a surrender function that announces the start of a 
Crypto-C function, and prints out a dot on the screen every second.

typedef struct {
  int (*Surrender) (POINTER);               /* surrender function callback */
  POINTER handle;                      /* application-specific information */
  POINTER reserved;                             /* reserved for future use */
} A_SURRENDER_CTX;

int (*Surrender) (
  POINTER handle                       /* application-specific information */
);

#include <time.h>

int GeneralSurrenderFunction (handle)
POINTER handle;
{
  static time_t currentTime;
  time_t getTime;
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A routine that calls Crypto-C functions would use the above surrender function as 
follows:

For this surrender function, the handle contains a flag passed from the user. If handle 
is 0, this is the first time the surrender function has been called by the particular 
Crypto-C routine currently executing. Then the surrender function will reset the flag 
and the next time it is called, it will skip the if clause and execute the else clause.

The coding examples in this manual use the example in this section as their surrender 
context. The examples also note when a routine is lengthy enough to warrant use of a 
surrender context. When a surrender context is not necessary, you can pass a properly 
cast NULL_PTR.

When to Allocate Memory
Whenever you use Crypto-C, you will produce output. The output might be 

  if ((int)*handle == 0) {
    printf (“\nSurrender function ...\n”);
    *handle = 1;
    time (&currentTime);
  }
  else {
    time (&getTime);
    if (currentTime != getTime) {
      printf “ .");
      currentTime = getTime;
    }
  }
  return (0);
}

A_SURRENDER_CTX generalSurrenderContext;
int generalFlag;
generalSurrenderContext.Surrender = GeneralSurrenderFunction;
generalSurrenderContext.handle = (POINTER)&generalFlag;
generalSurrenderContext.reserved = NULL_PTR;
generalFlag = 0;

if ((status = B_<function>
     (<other arguments>, &generalSurrenderContext)) != 0)
  break;
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encrypted or decrypted data, or information you are retrieving concerning keys or 
algorithms. This output must go somewhere; there must be memory that is allocated 
to hold it. If memory is not allocated for a particular output, the computer will still try 
to put the output somewhere, possibly in a location that already contains other data 
or programs. When is it the application’s responsibility to allocate memory and when 
will Crypto-C do the allocating?

The application must allocate memory whenever a Crypto-C function produces 
output and the prototype indicates that the output argument is a pointer (for instance, 
POINTER or unsigned char *). In this situation, Crypto-C asks for a pointer and places 
the output at the address indicated by the pointer. It is the application’s responsibility 
to make sure that the pointer points to allocated memory. 

Crypto-C allocates memory whenever a function produces output and the prototype 
indicates the output argument is a pointer to a pointer (for instance, POINTER *). Here, 
Crypto-C asks for the address of a pointer. Crypto-C goes to that address and deposits 
a pointer there. If the application goes to where the pointer points, it will find the 
information it is looking for. This information, though, belongs to Crypto-C; 
subsequent Crypto-C calls can alter or erase it. If an application needs to save the 
information, it should copy it into its own buffer or allocated space. See “Distributing 
Diffie-Hellman Parameters” on page 222 for an example.

Note: Crypto-C will sometimes call for an unsigned int argument and other times 
an unsigned int *. For unsigned int, Crypto-C is expecting a number; for 
unsigned int *, Crypto-C will supply the number, so you just supply the 
address of an int variable.

Memory-Management Routines
Crypto-C uses the following memory-management routines:

• T_malloc

• T_realloc

• T_free

• T_memset

• T_memcpy

• T_memmove

• T_memcmp

Sample implementations of these routines reside in the memory management file, 
tstdlib.c, supplied with Crypto-C. See the final section of Chapter 4 in the Library 
C h a p t e r  3   U s i n g  C r y p t o - C 1 2 3



System Considerations In Crypto-C
Reference Manual for descriptions and prototypes of these routines. You can also write 
your own versions of these routines to satisfy the needs of your operating system or 
application. It is a good idea to examine tstdlib.c before writing your own code.

Supplying memory management routines with Crypto-C provides several 
advantages:

• Reduced dependency on standard C libraries

• Increased control over memory allocation

• Increased ability to handle binary data

Memory-Management Routines and Standard C Libraries
The memory-management routines in tstdlib.c organize the arguments to the 
standard call to best suit Crypto-C’s purposes. They do type checking and verify that 
the arguments follow the Crypto-C conventions. This helps you to keep your code 
portable, because any call to these routines will behave uniformly, regardless of 
platform. This uniform behavior best suits the needs of Crypto-C.

Some applications may need to be completely autonomous; that is, they should have 
no need to link in any external libraries. As far as possible, the Crypto-C library is 
autonomous, but Crypto-C does need the functionality of certain standard C library 
routines, such as malloc. In order for Crypto-C to remain autonomous, the user must 
supply these routines. 

The routines in tstdlib.c do call the standard C library routines, so to use tstdlib.c 
you must still link in the standard C library. If your application does not need to be 
autonomous, you can use these supplied versions of the T_ routines. If, however, your 
application will eventually require autonomy, you can supply versions of the T_ 
routines that do not call the standard C library.

If a particular platform and compiler offers an optimized version or simply a 
platform-specific version of one or more of the memory management routines, 
Crypto-C can call that routine without requiring a change in the source code. You 
only have to modify the module containing the memory management routines.

Memory Allocation
For security reasons, it is often important that space be allocated from core memory, 
not a hard disk virtual memory. If an application makes a call to the standard malloc 
or alloc, the operating system may decide to use virtual memory. The T_malloc call 
can be made to guarantee core memory allocation and never virtual memory.
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Binary Data
Remember that the C calls beginning with “str”, such as strlen and strcpy, operate 
on strings. Length is not a necessary input argument; instead, the function acts on 
everything from the beginning of the string to the NULL terminating character. 
However, the output from a Crypto-C call is a block of memory, not a string. Even if 
the data to encrypt is a string, the encrypted data is not. Similarly, data that has been 
decrypted will not be a properly terminated string unless the NULL terminating 
character was encrypted as well.

The “mem” routines supplied with Crypto-C, such as T_memcpy and T_memset, address 
this problem. They operate on blocks of memory and need to know how many bytes 
to act on. Whether or not there is a NULL terminating character in the block of memory 
does not matter.

BER/DER Encoding
Much of the data in cryptographic applications needs to be passed between two or 
more individuals. For example, users may need to transmit a public key, elliptic curve 
parameters, or an algorithm name. Not everyone uses Crypto-C, and how 
information is processed in Crypto-C may be different from another company’s 
package. There needs to be a standard for describing certain information. BER/DER is 
such a standard.

Open Systems Interconnection (OSI, described in ANSI’s X.200) is an internationally 
standardized architecture that governs the interconnection of computers from the 
physical layer up to the user-application layer. OSI’s method of specifying abstract 
objects is called ASN.1 (Abstract Syntax Notation One, defined in X.680), and one set 
of rules for representing such objects as strings of ones and zeros is called BER (Basic 
Encoding Rules, defined in X.680). There is generally more than one way to BER-
encode a given value, so another set of rules, called the Distinguished Encoding Rules 
(DER), which is a subset of BER, gives a unique encoding to each ASN.1 value. The 
PKCS document includes “A Layman’s Guide to a Subset of ASN.1, BER and DER” 
which is more accessible than the actual standard.

If your application must transfer information to another computer or software 
package, you may need to convert the data into BER-encoded format before you send 
it. Crypto-C offers a way to get information into DER format, using 
B_GetAlgorithmInfo or B_GetKeyInfo with the BER version of the AI or KI used to set 
the algorithm or key object.

The following example corresponds to the file berder.c.
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In the “Introductory Example” on page 9, we set the algorithm object to AI_RC4. The 
Library Reference Manual Chapter 2 entry on this AI reports that a compatible 
representation is AI_RC4BER. That AI provides the BER-encoded algorithm identifier 
for the RC4 algorithm. Look up the Library Reference Manual Chapter 4 entry for 
B_GetAlgorithmInfo. This function takes three arguments: an address for Crypto-C to 
deposit a pointer to the info, the algorithm object from which we are getting the info 
and the info type.

The Library Reference Manual Chapter 2 entry on AI_RC4BER tells us that the info 
returned by B_GetAlgorithmInfo is a pointer to an ITEM. The type ITEM is defined in 
aglobal.h as:

We will declare a variable to be a pointer to an ITEM and use its address as the info 
argument. The prototype calls for the address of a POINTER, not the address of a 
pointer to an ITEM, so type casting is necessary.

Crypto-C returns a pointer to the location where we can find the info, not the info 
itself. When we destroy the object, that info will disappear. If we want to save it, we 
have to copy it over into our own buffer, the memory for which we must allocate.

Remember to use T_free to free any memory you allocated with T_malloc when you 

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;

ITEM *getInfoBER;
ITEM infoBER;
 
infoBER.data = NULL_PTR;
 
if ((status = B_GetAlgorithmInfo
     ((POINTER *)&getInfoBER, encryptionObject,
      AI_RC4_BER)) != 0)
  break;
 
infoBER.len = getInfoBER–>len;
infoBER.data = T_malloc (infoBER.len);
if ((status = (infoBER.data == NULL_PTR)) != 0)
  break;

T_memcpy (infoBER.data, getInfoBER->data, infoBER.len);
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are done with it.

Now, if we need to let anyone know what algorithm we used to encrypt, we can send 
the BER-encoded algorithm identifier.

For additional examples that use BER, see “Distributing an RSA Public Key” on 
page 189 and “Distributing Diffie-Hellman Parameters” on page 222.

Note: BER-encoding does not put data into an ASCII string; it is simply a standard 
way of describing certain universal objects. To convert binary data to and 
from an ASCII string (to email it, for example) see “Converting Data Between 
Binary and ASCII” on page 154.

Note: Conversion into BER or DER is known as BER-encoding or DER-encoding; 
the conversion between binary and ASCII is known as encoding and 
decoding. This may get confusing, but the word encoding without a BER in 
front of it generally means binary to ASCII. If the encoding is BER- or DER-
encoding, the BER or DER should be explicitly stated.

Input and Output
Some of the AI entries in the Library Reference Manual include the categories “Input 
Constraints” and “Output Considerations”:

• Input constraints generally describe the input requirements of the algorithm 
specified by the AI. 

• Output considerations warn you that there may be more (or fewer) output bytes 
than input bytes.

Two algorithm types that typically have input constraints or output considerations 
are symmetric block algorithms and the RSA algorithm.

Symmetric Block Algorithms
Symmetric block algorithms may have both input constraints and output 
considerations.

Input constraints
• In symmetric block-encryption algorithms, the total number of input bytes must 

be a multiple of the block size. That does not mean the input to each call to an 
Update function must be a multiple of the block size, just the total. 
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For instance, with RC2, the block size is eight bytes. You can pass 23 bytes in the 
first call to Update, then 18, then 7, for a total of 48.

Output considerations
• For a symmetric block-encryption algorithm, the output from each Update call 

may be different from the input size. 

In the above example, RC2 was able to process 16 of the first 23 bytes, but saved 7 
in a buffer. The input was 23, but the output was 16. During the second call to 
Update, Crypto-C had the 18 new input bytes plus the old 7, or 25 bytes to work 
with. It could process 24 (and save 1). Hence the input was 18 but the output was 
24 bytes long. The last 7 input bytes combined with the saved 1 byte make up the 
final 8 byte block. It is important to allow for this difference in length between 
output and input in your application.

• In addition to the difference in size during Updates, the overall data size can 
differ between input and output. 
Crypto-C offers padding for the symmetric block-encryption algorithms, which 
have no restrictions on the total input length. Padding means that the total length 
of the encrypted data can be as many as eight bytes more than the total length of 
the input. 

Note: For algorithm info types that supply padding, Crypto-C will pad even if the 
input is a multiple of the block size. This way, when decrypting, Crypto-C 
knows that the last byte is guaranteed to be a pad byte. For AIs that use PKCS 
#5 padding, the last byte, when decrypted, will be a number: the number of 
pad bytes Crypto-C should strip.

The RSA Algorithm
The second common area of input constraints is the RSA algorithm. Recall that this 
algorithm uses modular math. 

Input constraints
The following input restrictions apply:

• Whenever modular math is used a calculation, the values passed must be less 
than the RSA modulus n. For example, if the modulus is 55, the input must be 
from zero to 54; the number 57 is invalid.
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• For PKCS-compatible RSA, the input to encryption or decryption must be no 
more than k – 11 bytes long, where k is the modulus length in bytes. For example, 
with a 768-bit modulus, the input can be no more than 85, or 96 – 11, bytes. This is 
because the padding scheme needs at least an 11-byte area to work. 
The output will be the same size as the modulus.

• For raw RSA, the application must divide the input to encryption or decryption 
into blocks. Each block must have the same number of bits as the RSA modulus 
and, when interpreted as an integer with the most significant byte first, must be 
numerically less than the modulus. In addition, the size of the total input must be 
a multiple of the size of the modulus. That is, if the modulus is k bits long, each 
block of input must be k bits long, and the total input must be a multiple of k bits.
For example, if the modulus is 768 bits (96 bytes) long, the input must be divided 
into blocks of 96 bytes and the total input must be a multiple of 96 bytes. See 
“Raw RSA” on page 197 for more information on how to pass data properly.  
The output of raw RSA is the same size as the input.
In general, there should be no need for raw RSA encryption or decryption. We do 
not recommend using raw RSA unless you are familiar with the issues involved.

General Considerations
In general, Crypto-C has mechanisms to keep you aware of input constraints and 
output considerations. 

If your input does not meet the constraints, Crypto-C will return an error message.

For output, Crypto-C requires that you pass the size of the output buffer. In this way, 
Crypto-C will determine whether there is enough space available before trying to 
store output. If your buffer is not big enough, Crypto-C will return an error.

Most important of all, when it comes to output, Crypto-C tells you how many bytes it 
placed into the output buffer. That argument is unsigned int *partOutLen in the 
Update and Final function prototypes. Pass an address to an unsigned int and 
Crypto-C will go to that address and drop a value there. That value is the number of 
bytes Crypto-C placed into the output buffer. After the call to Crypto-C, you can look 
at that value to determine how many bytes were processed. It may not be the same 
number as the input length. It might be more, it might be less. It may even be zero.

Key Size
In cryptography, security is measured in key size: the bigger the key, the greater the 
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security. Key size, in turn, is measured in bits. However, a bit number does not 
necessarily describe the entire key.

DES Keys
A DES key is 56 bits. However, that size refers to its cryptographic size, not its 
physical size. To build a DES key, you need 64 bits, but because eight of those bits are 
“parity bits,” which are known, you really only get 56 secret bits. Hence, a DES key, 
while consisting of 64 bits of data, is only 56 cryptographic bits large.

RSA Keys
An RSA key-pair measurement describes the modulus length. When cryptographers 
talk about a “768-bit RSA key pair,” what they really mean is that the modulus is 768 
bits long. Because the security of an RSA key pair depends on how big the modulus is, 
the measurement used is the bit-size of the modulus. However, the actual keys 
themselves contain more information than the modulus, so the physical size is much 
larger.

Public Key Size
A public key consists of a modulus and a public exponent. To store that public key 
requires space for both of those components; so for a 768-bit public key, you need 
more than 768 bits of storage space. 

Almost everyone who uses the RSA algorithm uses F4 as the public exponent. F4 is 
short for Fermat 4, one of a sequence of numbers with special properties first 
described by the 17th-century mathematician Pierre de Fermat. F4 = 01 00 01 in 
hexadecimal notation (65,537 in decimal), and it is 17 bits long. If you use F4, you need 
785 bits of space to store a 768-bit public key and its public exponent. Of course, 
storage space comes only in bytes, so you actually need 99 bytes of space.

In addition, when you access the public key, you need to know where the modulus 
ends and the public exponent begins. It would be a good idea to put identifying 
marks on the data to make it easier to parse. BER/DER encoding standardizes such 
identifying marks as an industry standard so that people using different software 
packages can still trade information. Hence, with Crypto-C, the user has the option of 
storing a 768-bit public key simply as a modulus and public exponent (99 bytes), or in 
its DER encoded format, which requires 126 bytes.

Private Key Size
At its most basic form, the private key consists of a modulus and a private exponent. 
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The modulus for the private key is the same as the modulus for the public key. The 
private exponent is the truly private part of the private key. The private value is 
usually the same size as the modulus, or 1 bit smaller. Therefore, to store a 768-bit 
private key, one needs at least 1536 bits (192 bytes) of storage space.

To perform private key operations, you require only the modulus and private 
exponent. However, the computations can be much faster if you have access to more 
information. 

Recall that, in RSA, the modulus is actually the product of two prime numbers. The 
private exponent is derived from the two primes and the public exponent. Given only 
the modulus and the public exponent, an attacker cannot deduce the private 
exponent.

When computing the key pair, you can find two suitable primes, multiply them 
together to get the modulus, use the primes to determine the private exponent, and 
then throw the primes away. Or you can use the primes to compute two prime 
exponents and a Chinese Remainder Theorem (CRT) coefficient, and save all this 
information. Then, when executing private key operations with the extra information, 
you can use the Chinese Remainder Theorem to make the appropriate computations 
much more quickly.

So when saving a 768-bit private key, you actually need to save the following:

• the modulus: 96 bytes

• the public exponent — it is small and there are advantages to having it saved with 
the private key: 3 bytes

• the private exponent: 96 bytes

• two primes: 2 × 48 bytes

• two prime exponents: 2 × 48 bytes 

• a CRT coefficient: 48 bytes. 

• The identifying marks for DER encoding 

This adds up to 484 bytes!

In addition, when the most significant bit of the most significant byte of a value is set, 
DER calls for a prepended 0 byte, so that it is not interpreted as a negative 2’s 
complement number.

For example, converting the decimal number 3,260,571,825 into hex yields 
0xC25860B1. As a byte string, it would be:

C2 58 60 B1
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which is four bytes long. But is that a negative or positive number? Is the sign bit set, 
or is this an unsigned value? To avoid confusion, we prepend a 0 byte, as follows:

00 C2 58 60 B1

Our string is now five bytes long.

For a 768-bit key pair, the most significant bit of the most significant byte of the 
modulus and both primes should always be set. So three of the private key’s values 
will have a prepended 0 byte. This increases the total key size to 487 bytes. Sometimes 
the most significant bit of the most significant byte of the private exponent, prime 
exponents and CRT coefficient will be set, sometimes not. So the total bytes could be 
as many as 491. 

Note: If the public exponent is F4 (01 00 01), that value does not need a prepended 0 
byte.

All of this means that when you generate your RSA key pair, you do not know in 
advance how big it is going to be when you store it in DER format. You know the 
approximate size, but not the exact length.

Crypto-C has the tools to let you know the exact length of your encoded key. When 
you call B_GetKeyInfo, you pass the address of a pointer. Crypto-C drops off a pointer 
at that address. If you go to the address indicated by the pointer, you will find the key 
information, which includes the key’s length. Use that value to find out exactly how 
long your key is.
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Using Cryptographic Hardware

Interfacing with a BHAPI Implementation
Crypto-C lets you enhance the security and speed of cryptographic operations by 
exploiting cryptographic hardware that supplies an interface to Crypto-C via the 
BSAFE Hardware Application Programming Interface (BHAPI). Capabilities include 
a hardware algorithm method for random number generation and key token types 
that encapsulate RSA, DSA, and symmetric keys inside of hardware.

When you Create, Set, and Init an algorithm object in a Crypto-C software 
application, you set an algorithm info type (AI) and the parameters required by the 
AI. You also choose which algorithm methods to use via the software chooser. The AI 
itself doesn’t perform any cryptographic operations; rather, it is used to store 
information, allocate space, and to create the necessary points of contact with the 
underlying Crypto-C functions. Figure 3-1 shows the relation between the algorithm 
object and the Crypto-C software library.

Figure 3-1 Algorithm Object in a Software Implementation

A hardware manufacturer can associate a hardware function with a Crypto-C AM 
and provide these methods to the software developer. You then access the hardware 
by using B_CreateSessionChooser to create a hardware-based chooser, e.g., 
FIXED_HARDWARE_CHOOSER, that lists the available required hardware methods. This 
substitution is made at link time, and does not change once the application has been 
compiled. 

If more than one hardware method is present for the same AM — for example, if the 
application includes hardware methods implementing RSA encryption from two 
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different manufacturers — B_CreateSessionChooser includes all available hardware 
methods. When an object’s methods are instantiated at initialization, Crypto-C loads 
the object with the first compatible method from the session chooser. Figure 3-2 
shows how an algorithm object operates with a hardware interface.
 

Figure 3-2 Algorithm Object with Hardware

During the call to B_CreateSessionChooser, Crypto-C tests for the presence of the 
hardware; if hardware is present, the hardware method is included in the session 
chooser. If no hardware is present, then the application defaults to the Crypto-C 
software AM or to a software emulation if one is included in the chooser. 

To extend the functionality of the BHAPI interface to include key-token operations, 
Crypto-C supplies some AIs that are only available when B_CreateSessionchooser is 
used. These AIs have software-emulated versions, but can only be accessed via 
inclusion in the hardware chooser.

Hardware Issues
Working with hardware devices introduces new issues that must be addressed. A 
cryptographic key on a hardware device might never leave the device; this is part of 
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the security. For instance, suppose you want to produce a digital envelope. You might 
use an hardware accelerator to perform DES encryption of the bulk data, then want to 
encrypt the DES key with the recipient’s public key. However, when you make the 
call to retrieve the key, the hardware might return a handle to the key, rather than the 
key itself. This enhances security, because the key never appears “in public.”

To implement this, the hardware accelerator might require you to call its key-
wrapping routines to build a digital envelope. When you request the key in order to 
store it for later use, the hardware could return a handle to the key. But if you give 
that data to another cryptographic package, the key will mean nothing. 

In other words, once you build a key (symmetric or private) on a hardware device, it 
is possible that only that hardware device will be able to use the key. Therefore, you 
should use hardware accelerators only when you thoroughly understand their use.
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Chapter 4

Non-Cryptographic Operations
Crypto-C supplies a number of non-cryptographic algorithms that are necessary for 
cryptographic applications. These include:

• Message digests

• Random number generators

• ASCII-to-binary and binary-to-ASCII encoding
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Message Digests
A message digest is a fixed-length statistically-unique identifier that corresponds to a 
set of data. That is, each unit of data — such as a file, string, or buffer — maps to a 
particular byte sequence (usually 16 or 20 bytes long). A digest is not random: 
digesting the same unit of data with the same message-digest algorithm will always 
produce the same byte sequence.

Digests are used in random-number generation, password-based encryption, and 
digital signatures.

Creating a Digest
The example in this section corresponds to the file mdigest.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Crypto-C offers four message digest algorithms: MD, MD2, MD5, and SHA1. 

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal 
compression function, and there is some chance that the attack on MD2 may 
be extended to the full hash function. The same attack applies to MD. Another 
attack has been applied to the compression function on MD5, though this has 
yet to be extended to the full MD5. RSA Data Security, Inc., recommends that 
before you use MD, MD2, or MD5, you should consult the RSA Laboratories 
web site to be sure that their use is consistent with the latest information. 

The AI for SHA1 is AI_SHA1; the Library Reference Manual Chapter 2 entry for this AI 

B_ALGORITHM_OBJ digester = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&digester)) != 0)
  break;
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states that the format of info supplied to B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
To initialize a message digest, call B_DigestInit. The Library Reference Manual 
Chapter 4 entry on B_DigestInit shows that it requires four arguments. The first 
argument is the algorithm object. The second is a key object. All Crypto-C message 
digest AIs call for a properly cast NULL_PTR as the key object; Crypto-C provides this 
argument for algorithms, like HMAC, that require keys. The third argument is an 
algorithm chooser. The fourth is a surrender context; this is a fast function, so it is 
reasonable to pass a properly cast NULL_PTR:

Step 4: Update
Use B_DigestUpdate to enter the data to digest. If you have separate units of data (for 
example, two or more files or several strings), make a call to B_DigestUpdate for each 
unit. Message digesting is quick, so unless you are digesting an extremely large 
amount of data (a megabyte or more), it is reasonable to pass a properly cast NULL_PTR 
for the surrender context. 

if ((status = B_SetAlgorithmInfo
     (digester, AI_SHA1, NULL_PTR)) != 0)
  break;

B_ALGORITHM_METHOD *DIGEST_CHOOSER[] = {
  &AM_SHA,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_DigestInit
     (digester, (B_KEY_OBJ)NULL_PTR, DIGEST_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Your call will be the following:

Step 5: Final
An MD2 or MD5 digest is always 16 bytes; an SHA1 digest is always 20 bytes. Because 
you are using SHA1, create a 20-byte buffer to hold the output and call 
B_DigestFinal. The Library Reference Manual gives the prototype for this function in 
Chapter 4. 

The first argument is the algorithm object. The second is the buffer where Crypto-C 
will deposit the digest. The third is an address for Crypto-C to return the number of 
bytes in the digest. Because this value should always be 20, you can use this as a check 
on the algorithm if you like. The fourth argument is the size of the output buffer. If 
Crypto-C needs a bigger buffer, this function will return an error. The fifth argument 
is the surrender context; this is a fast function, so there should be no problem with 
using a properly cast NULL_PTR:

/* The variable dataToDigest should already point to allocated
   memory and contain the data, dataToDigestLen should 
   already be set to the number of bytes to digest. */

unsigned char *dataToDigest;
unsigned int dataToDigestLen;

if ((status = B_DigestUpdate
     (digester, dataToDigest, dataToDigestLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

#define DIGEST_LEN 20

unsigned char digestedData[DIGEST_LEN];
unsigned int digestedDataLen;

if ((status = B_DigestFinal
     (digester, digestedData, &digestedDataLen, DIGEST_LEN,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 6: Destroy
Remember to destroy all objects when you are done with them:

BER-Encoding the Digest
If you want to send your digest to someone, you should BER-encode the algorithm 
identifier and the digest. The Crypto-C function B_EncodeDigestInfo offers a way to 
put together a string containing your information in BER format.

The example in this section corresponds to the file mdber.c.

The Library Reference Manual Chapter 4 entry for B_EncodeDigestInfo shows that this 
function takes six arguments:

The first argument is an address where Crypto-C can drop the BER-encoded digest 
information. You will have to allocate the space for this buffer. This buffer will 
contain the algorithm identifier and the 16- or 20-byte digest, the total for MD2 and 
MD5 digests is 34; for a SHA1 digest, it is 35 bytes. If you want to be safe, you can 
make the buffer larger. 

The second argument is the address of an unsigned int; Crypto-C will place the final 
length of the BER encoding at that address. The third argument is the buffer size. The 
fourth is a pointer to an ITEM containing the DER encoding of the message digest 
algorithm; you obtain the DER encoding by calling B_GetAlgorithmInfo with the 
appropriate AI with BER-encoding. The fifth argument is the digest itself; the sixth is 
the length of the digest.

B_DestroyAlgorithmObject (&digester);

int B_EncodeDigestInfo (
  unsigned char *digestInfo,                      /* encoded output buffer */
  unsigned int  *digestInfoLen,                /* length of encoded output */
  unsigned int   maxDigestInfoLen,            /* size of digestInfo buffer */
  ITEM          *algorithmID,       /* message digest algorithm identifier */
  unsigned char *digest,                           /* message digest value */
  unsigned int   digestLen                             /* length of digest */
);
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The following example BER-encodes the sample digest above:

To decode BER-encoded information, call B_DecodeDigestInfo. Simply pass the 
addresses you need; Crypto-C will fill the ITEMs for you:

#define DIGEST_LEN 20
#define ALG_ID_LEN DIGEST_LEN + 18

ITEM *sha1AlgInfoBER;
unsigned char digestInfoBER[ALG_ID_LEN];
unsigned int digestInfoBERLen;

if ((status = B_GetAlgorithmInfo
     ((POINTER *)&sha1AlgInfoBER, digester, AI_SHA1_BER)) != 0)
  break;

if ((status = B_EncodeDigestInfo
     (digestInfoBER, &digestInfoBERLen, ALG_ID_LEN, sha1AlgInfoBER,
      digestedData, digestedDataLen)) != 0)
  break;

ITEM retrievedAlgorithmID;
ITEM retrievedDigest;

if ((status = B_DecodeDigestInfo
     (&retrievedAlgorithmID, &retrievedDigest, digestInfoBER,
      digestInfoBERLen)) != 0)
  break;
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Hash-Based Message Authentication 
Code (HMAC)
A hash-based message authentication code (HMAC) combines a secret key with a 
message digest to create a message authentication code. See “Hash-Based Message 
Authentication Codes (HMAC)” on page 47 for a description of the algorithm.

Crypto-C provides an HMAC implementation based on SHA1. Recall that SHA1 
produces a 20-byte digest and takes input in 64-byte blocks. 

The example in this section corresponds to the file hmac.c.

Step 1: Creating an Algorithm Object
Declare a variable of type B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
There is only one AI for hash-based message authentication codes, AI_HMAC. The 
Library Reference Manual Chapter 2 entry for AI_HMAC states that the format of info 
supplied to B_SetAlgorithmInfo is a pointer to a B_DIGEST_SPECIFIER structure:

The only choice for digestInfoType in Crypto-C is AI_SHA1. In the case of AI_SHA1, 

  B_ALGORITHM_OBJ HMACDigester = (B_ALGORITHM_OBJ)NULL_PTR;
 
  if ((status = B_CreateAlgorithmObject (&HMACDigester)) != 0)
    break;

typedef struct {
  B_INFO_TYPE digestInfoType;
  POINTER     digestInfoParams;
} B_DIGEST_SPECIFIER;
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digestInfoParams should be set to NULL_PTR:

Step 3: Init
For hash-based message authentication, you need a key before you can initialize the 
object.

Step 3a: Creating the Key Object

Step 3b: Setting the Key Object
Generate a random 24-byte key using KI_24Byte:

  B_DIGEST_SPECIFIER hmacInfo;
 
  hmacInfo.digestInfoType = AI_SHA1;
  hmacInfo.digestInfoParams = NULL_PTR;
 
  if ((status = B_SetAlgorithmInfo 
       (HMACDigester, AI_HMAC, (POINTER)&hmacInfo)) != 0)
    break;

#define KEY_SIZE 24

  B_KEY_OBJ HMACKey = (B_KEY_OBJ)NULL_PTR;
  unsigned char *keyData;

  /* Create a key object */
  if ((status = B_CreateKeyObject (&HMACKey)) != 0)
    break;

  keyData = T_malloc (KEY_SIZE);
  if ((status = (keyData == NULL_PTR)) != 0)
    break;

  /* Complete Steps 1-4 of Generating Random Numbers  */
  /* Generate KEY_SIZE bytes of random data for the key. */
  if ((status = B_GenerateRandomBytes
       (randomAlgorithm, keyData, KEY_SIZE,
       (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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Once you have a properly initialized the key object, you can call B_DigestInit. The 
Library Reference Manual Chapter 4 entry on B_DigestInit shows that it requires four 
arguments. The first argument is the algorithm object; the second is the key object. 
The third is an algorithm chooser. The fourth is a surrender context; this is a fast 
function, so it is reasonable to pass a properly cast NULL_PTR:

Step 4: Update
Once you have set the algorithm object, you can create the message authentication 
code by calling B_DigestUpdate for all of the data to digest:

Step 5: Final
After the data to digest has been processed by calls to B_DigestUpdate, call 
B_DigestFinal. You need to pass a pointer to the location where B_DigestFinal can 
store the output. In the case of AI_HMAC using SHA1, you need 20 bytes to store the 

  /* Set the key object */
  if ((status = B_SetKeyInfo (HMACKey, KI_24Byte, keyData)) != 0)
    break;

  B_ALGORITHM_METHOD *HMAC_CHOOSER[] = {
    &AM_SHA,
    &AM_SHA_RANDOM,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };

  if ((status = B_DigestInit 
       (HMACDigester, HMACKey, HMAC_CHOOSER, 
       (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  unsigned char dataToDigest[] = "Digest this sentence.";
  unsigned int dataToDigestLen = strlen (dataToDigest);

  if ((status = B_DigestUpdate
       (HMACDigester, dataToDigest, dataToDigestLen,
       (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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result.

Step 6: Destroy
Once you have generated the message authentication code, destroy any objects you 
used, and free up any memory you allocated:

  unsigned char *digestedData;
  unsigned int digestedDataLen;

  digestedData = T_malloc (20);
  if ((status = (digestedData == NULL_PTR)) != 0)
    break;

  if ((status = B_DigestFinal
       (HMACDigester, digestedData, &digestedDataLen,
           20, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  B_DestroyKeyObject (&HMACKey);
  B_DestroyAlgorithmObject (&randomAlgorithm);
  B_DestroyAlgorithmObject (&HMACDigester);

  if (digestedData != NULL_PTR) {
    T_memset (digestedData, 0, 20);
    T_free (digestedData);
    digestedData = NULL_PTR;
    digestedDataLen = 0;
  }
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Generating Random Numbers
In the “Introductory Example” on page 9, we hard-coded the DES key. In an actual 
application, you would use randomly-generated values. Crypto-C allows you to 
generate a pseudo-random sequence of bytes using a pseudo-random number 
generator (PRNG). These PRNGs are based on the message digests MD2, MD5, and 
SHA1. In fact, because different standards implement random number generation in 
different ways, there are two random number generators based on SHA1:

• AI_X962Random_V0 is a SHA1-based pseudo-random number generator. Its 
implementation can also be used as a model for the MD2 and MD5 random 
number generators. This model should be used for most random-number 
generation methods.

• AI_X931Random is a SHA1-based pseudo-random number generator that allows 
multiple streams of randomness. It is intended primarily for use with 
AI_RSAStrongKeyGen, and should not be used for general-purpose random-
number generation.

Because there are differences between these two PRNGs, this section shows how to 
generate random numbers for the two SHA1 implementations.

Generating Random Numbers with SHA1
The example in this section corresponds to the file genbytes.c. This example, which 
uses AI_X962Random_V0, can easily be modified to use the PRNGs based on MD2 
and MD5, AI_MD2Random and AI_MD5Random, respectively.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&randomAlgorithm)) != 0)
  break;
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Step 2: Setting The Algorithm Object
You need to supply an appropriate algorithm info type (AI) and the proper associated 
info to B_SetAlgorithmInfo. For random-number generation, you have a choice 
between AI_MD2Random, AI_MD5Random, AI_X962Random_V0 (also known as 
AI_SHA1Random), and AI_X931Random, based on the message digest algorithms MD2, 
MD5, and SHA1 described earlier. For this example, choose AI_X962Random_V0. 

Note: AI_SHA1Random is identical to AI_X962Random_V0; the name 
AI_SHA1Random is used in the demo applications. However, AI_SHA1Random 
may change in future versions of Crypto-C. For forward compatibility, we 
recommend that you do not use the name AI_SHA1Random in your 
applications; use AI_X962Random_V0 instead.

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal 
compression function, and there is some chance that the attack on MD2 may 
be extended to the full hash function. The same attack applies to MD. Another 
attack has been applied to the compression function on MD5, though this has 
yet to be extended to the full MD5. RSA Data Security, Inc. recommends that 
before you use MD, MD2, or MD5, you should consult the RSA Laboratories 
web site to be sure that their use is consistent with the latest information. 

The entry for AI_SHA1Random in Chapter 2 of the Library Reference Manual refers you to 
AI_X962Random_V0; the entry for this second AI states that the info supplied to 
B_SetAlgorithmInfo is NULL_PTR. So the proper way to set your random algorithm 
object is:

Step 3: Init
Initialize randomAlgorithm with B_RandomInit. The prototype of this function in 
Chapter 4 of the Library Reference Manual indicates that it takes three arguments: the 
algorithm object, the algorithm chooser, and the surrender context. The first argument 
is randomAlgorithm. For the second argument, build an algorithm chooser that 
contains the AMs listed in the Library Reference Manual Chapter 2 entry for 
AI_X962Random_V0. B_RandomInit is a fast function, so it is reasonable to use a 

if ((status = B_SetAlgorithmInfo
     (randomAlgorithm, AI_SHA1Random, NULL_PTR)) != 0)
  break;
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properly cast NULL_PTR for the surrender context as the third argument.

Step 4: Update
The B_RandomUpdate function mixes in a random seed to the algorithm object. The 
function prototype in Chapter 4 of the Library Reference Manual shows that 
B_RandomUpdate takes four arguments: an algorithm object, a random seed, the length 
of the random seed, and a surrender context. So before you can call B_RandomUpdate, 
you need to procure a random seed.

Step 4a: The Random Seed
The purpose of random number generation is to produce an unpredictable and 
unrepeatable sequence of bytes. If you do not update a random algorithm object with 
a random seed, you will generate a default sequence of pseudo-random bytes. In 
addition, if someone else updates their random algorithm object with the same seed 
that you used, they will generate the same sequence you did. Because unrepeatability 
depends on the random seed, you want an unrepeatable seed. 

Generating a seed that cannot be predicted or repeated is especially important in 
cryptography. There are a number of sources for unrepeatable seeds. The best source 
may be a hardware noise generator. The BSAFE Hardware API (BHAPI) offers a way 
to interface with a hardware random generator. One such implementation interfaces 
with Intel’s Random Number Generator; see the RSA BSAFE Crypto-C Intel Security 
Hardware User’s Manual for more information. Other seed-gathering methods involve 
tracking mouse movement or timing keystrokes, system time, or processor-elapsed 
time. There may be other schemes you can devise that do not depend on someone 
entering a value from the keyboard.

The seed does not necessarily have to be random, but it must be input which is 
difficult to predict or reproduce. Once you have seeded the random algorithm, the 
algorithm can produce a sequence of random bytes; these bytes are “more random” 
and are generated more quickly than the seed. See “Pseudo-Random Numbers and 

B_ALGORITHM_METHOD *RANDOM_CHOOSER[] = {
  &AM_SHA1_RANDOM,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_RandomInit
     (randomAlgorithm, RANDOM_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Seed Generation” on page 92 for more information.

Before you get your seed, you need to set aside memory to hold it. In this example, 
you will allocate 256 bytes for your seed:

Now get the random seed. The exact method you use to get the seed will depend on 
your application and how the seed is generated. Here is a quick method for getting 
keyboard input. This method is not recommended for an actual application; it is 
supplied for illustrative purposes only:

Note: Another method for acquiring a seed would be to use a hardware random 
number generator, if available, such as the Intel Random Number Generator 
described in the Crypto-C Intel Security Hardware User’s Guide. However, even 
if you have access to random numbers from hardware, you will still want to 
have a fallback method of seed collection, in case the hardware random 
number generator is not available or fails for some reason.

Here you are using a 256-byte buffer. When the space was allocated, the contents of 
the buffer were simply whatever happened to be in that memory location at the time. 
In this case, when you enter a seed at the keyboard (the gets function), you overwrite 
the first few bytes in the buffer, one byte for each keystroke. Now, the first bytes in the 
buffer are the input from the keyboard; the rest of the 256 bytes are untouched.

Note: If you want to guarantee a repeatable seed (for example, if you are testing and 
want to be able to reproduce your data), set the buffer with T_memset. 

Now that you have a random seed, you can call B_RandomUpdate. The length 
argument tells Crypto-C how many bytes from the random seed buffer to use. See 
“Pseudo-Random Numbers and Seed Generation” on page 92 for a discussion on how 

POINTER randomSeed = NULL_PTR;
unsigned int randomSeedLen;

randomSeedLen = 256;
randomSeed = T_malloc (randomSeedLen);
if ((status = (randomSeed == NULL_PTR)) != 0)
  break;

puts (“Enter a random seed”);
if ((status = 
    (NULL_PTR ==
     (unsigned char *)gets ((char *)randomSeed))) != 0)
  break;
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many seed bytes to use. In this example, you will use all 256 bytes from the buffer, 
even though you probably entered fewer than 256 characters at the keyboard. Once 
again, it is reasonable to pass a NULL_PTR for the surrender context, because 
B_RandomUpdate is a fast function:

Call B_RandomUpdate as many times as you wish with different seeds each time to 
increase the unrepeatability of your random number generator. After each Update, 
you may want to overwrite and free your seed immediately.

Step 5: Generate
When generating random bytes, you call B_GenerateRandomBytes instead of a Final 
function. The function prototype in Chapter 4 of the Library Reference Manual calls for 
the following arguments: a random algorithm object, an output buffer, the number of 
bytes to generate, and a surrender context. You need to prepare a buffer before calling 
B_GenerateRandomBytes:

Now you can generate some random bytes. Generating 64 bytes is quick, so you are 
still safe in using a NULL_PTR for the surrender context.

if ((status = B_RandomUpdate
     (randomAlgorithm, randomSeed, randomSeedLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

#define NUMBER_OF_RANDOM_BYTES 64

unsigned char *randomByteBuffer = NULL_PTR;

randomByteBuffer = T_malloc (NUMBER_OF_RANDOM_BYTES);
if ((status = (randomByteBuffer == NULL_PTR)) != 0)
  break;

if ((status = B_GenerateRandomBytes
     (randomAlgorithm, randomByteBuffer, NUMBER_OF_RANDOM_BYTES,
     (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 6: Destroy
Remember to destroy all objects when done with them. You must also call T_free 
once for each call to T_malloc. For security reasons, overwrite the seed buffer with 
zeros as well:

Generating Independent Streams of Randomness
AI_X931Random is a SHA1-based pseudo-random number generator that allows you to 
generated multiple streams of randomness. This means that the Crypto-C 
implementation of the X9.31 random algorithm is somewhat different from the 
implementation of the other PRNGs in Crypto-C. This section describes the 
modifications you would have to make to the previous example to use 
AI_X931Random. These modifications take place at Step 2, Set, and Step 3, Init.

The example in this section corresponds to the file x931rand.c.

Step 1: Create
This step is identical to the previous example.

Step 2: Set
Setting the X9.31 random algorithm object is the main difference working with the 
other random algorithms. AI_X931Random requires you to pass in a structure 
describing the number of independent streams of randomness and a seed which will 
be divided between the streams.

For this example, you will specify six streams of randomness, and provide a seed 

B_DestroyAlgorithmObject (&randomAlgorithm);
T_memset (randomSeed, 0, randomSeedLen);
T_free (randomSeed);
T_free (randomByteBuffer);

typedef struct 
{
     unsigned int numberOfStreams;        /* number of independent streams */
     ITEM         seed;                              /* additional seeding */
                                /* to be equally divided among the streams */
} A_X931_RANDOM_PARAMS;
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stored in an ITEM structure, randomSeed. The amount of seed data passed in the 
A_X931_RANDOM_PARAMS structure must greater than or equal to 20 * (number of 
streams) bytes and less than or equal to 64 * (number of streams) bytes. With six 
streams, this means the seed size must be between 120 bytes and 384 bytes. If the 
amount of seed data is outside this range, Crypto-C will return a BE_ALGORITHM_INFO 
error.

In addition, Crypto-C checks the seed value for the amount of entropy. For example, a 
constant seed (all zeros or all ones) will return an error.

Step 3: Init
Once the structure has been passed in, the Init is essentially the same as in the 
previous example. The only difference is that AM_X931_RANDOM appears in the chooser.

Steps 4, 5, 6
These steps are identical to the previous example.

    ITEM randomSeed;
    A_X931_RANDOM_PARAMS x931Params;

    x931Params.numberOfStreams = 6;
    x931Params.seed.data = randomSeed.data;
    x931Params.seed.len = randomSeed.len;

    if ((status = B_SetAlgorithmInfo
         (randomAlgorithm, AI_X931Random, (POINTER)&x931Params)) != 0)
       break;

    B_ALGORITHM_METHOD *RANDOM_CHOOSER[] = {
      &AM_X931_RANDOM,
      (B_ALGORITHM_METHOD *)NULL_PTR
    };

    if ((status = B_RandomInit
         (randomAlgorithm, RANDOM_CHOOSER,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
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Converting Data Between Binary and 
ASCII
If you have data in binary format, yet need it in ASCII, or vice versa, Crypto-C offers 
functions to encode and decode according to the RFC1113 standard.

The example in this section corresponds to the file encdec.c.

Encoding Binary Data To ASCII

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one ASCII encoding or decoding AI, AI_RFC1113Recode. The Library 
Reference Manual Chapter 2 entry for this AI states that the format of info supplied to 
B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
To initialize ASCII encoding, call B_EncodeInit. This function takes only one 

B_ALGORITHM_OBJ asciiEncoder = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&asciiEncoder)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (asciiEncoder, AI_RFC1113Recode, NULL_PTR)) != 0)
  break;
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argument, the algorithm object:

Step 4: Update
Enter the data to encode through B_EncodeUpdate. The application is responsible for 
allocating the space for the output of this routine. When encoding, for each three bytes 
of input there are four bytes of output. So when allocating space, multiply the input 
size by 4/3 and round up. If memory is not an issue, you can make the output buffer 
twice the size of the input length.

Given pre-existing binary input, your calls to the Update functions would be as 
follows:

if ((status = B_EncodeInit (asciiEncoder)) != 0)
  break;

/* We are assuming binaryData already points to allocated
     space and contains the data to encode into ASCII.
 */
unsigned char *binaryData;
unsigned int binaryDataLen;
unsigned char *asciiEncoding = NULL_PTR;
unsigned int asciiEncodingLenUpdate;
 
/* Allocate a buffer twice the size of the binary data */
asciiEncoding = T_malloc (binaryDataLen * 2);
if ((status = (asciiEncoding == NULL_PTR)) != 0)
  break;
 
if ((status = B_EncodeUpdate
     (asciiEncoder, asciiEncoding, &asciiEncodingLenUpdate,
      (binaryDataLen * 2), binaryData, binaryDataLen)) != 0)
  break;
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Step 5: Final
Finalize the encoding process, writing out any remaining bytes.

Step 6: Destroy
Remember to destroy all objects and free up any memory allocated when done:

Decoding ASCII-Encoded Data

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one ASCII-encoding or decoding AI, AI_RFC1113Recode. The Library 
Reference Manual Chapter 2 entry on this AI states that the format of info supplied to 

unsigned int asciiEncodingLenFinal;
 
if ((status = B_EncodeFinal
     (asciiEncoder, asciiEncoding + asciiEncodingLenUpdate,
      &asciiEncodingLenFinal,
      (binaryDataLen * 2) - asciiEncodingLenUpdate)) != 0)
  break;

B_DestroyAlgorithmObject (&asciiEncoder);
T_free (asciiEncoding);

B_ALGORITHM_OBJ asciiDecoder = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&asciiDecoder)) != 0)
  break;
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B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
To initialize decoding, call B_DecodeInit. This function takes only one argument, the 
algorithm object:

Step 4: Update
Enter the data to decode through B_DecodeUpdate. The application is responsible for 
allocating the space for the output of this routine. When decoding, there will be three 
bytes of output for every four bytes of input. If memory is a concern, you may want to 
determine the exact number of bytes you will need. If memory is not a concern, make 
the output size equal to the input length.

Given your pre-existing ASCII input, your call to the Update function would be as 
follows:

if ((status = B_SetAlgorithmInfo
     (asciiDecoder, AI_RFC1113Recode, NULL_PTR)) != 0)
  break;

if ((status = B_DecodeInit (asciiDecoder)) != 0)
  break;

/* We are assuming asciiEncoding already points to allocated
     space and contains the data to decode into binary. Also,
     asciiEncodingLenTotal is already set with the length of 
     the asciiEncoding.
 */
unsigned char *asciiEncoding;
unsigned int asciiEncodingLenTotal;
unsigned char *binaryDecoding = NULL_PTR;
unsigned int binaryDecodingLenUpdate;

/* Allocate a buffer the same size as the ascii data. */
binaryDecoding = T_malloc (asciiEncodingLenTotal);
if ((status = (binaryDecoding == NULL_PTR)) != 0)
  break;
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Step 5: Final
Finalize the decoding process, writing out any bytes remaining:

Step 6: Destroy
When you are done, remember to destroy all objects and free up any memory that has 
been allocated:

if ((status = B_DecodeUpdate
     (asciiDecoder, binaryDecoding, &binaryDecodingLenUpdate,
      asciiEncodingLenTotal, asciiEncoding,
      asciiEncodingLenTotal)) != 0)
  break;

unsigned int binaryDecodingLenFinal;
 
if ((status = B_DecodeFinal
     (asciiDecoder, binaryDecoding + binaryDecodingLenUpdate,
      &binaryDecodingLenFinal,
      asciiEncodingLenTotal - binaryDecodingLenUpdate)) != 0)
  break;

B_DestroyAlgorithmObject (&asciiDecoder);
T_free (binaryDecoding);
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Symmetric-Key Operations
Recall that the RC4 algorithm of the “Introductory Example” on page 9 is called 
symmetric-key encryption because the key used to encrypt is the same key that will 
be needed to decrypt. Crypto-C offers two types of symmetric-key encryption 
operations: stream ciphers and block ciphers. RC4, the only stream cipher in Crypto-
C, was used in the “Introductory Example” on page 9. This chapter gives examples of 
the block ciphers DES, RC2, and RC5.

For an example of public-key encryption, see “Performing RSA Operations” on 
page 186.
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Block Ciphers

DES with CBC
The example in this section corresponds to the file descbc.c.

Step 1: Creating an Algorithm Object
Declare a variable to be a B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, it address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
There are a number of DES AIs to choose from. See Table 3-6 on page 107 for a 
summary. For this example, choose AI_FeedbackCipher. AI_FeedbackCipher is a 
general-purpose AI that allows you to choose different block cipher methods, such as 
DES, RC2, and RC5. It also allows you to choose different feedback methods for your 
cipher. This makes updating your program to use a different block cipher or feedback 
method easy; you simply have to replace the arguments.

See “Block Ciphers” on page 36 of this manual for an overview of block cipher 
algorithms and feedback methods. We will implement DES in CBC mode using the 
padding scheme defined in PKCS #5. 

The description of AI_FeedbackCipher in Chapter 2 of the Library Reference Manual 
says that the format of the info supplied to B_SetAlgorithmInfo is a pointer to a 

  B_ALGORITHM_OBJ encryptionObject = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject (&encryptionObject)) != 0)
    break;
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B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

encryptionMethodName is the block cipher that you will use; for this example, use “des”. 
The information in the Library Reference Manual indicates that you do not need to 
supply any parameters for the DES encryption algorithm, so set encryptionParams to 
NULL_PTR. 

Use Cipher Block Chaining (CBC) for your feedback method. For this method, the 
Library Reference Manual says that feedbackParams is an ITEM structure containing the 
initialization vector:

See “Block Ciphers” on page 36 for an explanation of initialization vectors. Use a 
random number generator to produce an IV. Remember, the IV is not secret and will 
not assist anyone in breaking the encryption, but you should use a different IV for 
different messages. The size of the IV is eight bytes, because DES encrypts blocks of 
eight bytes. The size of the IV is always related to the size of the block, not the key:

typedef struct {
  unsigned char *encryptionMethodName;    /* examples include “des”, “rc5” */
  POINTER        encryptionParams;                 /* e.g., RC5 parameters */
  unsigned char *feedbackMethodName;
  POINTER        feedbackParams;             /* Points at init vector ITEM */
                                      /* for all feedback modes except cfb */
  unsigned char *paddingMethodName;
  POINTER        paddingParams;        /* Ignored for now, but may be used */
                                                /* for new padding schemes */
} B_BLK_CIPHER_W_FEEDBACK_PARAMS;

  typedef struct {
    unsigned char *data;
    unsigned int   len;
  } ITEM;

 unsigned char *ivBytes[BLOCK_SIZE];
 B_BLK_CIPHER_W_FEEDBACK_PARAMS fbParams;

 ITEM ivItem;
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You must also indicate that you want to use the standard CBC padding which is 
defined in PKCS #5; do this by setting fbParams.paddingMethodName to "pad". You do 
not need to pass in any padding parameters for this padding scheme. Again, “Block 
Ciphers” on page 36 explains padding.

Now set up the B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

Step 3: Init
You need a key before you can initialize the object for encryption.

  /* Complete steps 1 - 4 of Generating Random Numbers, then */
  /* call B_GenerateRandomBytes.                             */

  if ((status = B_GenerateRandomBytes 
       (randomAlgorithm, ivBytes, 8,
        (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  ivItem.data = ivBytes;
  ivItem.len = 8;

  fbParams.encryptionMethodName = (unsigned char *)"des";
  fbParams.encryptionParams = NULL_PTR;
  fbParams.feedbackMethodName = (unsigned char *)"cbc";
  fbParams.feedbackParams = (POINTER)&ivItem;
  fbParams.paddingMethodName = (unsigned char *)"pad";
  fbParams.paddingParams = NULL_PTR;

  if ((status = B_SetAlgorithmInfo
       (encryptionObject, AI_FeedbackCipher,(POINTER)&fbParams)) != 0)
    break;
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Step 3a: Creating the Key Object

Step 3b: Setting the Key Object
You want to use a KI compatible with DES encryption, so return to the entry for 
AI_FeedbackCipher in Chapter 2 of the Library Reference Manual:

See “Summary of KIs” on page 115 of this manual for a discussion of the KIs. For this 
example, you will use KI_DES8Strong. Its entry in the Library Reference Manual states:

Use a random number generator to produce eight bytes for the key:

Now that you have a key, you need an algorithm chooser and a surrender context. 

B_KEY_OBJ desKey = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&desKey)) != 0)
  break;

Key info types for keyObject in B_EncryptInit or B_DecryptInit:
Depends on cipher type, as follows:

Cipher KIs

DES KI_Item, KI_DES8, KI_DES8Strong, KI_8Byte

Format of info supplied to B_SetKeyInfo:
pointer to an unsigned char array which holds the 8-byte DES key. 
The key is DES parity-adjusted when it is copied to the key object.

    unsigned char keyData[8];

   /* Complete steps 1 - 4 of Generating Random Numbers, */
   /* then call B_GenerateRandomBytes. */
   if ((status = B_GenerateRandomBytes 
         (randomAlgorithm, keyData, 8,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

if ((status = B_SetKeyInfo
     (desKey, KI_DES8Strong, (POINTER)keyData)) != 0)
  break;
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This is a speedy function, so you can use a properly cast NULL_PTR for the surrender 
context; but you do want to build a chooser:

Step 4: Update
Enter the data to encrypt with B_EncryptUpdate. The Library Reference Manual Chapter 
2 entry for AI_FeedbackCipher states that you may pass (B_ALGORITHM_OBJ)NULL_PTR 
for all randomAlgorithm arguments. Once you have your input, call B_EncryptUpdate.

Remember that DES is a block cipher and requires input that is a multiple of eight 
bytes. Because you set fbParams.paddingMethodName to "pad" (see page 162), Crypto-
C will pad to make the input a multiple of eight bytes. That means that the output 
buffer should be at least eight bytes longer than the input length. DES is a fast 
algorithm, so for small amounts of data it is reasonable to pass a properly cast 
NULL_PTR for the surrender context. If you want to pass a surrender context, you can:

B_ALGORITHM_METHOD *DES_CBC_CHOOSER[] = {
  &AM_CBC_ENCRYPT,
  &AM_DES_ENCRYPT,
  &AM_SHA_RANDOM,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
     (encryptionObject, desKey, DES_CBC_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

static char *dataToEncrypt = "Encrypt this sentence.";
unsigned char *encryptedData = NULL_PTR;
unsigned int outputBufferSize;
unsigned int outputLenUpdate, outputLenFinal;
unsigned int encryptedDataLen;

encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
  break;
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Step 5: Final

Step 6: Destroy
Remember to destroy all objects that you created and free up any memory that you 
allocated:

Note: Using T_free means you can no longer access the data at that address. Do not 
free a buffer until you no longer need the data it contains. If you will need the 
data later, you might want to save it to a file first.

Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use 
the same AI, IV, and key data. Use the proper decryption AM and call B_DecryptInit, 
B_DecryptUpdate, and B_DecryptFinal.

RC2
RC2 is a variable-key-size block cipher. Whereas a DES key requires eight bytes — no 

if ((status = B_EncryptUpdate
     (encryptionObject, encryptedData, &outputLenUpdate,
      encryptedDataLen, (unsigned char *)dataToEncrypt,
      dataToEncryptLen, (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

if ((status = B_EncryptFinal
     (encryptionObject, encryptedData + outputLenUpdate,
      &outputLenFinal, encryptedDataLen - outputLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyKeyObject (&desKey);
B_DestroyAlgorithmObject (&encryptionObject);
B_DestroyAlgorithmObject (&randomAlgorithm);
T_free (encryptedData);
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more, no less — an RC2 key can be anywhere between one and 128 bytes. The larger 
the key, the greater the security. RC2 is called a block cipher because it encrypts 8-byte 
blocks. Recall that DES also is a block cipher that encrypts 8-byte blocks. That means 
RC2 can serve as a drop-in replacement for DES. The steps for using 
AI_FeedbackCipher with RC2 are almost identical to those for DES.

The example in this section corresponds to the file rc2.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are a number of RC2 AIs to choose from. See Table 3-6 on page 107 for a 
summary. Choose AI_FeedbackCipher; as in the previous example, the format of the 
info supplied to B_SetAlgorithmInfo is a pointer to a 
B_BLK_CIPHER_W_FEEDBACK_PARAMS structure:

Once again, encryptionMethodName is the block cipher that you will use; in this 
example, use “rc2”. All the other parameters are the same as for DES, except 
encryptionParams. For RC2, the Library Reference Manual indicates that you need to 

B_ALGORITHM_OBJ rc2Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc2Encrypter)) != 0)
  break;

typedef struct {
  unsigned char *encryptionMethodName;    /* examples include “des”, “rc5” */
  POINTER        encryptionParams;                 /* e.g., RC5 parameters */
  unsigned char *feedbackMethodName;
  POINTER        feedbackParams;             /* Points at init vector ITEM */
                                      /* for all feedback modes except cfb */
  unsigned char *paddingMethodName;
  POINTER        paddingParams;        /* Ignored for now, but may be used */
                                                /* for new padding schemes */
} B_BLK_CIPHER_W_FEEDBACK_PARAMS;
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supply an A_RC2_PARAMS structure for the RC2 encryption algorithm:

There is a distinction between key size and effective key bits. The RC2 algorithm 
begins by building a 128-byte table based on the key. The total number of possible 
tables is limited by the number of effective key bits. Using 80 effective key bits is 
generally sufficient for most applications.

Use Cipher Block Chaining (CBC) for your feedback method. Once again, for this 
method, you need an initialization vector; use a random number generator to produce 
one. Remember, the IV is not secret and will not assist anyone in breaking the 
encryption. Its size will be eight bytes, because RC2 encrypts blocks of eight bytes. 
The Library Reference Manual says that feedbackParams is an ITEM structure containing 
the initialization vector:

now you can set your algorithm object as follows:

typedef struct {
  unsigned int effectiveKeyBits;             /* effective key size in bits */
} A_RC2_PARAMS;

  typedef struct {
    unsigned char *data;
    unsigned int   len;
  } ITEM;

ITEM ivItem;
unsigned char initVector[BLOCK_SIZE];
A_RC2_PARAMS rc2Params;
B_BLK_CIPHER_W_FEEDBACK_PARAMS fbParams;

/* Complete steps 1 - 4 of Generating Random Numbers, 
   then call B_GenerateRandomBytes. */
if ((status = B_GenerateRandomBytes
     (randomAlgorithm, (unsigned char *)initVector, 8,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

rc2Params.effectiveKeyBits = 80;
ivItem.data = initVector;
ivItem.len = BLOCK_SIZE;
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Step 3: Init
You need a key before you can initialize the algorithm object for encryption.

Step 3a: Creating a Key Object

Step 3b: Setting the Key Object
You are using 80 effective key bits. That does not mean you need exactly ten bytes of 
key data, although for security reasons, it is important to use at least ten bytes. You 
can generate 24 bytes (192 bits) of key data and the algorithm will still work at 80 
effective bits. Thus, in the future, if you want to increase the effective key bits, you do 
not have to change the code that generates key data, only the effective key bit 
parameter. 

Key generation is almost the same as with DES, but you will use a different KI. In the 
Library Reference Manual Chapter 2 entry for AI_FeedbackCipher, you see you have a 
choice of KIs. Because your key is going to be 24 bytes, you cannot use KI_8Byte, so 
choose KI_Item. Looking up KI_Item in Chapter 3 of the Library Reference Manual, you 
find that the info you supply to B_SetKeyInfo is a pointer to an ITEM struct, which is

fbParams.encryptionMethodName = (unsigned char *)"rc2";
fbParams.encryptionParams = NULL_PTR;
fbParams.feedbackMethodName = (unsigned char *)"cbc";
fbParams.feedbackParams = (POINTER)&ivItem;
fbParams.paddingMethodName = (unsigned char *)"pad";
fbParams.paddingParams = NULL_PTR;

if ((status = B_SetAlgorithmInfo
     (rc2Encrypter, AI_FeedbackCipher, (POINTER)&fbParams)) != 0)
  break;

B_KEY_OBJ rc2Key = (B_KEY_OBJ)NULL_PTR;

if ((status = B_CreateKeyObject (&rc2Key)) != 0)
  break

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;
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Use a random number generator to come up with 24 bytes.

It is a good idea to zeroize any sensitive data after leaving the do-while. In fact, you 
may want to zeroize the memory and free it up immediately after setting the key. To 
do so, first free the memory using T_free, then reset rc2KeyItem.data to NULL_PTR, 
duplicating the following sequence after the do-while. If there is an error inside the 
do-while, you will still zeroize and free sensitive data; if there is no error, you have 
reset to NULL_PTR, and the code after the do-while will not create havoc.

You need an algorithm chooser and a surrender context. This is a speedy function, so 
it is reasonable to use a properly cast NULL_PTR for the surrender context. However, 

ITEM rc2KeyItem;

rc2KeyItem.len = 24;
rc2KeyItem.data = T_malloc (rc2KeyItem.len);
if ((status = (rc2KeyItem.data == NULL_PTR)) != 0)
  break;

/* Complete steps 1 - 4 of Generating Random Numbers, then
     call B_GenerateRandomBytes. */
if ((status = B_GenerateRandomBytes
     (randomAlgorithm, rc2KeyItem.data, rc2KeyItem.len,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

if ((status = B_SetKeyInfo
     (rc2Key, KI_Item, (POINTER)&rc2KeyItem)) != 0)
  break;

if (rc2KeyItem.data != NULL_PTR) {
  T_memset (rc2KeyItem.data, 0, rc2KeyItem.len);
  T_free (rc2KeyItem.data);
  rc2KeyItem.data = NULL_PTR;
  rc2KeyItem.len = 0;
}

C h a p t e r  5   S y m m e t r i c - K e y  O p e r a t i o n s 1 6 9



Block Ciphers
you do want to build a chooser:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Library Reference Manual 
Chapter 2 entry on AI_FeedbackCipher, you see that you can pass 
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Once you have your 
input, call B_EncryptUpdate. 

Remember that RC2 is a block cipher and requires that the input be a multiple of eight 
bytes. Because you set fbParams.paddingMethodName to "pad" (see page 166), 
Crypto-C will pad to make the input a multiple of eight bytes. That means that the 
output buffer should be at least eight bytes larger than the input length. 

RC2 is a fast algorithm, so for small amounts of data it is reasonable to pass a properly 
cast NULL_PTR for the surrender context. If you want to pass a surrender context, you 
can:

B_ALGORITHM_METHOD *RC2_CHOOSER[] = {
  &AM_CBC_ENCRYPT,
  &AM_RC2_ENCRYPT,
  &AM_SHA_RANDOM,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
     (rc2Encrypter, rc2Key, RC2_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

/* Assume dataToEncrypt points to already set data and
     dataToEncryptLen has been set to the number of bytes
     in dataToEncrypt. */

unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;
encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
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Step 5: Final

Step 6: Destroy
Remember to destroy all objects created and free up any memory allocated:

if ((status = (encryptedData == NULL_PTR)) != 0)
  break;

if ((status = B_EncryptUpdate
     (rc2Encrypter, encryptedData, &outputLenUpdate,
      encryptedDataLen, dataToEncrypt, dataToEncryptLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

unsigned int outputLenFinal;
if ((status = B_EncryptFinal
     (rc2Encrypter, encryptedData + outputLenUpdate,
      &outputLenFinal, encryptedDataLen - outputLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyKeyObject (&rc2Key);
B_DestroyAlgorithmObject (&rc2Encrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);

if (encryptedData != NULL_PTR) {
  T_memset (encryptedData, 0, encryptedDataLen);
  T_free (encryptedData);
  encryptedData = NULL_PTR;
}

if (rc2KeyItem.data != NULL_PTR) {
  T_memset (rc2KeyItem.data, 0, rc2KeyItem.len);
  T_free (rc2KeyItem.data);
  rc2KeyItem.data = NULL_PTR;
  rc2KeyItem.len = 0;
}
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Decrypting
As with the “Introductory Example” on page 9, decrypting is similar to encrypting. 
Use the same AI, IV, and key. Use the proper decrypting AM and call B_DecryptInit, 
B_DecryptUpdate, and B_DecryptFinal.

RC5
RC5 is more properly known as RC5 w/r/b, where w stands for word size, r stands for 
rounds and b stands for key size in bytes.

The word size parameter is designed to take advantage of variable hardware word 
sizes. A hardware implementation can choose a 16-, 32-, or 64-bit word size, 
depending on how many bits make up a register, or word. Software implementations 
of RC5 can emulate any word size, regardless of the size of the machine’s register size. 
Crypto-C implements word sizes of 32 or 64 bits; the 64-bit implementation has not 
been optimized.

The next feature of RC5 is the rounds parameter. Increasing the number of rounds 
increases security, but slows down the operation. This allows the application 
developer to establish a desired trade-off between security and speed. RC5 allows 
round counts from 0 to 255 rounds. RSA Data Security, Inc. recommends using at 
least 16 rounds for the 32-bit word implementation. Analysis indicates that, in theory, 
RC5 may be susceptible to various attacks for values less than 16.

The last feature is the variable key size. Whereas a DES key requires eight bytes, an 
RC5 key can be anywhere between zero and 255 bytes. The larger the key, the greater 
the security. Key size has no appreciable effect on speed.

RC5 is a block cipher; the size of the blocks is twice the word size. For RC5 32/r/b, the 
block size is 64 bits or 8 bytes; for RC5 64/r/b, the block size is 128 bits or 16 bytes.

The example in this section corresponds to the file rc5.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ and as defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
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B_CreateAlgorithmObject.

Step 2: Setting The Algorithm Object
There are a number of RC5 AIs to choose from. See Table 3-6 on page 107 for 
descriptions. For this example, you will use a different cipher from 
AI_FeedbackCipher. Choose AI_RC5_CBCPad. The Library Reference Manual Chapter 2 
entry for this AI indicates that the format of info supplied to B_SetAlgorithmInfo is:

As a provision for future revisions of the RC5 algorithm, Crypto-C includes a version 
number. So that the version number can be one byte, it is two hex digits. Version 1.0 is 
therefore 0x10. Version 3.8, if there ever is one, will be 0x38. The hex number 0x10 is 
the decimal number 16. Both are valid, but it is probably better to use 0x10 because it 
is easier to see as a version number.

For this example, you will use 12 rounds with a word size of 32.

Because you have chosen an AI that uses Cipher Block Chaining (CBC), you need an 
initialization vector. Use a random number generator to produce an IV. Because the 
word size is 32, the block size is 64 bits or eight bytes, and your IV must be eight bytes 
long. Remember, the IV is not secret and will not assist anyone in breaking the 
encryption. Its size will be eight bytes, because RC5 encrypts blocks of eight bytes. 

B_ALGORITHM_OBJ rc5Encrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&rc5Encrypter)) != 0)
  break;

typedef struct {
  unsigned int  version;                     /* currently 1.0 defined 0x10 */
  unsigned int  rounds;                      /* number of rounds (0 - 255) */
  unsigned int  wordSizeInBits;              /* AI_RC5_CBCPad requires 32 */
  unsigned char *iv;                              /* initialization vector */
} A_RC5_CBC_PARAMS;
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Remember, the IV is related to the block, not the key:

Step 3: Init
You need a key before you can initialize the algorithm object for encryption.

Step 3a: Creating A Key Object

Step 3b: Setting The Key Object
For this example, you will use 10 key bytes (80 bits). In the Library Reference Manual 
Chapter 2 entry for AI_RC5_CBCPad, you see you must use KI_Item. Looking up 
KI_Item in Chapter 3 of the Library Reference Manual, you find that the info you 

unsigned char initVector[8];
A_RC5_CBC_PARAMS rc5Params;
 
/* Complete steps 1 - 4 of Generating Random Numbers, 
   then call B_GenerateRandomBytes. */

if ((status = B_GenerateRandomBytes
     (randomAlgorithm, (unsigned char *)initVector, 8,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

rc5Params.version = 0x10;
rc5Params.rounds = 12;
rc5Params.wordSizeInBits = 32;
rc5Params.iv = (unsigned char *)initVector;

if ((status = B_SetAlgorithmInfo
     (rc5Encrypter, AI_RC5_CBCPad, (POINTER)&rc5Params)) != 0)
  break;

B_KEY_OBJ rc5Key = (B_KEY_OBJ)NULL_PTR;
 
if ((status = B_CreateKeyObject (&rc5Key)) != 0)
  break;
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supply to B_SetKeyInfo is a pointer to an ITEM struct, defined in algobal.h:

Use a random number generator to create 10 bytes:

It is a good idea to zeroize any sensitive data after leaving the do-while. In fact, you 
may want to zeroize the memory and free it up immediately after you set the key. To 
do so, first free the memory using T_free, then reset rc5KeyItem.data to NULL_PTR 
and duplicate the following sequence after the do-while. If there is an error inside the 
do-while before you zeroize and free, you will still perform this important task; if 
there is not an error, by resetting to NULL_PTR, you ensure that the code after the do-
while will not create havoc:

Now that you have a key, you need an algorithm chooser and a surrender context. 

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;

ITEM rc5KeyItem;
 
rc5KeyItem.data = NULL_PTR;
rc5KeyItem.len = 10;
rc5KeyItem.data = T_malloc (rc5KeyItem.len);
if ((status = (rc5KeyItem.data == NULL_PTR)) != 0)
  break;

if ((status = B_GenerateRandomBytes
     (randomAlgorithm, rc5KeyItem.data, rc5KeyItem.len,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
 
if ((status = B_SetKeyInfo
     (rc5Key, KI_Item, (POINTER)&rc5KeyItem)) != 0)
  break;

if (rc5KeyItem.data != NULL_PTR) {
  T_memset (rc5KeyItem.data, 0, rc5KeyItem.len);
  T_free (rc5KeyItem.data);
  rc5KeyItem.data = NULL_PTR;
  rc5KeyItem.len = 0;
};
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This is a speedy function, so you can use a properly cast NULL_PTR for the surrender 
context; but you do want to build a chooser:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. From the Library Reference Manual 
Chapter 2 entry on AI_RC5_CBCPad you learn that you may pass 
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Assuming you have 
some input, call B_EncryptUpdate. 

Remember that RC5 is a block cipher and requires input that is a multiple of eight 
bytes. Because you are using AI_RC5_CBCPad, Crypto-C will pad to make the input a 
multiple of eight bytes. That means that the output buffer should be at least eight 
bytes larger than the input length.

RC5 is a fast algorithm, so for small amounts of data it is reasonable to pass a properly 
cast NULL_PTR for the surrender context. If you want to pass a surrender context, you 
can:

B_ALGORITHM_METHOD *RC5_CHOOSER[] = {
  &AM_RC5_CBC_ENCRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_EncryptInit
     (rc5Encrypter, rc5Key, RC5_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

/* Assume dataToEncrypt points to already set data and
     dataToEncryptLen has been set to the number of bytes
     in dataToEncrypt. */

unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;
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Step 5: Final

Step 6: Destroy
Remember to destroy all objects that you created and free up any memory that you 
allocated.

encryptedDataLen = dataToEncryptLen + 8;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
  break;
 
if ((status = B_EncryptUpdate
     (rc5Encrypter, encryptedData, &outputLenUpdate,
      encryptedDataLen, dataToEncrypt, dataToEncryptLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
     (rc5Encrypter, encryptedData + outputLenUpdate,
      &outputLenFinal, dataToEncryptLen + 8 - outputLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyKeyObject (&rc5Key);
B_DestroyAlgorithmObject (&rc5Encrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);
if (rc5KeyItem.data != NULL_PTR) {
  T_memset (rc5KeyItem.data, 0, rc5KeyItem.len);
  T_free (rc5KeyItem.data);
  rc5KeyItem.data = NULL_PTR;
  rc5KeyItem.len = 0;
}
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Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use 
the same AI, IV, and key data. Use the proper decrypting AM and call B_DecryptInit, 
B_DecryptUpdate, and B_DecryptFinal.

Password-Based Encryption
In previous encryption methods, you used a random number generator to produce a 
key. In password-based encryption (PBE), you will use a message digest algorithm to 
derive a key from a password. See “Message Digests” on page 46 for information on 
that topic.

For encryption, enter a password, append a salt to the password (see Step 2), and 
digest that quantity. Extract the required number of bytes from the digest and you 
have a key. Use that key to encrypt data using DES or RC2.

For decryption, enter a password, append the same salt, and then digest. Extract the 
required number of bytes from the digest and use them as a key to decrypt. If you 
entered the same password that you used to encrypt, you will obtain the same digest 
and hence the same key, and the encrypted data will decrypt to the original data.

Crypto-C will automatically append the salt, digest the data, and extract the key.

The example in this section corresponds to the file pbe.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

if (encryptedData != NULL_PTR) {
  T_memset (encryptedData, 0, encryptedDataLen);
  T_free (encryptedData);
  encryptedData = NULL_PTR;
}

B_ALGORITHM_OBJ pbEncrypter = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&pbEncrypter)) != 0)
  break;
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Step 2: Setting The Algorithm Object
There are a number of PBE AIs to choose from (see “Summary of AIs” on page 106 for 
a more detailed description). For now, choose AI_MD5WithRC2_CBCPad. In Chapter 2 of 
the Library Reference Manual, the description of this AI indicates the format of info 
supplied to B_SetAlgorithmInfo is:

The section “RC2” on page 38 contains an explanation of effective key bits. The salt is 
a value that provides security against dictionary attacks or precomputation. An 
attacker could precompute the digests of thousands of possible passwords, creating a 
“dictionary” of likely keys. But recall that when you digest, changing input data even 
a little changes the resulting digest. By digesting the password with a salt, the 
attacker’s dictionary is rendered useless. The attacker would have to create a 
dictionary of the keys that were generated from each password; then each password 
would have to have a dictionary of each possible salt. The salt is not secret; knowing 
the salt will not help anyone without the password to decrypt the data. 

To produce the salt, create an eight-byte buffer and then employ a random number 
generator to generate eight bytes. The iteration count is the number of times Crypto-C 
will digest. If that value is one, digest the password and salt once; if it is two, digest 
the password and salt, then digest the digest, and so on. Each iteration will increase 
an attacker’s task greatly. Five is generally sufficient for most applications:

typedef struct {
  unsigned int   effectiveKeyBits;           /* effective key size in bits */
  unsigned char *salt;                     /* pointer to 8 byte salt value */
  unsigned int   iterationCount;                        /* iteration count */
} B_RC2_PBE_PARAMS;

#define SALT_LEN 8

B_RC2_PBE_PARAMS rc2PBEParams;
unsigned char saltData[SALT_LEN];

/* Complete steps 1 - 4 of Generating Random Numbers, 
   then call B_GenerateRandomBytes.*/
if ((status = B_GenerateRandomBytes
     (randomAlgorithm, saltData, SALT_LEN,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 3: Init
You need a key before you can initialize the algorithm object for encryption. In PBE, 
the password is the key. Simply enter the password data as the key data; Crypto-C 
will generate the symmetric key from the password and salt.

Step 3a: Creating A Key Object

Step 3b: Setting The Key Object
In the Library Reference Manual Chapter 2 entry for AI_MD5WithRC2_CBCPad, you see 
you have only one choice for a KI: KI_Item. Looking up KI_Item in Chapter 3 of the 
Library Reference Manual, you find that the info you supply to B_SetKeyInfo is a 
pointer to an ITEM structure, which is:

The data portion of the struct is the password. For this example, we will use the 
following method to enter the password. This method for entering a password is not 

rc2PBEParams.effectiveKeyBits = 64;
rc2PBEParams.salt = saltData;
rc2PBEParams.iterationCount = 5;

if ((status = B_SetAlgorithmInfo
     (pbEncrypter, AI_MD5WithRC2_CBCPad,
      (POINTER)&rc2PBEParams)) != 0)
  break;

#define MAX_PW_LEN 20

B_KEY_OBJ pbeKey = (B_KEY_OBJ)NULL_PTR;
 
if ((status = B_CreateKeyObject (&pbeKey)) != 0)
  break;

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;
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secure; it is used for illustrative purposes only. It is not for duplication:

You should zeroize any sensitive data after leaving the do-while. In fact, you might 
want to zeroize the memory immediately after you set the key:

Now that you have a key, you need an algorithm chooser and a surrender context. 
This is a speedy function, so it is reasonable to use a properly cast NULL_PTR for the 
surrender context. You do want to build a chooser:

Step 4: Update
Enter the data to encrypt through B_EncryptUpdate. The Library Reference Manual 
Chapter 2 entry on AI_MD5WithRC2_CBCPad states that you can pass 
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments. Assuming you have 
some input data, call B_EncryptUpdate. Remember that RC2 is a block cipher and 

unsigned char enteredPassword[MAX_PW_LEN];
ITEM pbeKeyItem;
 
puts ("Enter the password, then press Return or Enter");
gets ((char *)enteredPassword);

pbeKeyItem.data = enteredPassword;
pbeKeyItem.len = strlen (enteredPassword);
 
if ((status = B_SetKeyInfo
      (pbeKey, KI_Item, (POINTER)&pbeKeyItem)) != 0)
  break;

T_memset (pbeKeyItem.data, 0, MAX_PW_LEN);

B_ALGORITHM_METHOD *PBE_CHOOSER[] = {
  &AM_MD5,
  &AM_RC2_CBC_ENCRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};

if ((status = B_EncryptInit
     (pbEncrypter, pbeKey, PBE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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requires the input to be a multiple of eight bytes. But because you are using 
AI_MD5WithRC2_CBCPad, Crypto-C will pad to make the input a multiple of eight 
bytes. That means, though, that the output buffer should be at least eight bytes larger 
than the input length.

PBE with MD5 and RC2 is a fast algorithm, so for small amounts of data, you can pass 
a properly cast NULL_PTR for the surrender context. If you want to pass a surrender 
context, you can:

/* Assume dataToEncrypt points to already set data and
     dataToEncryptLen has been set to the number of bytes
     in dataToEncrypt. */

#define BLOCK_LEN 8
unsigned char *dataToEncrypt;
unsigned char *encryptedData = NULL_PTR;
unsigned int dataToEncryptLen;
unsigned int encryptedDataLen;
unsigned int outputLenUpdate;

encryptedDataLen = dataToEncryptLen + BLOCK_LEN;
encryptedData = T_malloc (encryptedDataLen);
if ((status = (encryptedData == NULL_PTR)) != 0)
  break;

if ((status = B_EncryptUpdate
     (pbEncrypter, encryptedData, &outputLenUpdate,
      encryptedDataLen, dataToEncrypt, dataToEncryptLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 5: Final

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory:

Decrypting
As in the “Introductory Example” on page 9, decrypting is similar to encrypting. Use 
the same AI, password, and salt. Use the proper decrypting AM and call 
B_DecryptInit, B_DecryptUpdate, and B_DecryptFinal.

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
     (pbEncrypter, encryptedData + outputLenUpdate,
      &outputLenFinal, encryptedDataLen - outputLenUpdate,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyKeyObject (&pbeKey);
B_DestroyAlgorithmObject (&pbEncrypter);
B_DestroyAlgorithmObject (&randomAlgorithm);

  if (pbeKeyItem.data, 0, MAX_PW_LEN) {
    T_memset (pbeKeyItem.data, 0, MAX_PW_LEN);
    T_free (pbekeyItem.data);
     pbeKeyItem.data = NULL_PTR;
  }

  if (encryptedData != NULL_PTR) {
    T_memset (encryptedData, 0, encryptedDataLen);
    T_free (encryptedData);
    encryptedData = NULL_PTR;
  }
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Chapter 6

Public-Key Operations
In public-key cryptography, two associated keys are necessary, one to encrypt and the 
other to decrypt. The sender encrypts a message using the recipient’s public key. 
Once a message is encrypted, it can be decrypted with the recipient’s private key. This 
is in contrast to algorithms like DES, RC2, RC4, and RC5, which are called symmetric-
key encryption algorithms because the key used to encrypt is the same key needed to 
decrypt. 

In public-key cryptography, it is also possible to encrypt using a private key. In this 
case, the sender takes the plaintext input and the private key and follows the same 
steps need to decrypt an encrypted file. This creates a ciphertext that can be read 
using the public key; to read it, the recipient follows the same steps needed to encrypt 
with the public key and restores it to the plaintext. Private-key encryption with 
public-key decryption is used for digital signatures and verification. See “RSA Digital 
Signatures” on page 198 and “DSA Signatures” on page 213 for more information.

Crypto-C supplies a number of public-key algorithms. These include:

• RSA encryption and decryption

• DSA signatures

• Diffie-Hellman key agreement

• Elliptic curve public-key operations
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Performing RSA Operations
RSA is a public-key algorithm that relies on the difficulty of factoring a number that is 
the product of two large primes. If you are not familiar with the RSA algorithm and 
terminology, you may want to read “The RSA Algorithm” on page 50 before you 
continue.

The algorithm chooser used throughout the sections concerning executing the RSA 
algorithm can be found in “Algorithm Choosers” on page 118.

The example in this section corresponds to the file rsapkcs.c.

Generating a Key Pair
Before you can encrypt and decrypt, you need a key pair. The key pair consists of a 
private key and its associated public key. Generating a key pair is not trivial. The RSA 
algorithm relies on very large prime numbers, which are produced during key pair 
generation. This could be fairly time-consuming, so we recommend you use a 
surrender context. The surrender context used below is the one in “The Surrender 
Context” on page 120.

Most Crypto-C operations follow the six-step procedure outlined in the “Introductory 
Example” on page 9. Generating a key pair needs only five of the steps; there is no 
Update call.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
For this example, use AI_RSAKeyGen to generate an RSA key pair. The Library Reference 
Manual Chapter 2 entry for AI_RSAKeyGen states that the info for B_SetAlgorithmInfo 

B_ALGORITHM_OBJ keypairGenerator = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject (&keypairGenerator)) != 0)
  break;
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is a pointer to an A_RSA_KEY_GEN_PARAMS structure, defined as:

where ITEM is:

The size of the modulus in bits can be any number from 256 to 2048, the larger the 
modulus, the greater the security. Unfortunately, the larger the modulus, the longer it 
takes to generate key pairs and to encrypt and decrypt. RSA Data Security, Inc., 
recommends 768 bits or more for applications. In testing and learning, though, it is 
safe to choose a smaller modulus to save time. For this exercise, choose 512.

The public exponent is usually one of two values: F0 = 3 or F4 = 65537. Recall that the 
algorithm requires a public exponent that has no common divisor with (p–1)(q–1). 
With F0 or F4, it is easier to find primes p and q that meet that requirement. F4 is also a 
good choice for a public exponent because it is large, prime, and of low weight. 
Weight here refers to the number of 1’s in the binary representation: in hex, F4 is 
01 00 01. The F in F0 and F4 stands for Pierre de Fermat, the 17th-century 
mathematician who first described the special properties of these and other 
interesting numbers. For more information on F4 (and other Fermat numbers), see 
ITU-T X.509, Annex D. 

For this example, choose F4:

typedef struct {
  unsigned int modulusBits;                     /* size of modulus in bits */
  ITEM         publicExponent;                    /* fixed public exponent */
} A_RSA_KEY_GEN_PARAMS;

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;

A_RSA_KEY_GEN_PARAMS keygenParams;
static unsigned char f4Data[3] = {0x01, 0x00, 0x01};

keygenParams.modulusBits = 512;
keygenParams.publicExponent.data = f4Data;
keygenParams.publicExponent.len = 3;
if ((status = B_SetAlgorithmInfo
     (keypairGenerator, AI_RSAKeyGen,
      (POINTER)&keygenParams)) != 0)
  break;
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Step 3: Init
Look up the description and prototype for B_GenerateInit in Chapter 4 of the Library 
Reference Manual. For this example, you can use the following:

Here, you use NULL_PTR for the surrender context because B_GenerateInit is a speedy 
function. B_GenerateKeypair in Step 5 is the time-consuming function.

Step 4: Update
There is no Step 4 in generating a key pair.

Step 5: Generate
Find the description and prototype for B_GenerateKeypair in Chapter 4 of the Library 
Reference Manual. This function takes five arguments. The first is the algorithm object: 
for this example, it is keypairGenerator. The second and third are key objects. For this 
call, all you have to do is create the key objects; they will be set by 
B_GenerateKeypair. The fourth argument is a random algorithm. For this, complete 
Steps 1 through 4 of “Generating Random Numbers” on page 147. You do not need 
random bytes, only an algorithm that can generate them. The algorithm chooser you 
are using (defined in “Algorithm Choosers” on page 118) contains the AM for SHA1 
random number generation. 

The last argument is the surrender context. This function call can take a while, 
although the amount of time is not uniform. On slower machines, it may take over 
two or three minutes to generate a 512-bit key pair, or it may take only 17 seconds. 

Crypto-C needs to find two primes of the proper size. To find a prime, Crypto-C 
generates a candidate and tests to see if it is prime. If the candidate passes the test, 
Crypto-C has one of the primes; if not, Crypto-C builds a new number. If you are 
lucky, two early numbers Crypto-C creates will pass the test. Sometimes, though, 
Crypto-C has to try many numbers before it finds a pair. 

Note: The numbers Crypto-C produces are not provably prime. They are numbers 
for which the probability is very low that they are not prime. This does not 

if ((status = B_GenerateInit
     (keypairGenerator, RSA_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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affect the accuracy of the algorithm and will not appreciably decrease 
security.

When you generate a key pair, it can look as if your program has stopped or as if the 
machine has frozen up. To help allay fears of disaster, use the surrender function 
outlined in “The Surrender Context” on page 120. It will print out a dot every second 
to let you know the program is running properly. If the dots do not appear, then you 
know something is wrong:

Step 6: Destroy
When you are done with your objects, remember to destroy them:

Distributing an RSA Public Key
After generating a key pair, you need to make the public key available to the public.

Crypto-C Format
publicKey is a key object that was set by the Crypto-C function B_GenerateKeypair. Its 
key info type (KI) is KI_RSAPublic. In the Library Reference Manual Chapter 3 entry on 

B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;
 
if ((status = B_CreateKeyObject (&publicKey)) != 0)
  break;
 
if ((status = B_CreateKeyObject (&privateKey)) != 0)
  break;
 
/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_GenerateKeypair
     (keypairGenerator, publicKey, privateKey,
      randomAlgorithm, &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&keypairGenerator);
B_DestroyKeyObject (&publicKey);
B_DestroyKeyObject (&privateKey);
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KI_RSAPublic, the section titled “Format of info returned by B_GetKeyInfo:” tells you 
that the function returns a pointer to an A_RSA_KEY struct:

So you need to declare a variable to be a pointer to such a struct and pass this 
variable’s address as the argument.

Using the Library Reference Manual Chapter 4 prototype for B_GetKeyInfo as a guide, 
write the following:

If you looked at the elements of the struct:

getPublicKey->modulus.data
getPublicKey->modulus.len
getPublicKey->exponent.data
getPublicKey->exponent.len

you could see the public key that Crypto-C generated. This is the information you 
would make public.

Note: If you want to email the information, you will not be able to send the 
information over most email systems because the data is in binary form, not 
ASCII. Crypto-C offers encoding and decoding functions to convert between 
binary and ASCII. See “Converting Data Between Binary and ASCII” on 
page 154 for more information.

BER/DER Encoding
There is a problem with distributing the key in the above struct: it is not standard; it 
is unique to Crypto-C. If the recipient is not using Crypto-C, how do you give them 
the information? Suppose your application mails this key to a certification authority. 
What information do you send? There is a standard that defines what the public key 
consists of and how that information should be formatted: BER-encoding. It is defined 

typedef struct {
  ITEM modulus;                                                 /* modulus */
  ITEM exponent;                                               /* exponent */
} A_RSA_KEY;

A_RSA_KEY *getPublicKey = (A_RSA_KEY *)NULL_PTR;
 
if ((status = B_GetKeyInfo
     ((POINTER *)&getPublicKey, publicKey, KI_RSAPublic)) != 0)
  break;
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in ASN.1, which defines the Basic Encoding Rules (BER) and Distinguished Encoding 
Rules (DER). See “BER/DER Encoding” on page 125 for more information.

You must put the key into DER format, encode it into ASCII, and email the encoding. 
The recipient will decode the DER string and convert the key information into the 
format of their choice.

This sounds difficult, but Crypto-C offers a means of doing it simply. Above, in order 
to obtain the key, you used B_GetKeyInfo with KI_RSAPublic. Chapter 3 of the Library 
Reference Manual also lists KI_RSAPublicBER, which states:

Crypto-C returns a pointer to where that information resides, not the information. 
Another call to Crypto-C might alter or destroy it. Therefore, once you get the pointer 
to the information, copy it into your own buffer:

So, to distribute a key, you generate the key pair, get the key info in BER format with 
B_GetKeyInfo and KI_RSAPublicBER, encode the BER data into ASCII format, and 
send it off. 

Format of info returned by B_GetKeyInfo:
pointer to an ITEM structure which gives the address and length of the DER-
encoding. Note that B_GetKeyInfo returns an encoding which contains the object 
identifier for rsaEncryption (defined in PKCS #1) as opposed to rsa.

ITEM *cryptocPublicKeyBER;
ITEM myPublicKeyBER;
 
myPublicKeyBER.data = NULL_PTR;
 
if ((status = B_GetKeyInfo
     ((POINTER *)&cryptocPublicKeyBER, publicKey,
      KI_RSAPublicBER)) != 0)
  break;

myPublicKeyBER.len = cryptocPublicKeyBER->len;
myPublicKeyBER.data = T_malloc (myPublicKeyBER.len);
if ((status = (myPublicKeyBER.data == NULL_PTR)) != 0)
  break;
T_memcpy (myPublicKeyBER.data, cryptocPublicKeyBER->data,
          myPublicKeyBER.len);
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Remember to free any memory you allocated:

Note: The conversion into BER or DER is known as BER-encoding or DER-
encoding; the conversion between binary to ASCII is known as encoding and 
decoding. In general, the word “encoding” without “BER” in front of it means 
binary to ASCII. If the encoding is BER- or DER-encoding, the BER or DER 
should be explicitly stated.

RSA Public-Key Encryption
Follow Steps 1 through 6 to encrypt the following using an RSA public key:

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are a number of RSA AIs, described in Table 3-7 on page 110. For this example, 
use AI_PKCS_RSAPublic. This AI encrypts and decrypts data according to the Public-
Key Cryptography Standard #1 (PKCS #1). See the PKCS document [1] for more 
information. According to the Library Reference Manual Chapter 2 entry for 

T_free (myPublicKeyBER.data);

static unsigned char dataToEncryptWithRSA[8] = {
  0x4a, 0x72, 0x55, 0x36, 0xda, 0x2f, 0xb9, 0x51
};

B_ALGORITHM_OBJ rsaEncryptor = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&rsaEncryptor)) != 0)
  break;
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AI_PKCS_RSAPublic, the info supplied to B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
You will encrypt using the recipient’s RSA public key. Normally, you would obtain 
the public key from the recipient or a certificate service. For this exercise, though, you 
will simply use the public key you generated in “Generating a Key Pair” on page 186. 
B_EncryptInit is quick, so you are safe in passing NULL_PTR as the surrender context:

Step 4: Update
The Library Reference Manual Chapter 2 entry on AI_PKCS_RSAPublic states:

For this example, the key’s size in bits is 512, which is 64 bytes. So you cannot pass 
more than 53 bytes. If you were encrypting more than 53 bytes, you could not use 
AI_PKCS_RSAPublic. If you had more than 53 bytes to encrypt and tried to break it up 
into smaller units, calling B_EncryptUpdate for each unit, it would not work. That is 
because PKCS RSA encryption adds padding, and the padding scheme needs at least 
11 spare bytes to work. It is intended for digital envelopes and digital signatures, and 
in those situations, the number of bytes to encrypt is usually eight, 16, or (for BER-
encoded digests) 34 or 35. If you want to encrypt larger amounts of data using the 
RSA algorithm, you must use AI_RSAPublic, also known as raw RSA. See “Raw RSA” 
on page 197 for more information.

You are encrypting eight bytes, so you do not need to worry about that constraint. 
However, the output of RSA encryption is the same size as the modulus, as described 
in “The RSA Algorithm” on page 50. That means you must set the output buffer, 
which will hold the encrypted data, to be the same size as the modulus. Your 

if ((status = B_SetAlgorithmInfo
     (rsaEncryptor, AI_PKCS_RSAPublic, NULL_PTR)) != 0)
  break;

if ((status = B_EncryptInit
     (rsaEncryptor, publicKey, RSA_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

Input constraints:
The total number of bytes to encrypt may not be more than k – 11, where k is the 
key’s modulus size in bytes.
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modulus is 512 bits, or 64 bytes.

Note: The input to the RSA algorithm must also be the same size as the modulus, 
but AI_PKCS_RSAPublic will automatically pad.

The description of AI_PKCS_RSAPublic notes that “B_EncryptUpdate and 
B_EncryptFinal require a random algorithm.” The random number generator is for 
the padding. You do not need random bytes, only an algorithm that can generate 
them. Although RSA encryption is not as slow as key pair generation, you will not see 
an immediate response. Use a surrender context so that you know the program is 
running and has not frozen:

Step 5: Final

#define BLOCK_SIZE 64

unsigned char encryptedData[BLOCK_SIZE];
unsigned int outputLenUpdate;
 
/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_EncryptUpdate
     (rsaEncryptor, encryptedData, &outputLenUpdate,
      BLOCK_SIZE, (unsigned char *)dataToEncryptWithRSA, 8,
      randomAlgorithm, &generalSurrenderContext)) != 0)
  break;

unsigned int outputLenFinal;
 
/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_EncryptFinal
     (rsaEncryptor, encryptedData + outputLenUpdate, 
      &outputLenFinal, BLOCK_SIZE - outputLenUpdate, 
      randomAlgorithm, &generalSurrenderContext)) != 0)
  break;
1 9 4 R S A  B S A F E  C r y p t o - C  U s e r ’s  M a n u a l



Performing RSA Operations
Step 6: Destroy
When you are done with all your objects, remember to destroy them.

RSA Private-Key Decryption
This example shows how to decrypt using an RSA private key. Remember that with 
Crypto-C, you have the choice of doing your private-key operations normally or 
utilizing the blinding technique (see “Timing Attacks and Blinding” on page 96). You 
make this choice in the algorithm chooser. For normal decryption operations, use 
AM_RSA_CRT_DECRYPT; to execute blinding, use AM_RSA_CRT_DECRYPT_BLIND.

Step 1: Creating an Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting the Algorithm Object
Because you used AI_PKCS_RSAPublic to encrypt, it is easiest to use 
AI_PKCS_RSAPrivate to decrypt. Crypto-C padded the data before encrypting; when 
you use the “matching” AI to decrypt, Crypto-C will automatically strip the padding. 
The Library Reference Manual Chapter 2 entry on this AI indicates the info supplied to 
B_SetAlgorithmInfo is NULL_PTR:

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&rsaEncryptor);
B_DestroyKeyObject (&publicKey);

B_ALGORITHM_OBJ rsaDecryptor = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&rsaDecryptor)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (rsaDecryptor, AI_PKCS_RSAPrivate, NULL_PTR)) != 0)
  break;
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Step 3: Init
To decrypt, you must use the RSA private key that is associated with the public key 
that was used to encrypt, which would be the key you generated in “Generating a Key 
Pair” on page 186. B_DecryptInit is quick, so you are safe in passing NULL_PTR as the 
surrender context.

Step 4: Update
When you encrypted, there were certain constraints on the size of the input data to 
B_EncryptUpdate. The only constraint on the data passed to B_DecryptUpdate is that it 
be numerically less than the modulus. If the data you are decrypting was indeed 
encrypted using RSA, it will be.

You know the encryption process padded the original data, so, while the encrypted 
data is 64 bytes, the decrypted data will be less than 64 bytes. But you do not know 
how much less. For simplicity, make the decrypted data buffer 64 bytes large. 
Presumably, the encrypter added outputLenUpdate and outputLenFinal from the 
encryption to get the total number of bytes of encrypted data. The Library Reference 
Manual Chapter 2 entry on AI_PKCS_RSAPrivate indicates you may pass a properly 
cast NULL_PTR for randomAlgorithm arguments.

Although RSA decryption is not as slow as key pair generation, you will not see an 
immediate response. Use the surrender context given above so you know the 
program is running and has not frozen:

if ((status = B_DecryptInit
     (rsaDecryptor, privateKey, RSA_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

#define BLOCK_SIZE 64

unsigned char decryptedData[BLOCK_SIZE];
unsigned int outputLenTotal;
unsigned int outputLenUpdate;
  /* where outputLenTotal is the sum of the encryption’s
       outputLenUpdate and outputLenFinal. The encrypter should 
       send this information along with the encrypted data. */
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Step 5: Final

Step 6: Destroy
When you are done with all objects, remember to destroy them:

Raw RSA
When you used AI_PKCS_RSAPublic, you could not encrypt more than k – 11 bytes, 
where k was the size of the modulus in bytes. That is because PKCS RSA encryption 
pads, and the padding scheme needs 11 spare bytes to work. It is intended for digital 
envelopes and digital signatures; in those situations, the number of bytes to encrypt is 
usually eight, 16, or (for BER-encoded digests) 34 or 35. If you want to encrypt and 
decrypt more than k – 11 bytes, use raw RSA.

Note: In general, there should be no need for raw RSA encryption or decryption. 
For most applications, if you have a longer message, it is faster and simpler to 
encrypt the message with a symmetric algorithm and then use the RSA 
algorithm to encrypt the key. (See “Digital Envelopes” on page 54.) If you do 

/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_DecryptUpdate
     (rsaDecryptor, decryptedData, &outputLenUpdate, BLOCK_SIZE,
      encryptedData, outputLenTotal, NULL_PTR,
      &generalSurrenderContext)) != 0)
  break;

unsigned int outputLenFinal;
 
/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_DecryptFinal
     (rsaDecryptor, decryptedData + outputLenUpdate,
      &outputLenFinal, BLOCK_SIZE - outputLenUpdate, NULL_PTR,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&rsaDecryptor);
B_DestroyKeyObject (&privateKey);
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use raw RSA encryption and decryption, your application must be 
responsible for adding and removing the necessary padding. We do not 
recommend using raw RSA unless you are familiar with the issues involved.

To encrypt more bytes than the PKCS AIs allow, use AI_RSAPublic for encryption and 
and AI_RSAPrivate for decryption. Note that this is different from the recommended 
use for these AIs, as described in the Library Reference Manual. There are two 
important constraints to consider when using these AIs:

• The total length of the data must be a multiple of the modulus size. 

If your data’s length is not a multiple of the modulus size, your application must 
do the padding. When decrypting with raw RSA, Crypto-C will not strip the 
padding; the application must do that.

• The data must be numerically less than the modulus. 

To do this, divide your data into blocks that are one byte smaller than the 
modulus. Prepend one byte of 0 to each block. If the leading byte of the data is 0, 
your data will meet this second constraint.
For example, suppose you wanted to encrypt 100 bytes with RSA using a 512-bit 
modulus. You would break the data into two blocks, the first one 63 bytes, the 
second 37. Prepend a 0 byte to the first block and it is now 64 bytes (512 bits). 
Prepend a 0 byte and append 26 pad bytes to the second block and it, too is now 
64 bytes. Call B_EncryptUpdate for each of the two blocks, then B_EncryptFinal. 
This will produce 128 bytes of encrypted data.
When decrypting, call B_DecryptUpdate once for all 128 bytes, then 
B_DecryptFinal. The application will have to then strip the prepended zeroes and 
the padding. You could also break the encrypted data into 64-byte blocks and call 
B_DecryptUpdate for each block and strip the padding then.

Some padding procedures are recommended; others are discouraged. For a 
description of one particular trusted padding system, see PKCS #1 v2 [1].

RSA Digital Signatures
The section “Authentication and Digital Signatures” on page 55 discusses what a 
digital signature is. This section describes how to write Crypto-C code that computes 
or verifies digital signatures. For signing, Crypto-C offers B_SignInit, B_SignUpdate, 
and B_SignFinal, which will digest the data and encrypt the digest using RSA 
encryption with a private key. For verification, Crypto-C offers B_VerifyInit, 
B_VerifyUpdate, and B_VerifyFinal, which will digest the data again, decrypt the 
signature with the RSA public key, and compare the digest to the decrypted 
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signature.

Note that you cannot use the Sign and Verify functions if you do not want to digest 
the data. Some applications may not call for a digest; they may demand that the 
signature be the actual data encrypted with a private key. This is the case with some 
forms of authentication, for instance. In other cases, the data passed to the application 
has already been digested. In such an application, encrypt using AI_PKCS_RSAPrivate 
or AI_RSAPrivate; do not follow the model outlined here.

A digital signature is actually not the private-key encrypted digest of the data, but the 
private-key encrypted BER-encoding of the digest. (Remember that when you 
“encrypt” using the private key, you are actually following the same steps you use for 
decryption, even though you apply them to a plaintext file.) When you are using 
SHA1, this means the input data will be 35 bytes, not 20. The “encryption” follows the 
PKCS standards, so the data must be at least 11 bytes shorter than the modulus. 
Hence, the modulus must be at least 46 bytes (368 bits) for computing digital 
signatures using SHA1 as the digesting algorithm.

The example in this section corresponds to the file rsasign.c.

Computing a Digital Signature
Remember that with Crypto-C, you have the choice of doing your private-key 
operations normally or of using the blinding technique (see “Timing Attacks and 
Blinding” on page 96). You make this choice in the algorithm chooser. For normal 
signature operations, use AM_RSA_CRT_ENCRYPT. To use blinding, use 
AM_RSA_CRT_ENCRYPT_BLIND.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Crypto-C provides three methods for computing RSA digital signatures: MD2 with 

B_ALGORITHM_OBJ digitalSigner = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&digitalSigner)) != 0)
  break;
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RSA encryption, MD5 with RSA encryption, and SHA1 with RSA encryption. 

Note: Recent cryptanalytic work has discovered a collision in MD2’s internal 
compression function, and there is some chance that the attack on MD2 may 
be extended to the full hash function. The same attack applies to MD. Another 
attack has been applied to the compression function on MD5, though this has 
yet to be extended to the full MD5. RSA Data Security, Inc., recommends that 
before you use MD, MD2, or MD5, you should consult the RSA Laboratories 
web site to be sure that their use is consistent with the latest information. 

For this example, choose AI_SHA1WithRSAEncryption. The Library Reference Manual 
Chapter 2 entry on this AI states that the format of info supplied to 
B_SetAlgorithmInfo is NULL_PTR:

Step 3: Init
Associate a key and algorithm method with the algorithm object through B_SignInit. 
The Library Reference Manual Chapter 4 entry for this function shows that it takes four 
arguments: the algorithm object, a key object, an algorithm chooser, and a surrender 
context. The algorithm object in this example is digitalSigner. Remember, if the 
algorithm object was not set to AI_MD5WithRSAEncryption, 
AI_MD2WithRSAEncryption, AI_SHA1WithRSAEncryption, or their BER counterparts, 
you cannot use B_SignInit. For a key object, use an RSA private key. Follow Steps 1 
through 5 of “Generating a Key Pair” on page 186 to produce a key pair. Remember, 
the modulus must be at least 368 bits. 

Build an algorithm chooser with the AMs listed in the Library Reference Manual 
Chapter 2 entry for the AI in use:

Note: If you want to sign using the blinding technique to thwart timing attacks (see 
“Timing Attacks and Blinding” on page 96), use AM_RSA_CRT_ENCRYPT_BLIND 
in the algorithm chooser. 

if ((status = B_SetAlgorithmInfo
     (digitalSigner, AI_SHA1WithRSAEncryption, NULL_PTR)) != 0)
  break;

B_ALGORITHM_METHOD *SIGN_SAMPLE_CHOOSER[] = {
  &AM_SHA,
  &AM_RSA_CRT_ENCRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
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B_SignInit is fast, so it is reasonable to pass a properly cast NULL_PTR for the 
surrender context:

Step 4: Update
Digest the data to sign with B_SignUpdate, which is described in Chapter 4 of the 
Library Reference Manual. Unless there is an extraordinarily large amount of data (for 
example, a megabyte), this function is quick and a NULL_PTR for the surrender context 
should be no problem. Assuming you have your input data and you know its length, 
your call would be the following:

Step 5: Final
B_SignUpdate digested the data. Encrypt the digest and output the result to a 
signature buffer with B_SignFinal. The signature will be the same size as the public 
modulus, so make sure the output buffer is big enough. The Library Reference Manual 
Chapter 2 entry on AI_SHAWithRSAEncryption states that “You may pass 
(B_ALGORITHM_OBJ)NULL_PTR for all randomAlgorithm arguments.” This function does 
not return immediately, so a surrender context can be helpful; for this example use the 
surrender context outlined in “The Surrender Context” on page 120:

if ((status = B_SignInit
     (digitalSigner, privateKey, SIGN_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

if ((status = B_SignUpdate
     (digitalSigner, inputData, inputDataLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

#define BLOCK_SIZE 64;

/* Assuming we are using a 512-bit key */
unsigned char signature[BLOCK_SIZE];
unsigned int signatureLen;
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Step 6: Destroy
When you are done with all objects, remember to destroy them.

Verifying a Digital Signature
The Crypto-C sequence B_VerifyInit, B_VerifyUpdate, and B_VerifyFinal will 
digest the original data, decrypt the signature with the provided RSA public key, and 
compare the digest to the decrypted signature. If the values are the same, 
B_VerifyFinal returns a 0; if they are different, it returns an error code.

Note: If a signing application did not digest the data before encrypting to produce a 
signature, you cannot use the Verify functions. Instead, decrypt the signature 
using AI_PKCS_RSAPublic or AI_RSAPublic.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
The signer should tell you which message digest and decryption algorithms you need 

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_SignFinal
     (digitalSigner, signature, &signatureLen, 64,
      (B_ALGORITHM_OBJ)NULL_PTR,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&digitalSigner);
B_DestroyKeyObject (&privateKey);

B_ALGORITHM_OBJ digitalVerifier = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&digitalVerifier)) != 0)
  break;
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to use to verify the signature. To verify the signature created above, you would use 
the same AI:

Step 3: Init
Associate a key and algorithm method with the algorithm object through 
B_VerifyInit. The Chapter 4 Library Reference Manual entry for this function shows 
that it takes four arguments: the algorithm object, a key object, an algorithm chooser, 
and a surrender context. The algorithm object in this example is digitalVerifier. For 
a key object, use an RSA public key, presumably the partner to the RSA private key 
that was used for the signature. Build an algorithm chooser which incorporates the 
AMs listed in the Library Reference Manual Chapter 2 entry for the AI in use. 
B_VerifyInit is fast, so it is reasonable to pass a properly cast NULL_PTR for the 
surrender context:

Note: If the algorithm object was not set to AI_MD5WithRSAEncryption, 
AI_MD2WithRSAEncryption, AI_SHA1WithRSAEncryption, or their BER 
counterparts, you cannot use B_VerifyInit.

Step 4: Update
Use B_VerifyUpdate to digest the data that was signed. Its prototype is in Chapter 4 of 
the Library Reference Manual. Unless there is an extraordinarily large amount of data 
(for example, a megabyte), B_VerifyUpdate is quick and a NULL_PTR for the surrender 
context should be no problem. Assuming that you have the same input data and you 

if ((status = B_SetAlgorithmInfo
     (digitalVerifier, AI_SHA1WithRSAEncryption, NULL_PTR)) != 0)
  break;

B_ALGORITHM_METHOD *VERIFY_SAMPLE_CHOOSER[] = {
  &AM_SHA,
  &AM_RSA_DECRYPT,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_VerifyInit
     (digitalVerifier, publicKey, VERIFY_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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know its length, your call is the following:

Step 5: Final
B_VerifyUpdate digested the data. Decrypt the signature and compare the result to 
the digest with B_VerifyFinal. The Library Reference Manual Chapter 2 entry on 
AI_SHA1WithRSAEncryption states that “You may pass (B_ALGORITHM_OBJ)NULL_PTR 
for all randomAlgorithm arguments.” This function does not return immediately, so use 
a surrender context:

The return value will be 0 if the signature verifies, nonzero if it does not. Of course, a 
nonzero return value may indicate some other error, so check any error return against 
the Crypto-C Error Types, in Appendix A of the Library Reference Manual.

Step 6: Destroy
When you are done with all objects, remember to destroy them:

ANSI X9.31-Compliant RSA Digital Signatures
Crypto-C supplies a special AI, AI_SignVerify, for ANSI X9.31-compliant digital 
signing and verification. The procedure to sign and verify using AI_SignVerify is 
similar to the steps outlined in the previous section “RSA Digital Signatures” on 

if ((status = B_VerifyUpdate
     (digitalVerifier, inputData, inputDataLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_VerifyFinal
     (digitalVerifier, signature, signatureLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&digitalVerifier);
B_DestroyKeyObject (&publicKey);
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page 198. The steps that differ are shown below.

The example in this section corresponds to the file signver.c.

Computing A Digital Signature

Step 1: Creating an Algorithm Object
Create your algorithm object as in “Computing a Digital Signature” on page 199.

Step 2: Setting the Algorithm Object
Assume that RSA_MODULUS_BITS gives the modulus size of the RSA key pair. The 
proper AI to use for following the ANSI X9.31 standard for digital signatures is 
AI_SignVerify. The Library Reference Manual Chapter 2 entry for this AI states that 
you have to pass a pointer to a B_SIGN_VERIFY_PARAMS structure to 
B_SetAlgorithmInfo:

Currently, the only signing method supported is "rsaSignX931", the only digest 
available is "sha1", and the only format method is "formatX931". You can pass in a 
NULL_PTR for the encryption and digest parameters, but the formatParams field requires 
a pointer to a A_X931_PARAMS structure: 

You need to determine blockLen for your modulus. AI_SignVerify encodes the input 
data in blocks. Because of the requirements of the underlying RSA algorithm, the 
number of bits of data must be the same as the number of bits of the RSA modulus. 
However, the input block size is measured in bytes. Because the modulus size, which 
is stored in RSA_MODULUS_BITS, may not be an even number of bytes, you need to 

typedef struct {                                        /* Current Choices */
  unsigned char *encryptionMethodName;   /* "rsaSignX931", "rsaVerifyX931" */
  POINTER        encryptionParams;  /* Null for what is currently available*/
  unsigned char *digestMethodName;                               /* "sha1" */
  POINTER        digestParams;                            /* Null for sha1 */
  unsigned char *formatMethodName;                         /* "formatX931" */
  POINTER        formatParams; /* structure of type A_X931_PARAMS for sha1 */
} B_SIGN_VERIFY_PARAMS;

typedef struct {
  unsigned int blockLen; 
  unsigned int oidNum;
} A_X931_PARAMS;
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calculate the smallest number of bytes you can use for your block. This number is the 
integer part of (RSA_MODULUS_BITS + 7) / 8. For example, if your modulus is 514 bits 
long, the smallest block size you can use is the integer part of (514 + 7)/8 bytes, or 65 
bytes. 

Note: For verifying, use "rsaVerifyX931" in place of "rsaSignX931".

Step 3: Init
Associating a key and algorithm method is the same as in the previous example, but 
you need to include different algorithm methods in the chooser. The Library Reference 
Manual Chapter 2 entry for AI_SignVerify lists the appropriate ones to add: 

    A_X931_PARAMS x931params;
    B_SIGN_VERIFY_PARAMS signVerifyParams;
    x931params.blockLen = ((RSA_MODULUS_BITS + 7) / 8);
    x931params.oidNum = 3;

    signVerifyParams.encryptionMethodName = (unsigned char *)"rsaSignX931";
    signVerifyParams.encryptionParams = NULL_PTR;
    signVerifyParams.digestMethodName = (unsigned char *)"sha1";
    signVerifyParams.digestParams = NULL_PTR;
    signVerifyParams.formatMethodName = (unsigned char *)"formatX931";
    signVerifyParams.formatParams = (POINTER)&x931params;

    if ((status = B_SetAlgorithmInfo (digitalSigner, AI_SignVerify,
                                      (POINTER)&signVerifyParams)) != 0)
      break;

  B_ALGORITHM_METHOD *SIGNVERIFY_SAMPLE_CHOOSER[] = {
    &AM_SHA,
    &AM_SHA_RANDOM,
    &AM_RSA_STRONG_KEY_GEN,
    &AM_FORMAT_X931,
    &AM_RSA_CRT_X931_ENCRYPT,
    &AM_EXTRACT_X931,                        /*  We will use these two AMs */
    &AM_RSA_X931_DECRYPT,                 /*  for verifying the signature  */
    (B_ALGORITHM_METHOD *)NULL_PTR
  };
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Steps 4, 5, 6
All other steps remain the same as in the example “Computing a Digital Signature” 
on page 199.

Verifying A Digital Signature

Step 1: Creating An Algorithm Object
Create your algorithm object as in “Verifying a Digital Signature” on page 202.

Step 2: Setting the Algorithm Object
To verify the signature created above, you need to use the same AI you used for 
signing. Again, you must set up the appropriate structures containing the information 
for the algorithm you wish to use. The x931params structure is the same as the one 
used for signing, but you need to use "rsaVerifyX931" for the encryptionMethodName.

Step 3: Init
Again, the only change required in the Init step is to include the appropriate 
algorithm methods in the chooser. These are the same methods included in the 

  if ((status = B_SignInit
       (digitalSigner, privateKey, SIGNVERIFY_SAMPLE_CHOOSER,
        (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

    signVerifyParams.encryptionMethodName = (unsigned char *)"rsaVerifyX931";
    signVerifyParams.encryptionParams = NULL_PTR;
    signVerifyParams.digestMethodName = (unsigned char *)"sha1";
    signVerifyParams.digestParams = NULL_PTR;
    signVerifyParams.formatMethodName = (unsigned char *)"formatX931";
    signVerifyParams.formatParams = (POINTER)&x931params;
    
    if ((status = B_SetAlgorithmInfo (digitalVerifier, AI_SignVerify,
                                      (POINTER)&signVerifyParams)) != 0)
      break;
C h a p t e r  6   P u b l i c - K e y  O p e r a t i o n s 2 0 7



Performing RSA Operations
SIGNVERIFY_SAMPLE_CHOOSER above. Then, call B_VerifyInit with the chooser:

Steps 4, 5, 6
All other steps remain the same as in the example “Verifying a Digital Signature” on 
page 202.

    if ((status = B_VerifyInit
         (digitalVerifier, publicKey, SIGNVERIFY_SAMPLE_CHOOSER,
          (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
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Performing DSA Operations
The Digital Signature Algorithm (DSA) is part of the Digital Signature Standard 
(DSS), published by the National Institute of Standards and Technology (NIST, a 
division of the US Department of Commerce), and is the digital authentication 
standard of the US government. The section “Digital Signature Algorithm (DSA)” on 
page 58 gives a more detailed description of the actual algorithm.

Generating a DSA key pair is a two-step process. First, you must generate the DSA 
parameters, then you can generate the actual key pair.

The example in this section corresponds to the file dsasign.c.

Generating DSA Parameters
In this section, you generate the DSA parameters: a prime, a subprime, and a base. 
There is no Step 4, Update, in generating DSA parameters.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one AI that will generate DSA parameters, AI_DSAParamGen. The format 
of info supplied to B_SetAlgorithmInfo is a pointer to the following:

Crypto-C will generate the prime, but you must decide how big that prime will be. 
The number of prime bits can be anywhere from 512 to 2048. Larger numbers provide 

B_ALGORITHM_OBJ dsaParamGenerator = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dsaParamGenerator)) != 0)
  break;

typedef struct { 
  unsigned int primeBits;                         /* size of prime in bits */
} B_DSA_PARAM_GEN_PARAMS;
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greater security, but are also much slower. As with the RSA algorithm, RSA Data 
Security recommends using 768 bits. To save time, because this is for illustrative 
purposes only, this example will use 512. The subprime is always 160 bits long:

Step 3: Init
Initialize the generation process with B_GenerateInit. Build an algorithm chooser. 
Because this function is quick, it is reasonable to pass NULL_PTR as the surrender 
context. Generating the parameters in Step 5 is time-consuming, though, so you will 
use a surrender context there:

Step 4: Update
There is no Step 4 in generating DSA parameters.

Step 5: Generate
To generate DSA parameters, call the Crypto-C function B_GenerateParameters. The 
Library Reference Manual Chapter 4 entry for this call indicates there are four 
arguments. The first is the algorithm object that generates the parameters; in this 
example, that is dsaParamGenerator. 

The second is a result algorithm object. Crypto-C will generate some values and will 

B_DSA_PARAM_GEN_PARAMS dsaParams;
 
dsaParams.primeBits = 512;
if ((status = B_SetAlgorithmInfo
     (dsaParamGenerator, AI_DSAParamGen,
      (POINTER)&dsaParams)) != 0)
  break;

B_ALGORITHM_METHOD *DSA_PARAM_GEN_CHOOSER[] = {
  &AM_SHA_RANDOM,
  &AM_DSA_PARAM_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_GenerateInit
     (dsaParamGenerator, DSA_PARAM_GEN_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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need to place them somewhere. This information will be used in later Crypto-C calls, 
so you might as well place these values in an algorithm object now. Create an 
algorithm object, but do not set it; B_GenerateParameters will do that. (This is similar 
to generating an RSA key pair, where the results were placed into key objects.)

The third argument is a random algorithm. Complete Steps 1 through 4 of 
“Generating Random Numbers” on page 147. You do not need random bytes, only an 
algorithm that can generate them. The algorithm chooser you are using contains the 
AM for SHA1 random number generation.

The last argument is a surrender context. Generating DSA parameters can be time-
consuming, sometimes taking two or three minutes. On slower machines, generating 
parameters over 800 bits can take more than an hour. Use the surrender context 
described previously. It will print out a dot every second to let you know that Crypto-
C is computing and the machine has not crashed:

Step 6: Destroy
Remember to destroy your objects. Do not destroy the dsaKeyGenObj object until you 
have used it to generate the actual key pair:

Generating a DSA Key Pair
The previous code generated the DSA parameters and set an algorithm object. With 
that algorithm object, you can generate the key pair. Remember, the algorithm object 
has already been created and set, so you can jump directly to Step 3.

B_ALGORITHM_OBJ dsaKeyGenObj = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dsaKeyGenObj)) != 0)
  break;
 
/* generalFlag is for this tutorial’s surrender function. */
generalFlag = 0;
if ((status = B_GenerateParameters
     (dsaParamGenerator, dsaKeyGenObj, randomAlgorithm,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dsaParamGenerator);
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Step 3: Init
When it generated the parameters, Crypto-C set the algorithm object dsaKeyGenObj to 
AI_DSAKeyGen. That means that when you build an algorithm chooser for the Init call, 
you need to include AM_DSA_KEY_GEN. Look up the description and prototype for 
B_GenerateInit in Chapter 4 of the Library Reference Manual. For this example, you 
can use the following:

This example uses NULL_PTR for the surrender context because B_GenerateInit is a 
speedy function. B_GenerateKeypair in Step 5 is the time-consuming function.

Step 4: Update
There is no Step 4 in generating a key pair.

Step 5: Generate
The description and prototype for B_GenerateKeypair in Chapter 4 of the Library 
Reference Manual show that this function takes five arguments. The first is the 
algorithm object; for this example, it is dsaKeyGenObj. The second and third are key 
objects. For this call, all you have to do is create the key objects; they will be set by 
B_GenerateKeypair. The fourth argument is a random algorithm. For this, complete 
Steps 1 through 4 of “Generating Random Numbers” on page 147. You do not need 
random bytes, only an algorithm that can generate them. The algorithm chooser you 
are using (from Step 3) contains the AM for SHA1 random number generation. The 
last argument is the surrender context. This function call is quick; the lengthy portion 
was generating the parameters:

B_ALGORITHM_METHOD *DSA_KEY_GEN_CHOOSER[] = {
  &AM_SHA_RANDOM,
  &AM_DSA_KEY_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_GenerateInit
     (dsaKeyGenObj, DSA_KEY_GEN_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_KEY_OBJ dsaPublicKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ dsaPrivateKey = (B_KEY_OBJ)NULL_PTR;
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Step 6: Destroy
When you are done with all objects, remember to destroy them:

DSA Signatures
In this section, we describe how to write Crypto-C code that computes or verifies DSA 
digital signatures. See “Authentication and Digital Signatures” on page 55 for 
information on what a digital signature is. For signing, Crypto-C offers B_SignInit, 
B_SignUpdate, and B_SignFinal, which will digest the data and create a signature 
using DSA with a private key. For verification, Crypto-C offers B_VerifyInit, 
B_VerifyUpdate, and B_VerifyFinal to digest the data again and check the signature 
using the DSA public key.

Computing a Digital Signature

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 

if ((status = B_CreateKeyObject (&dsaPublicKey)) != 0)
  break;
 
if ((status = B_CreateKeyObject (&dsaPrivateKey)) != 0)
  break;
 
if ((status = B_GenerateKeypair
     (dsaKeyGenObj, dsaPublicKey, dsaPrivateKey,
      randomAlgorithm, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dsaKeyGenObj);
B_DestroyKeyObject (&dsaPublicKey);
B_DestroyKeyObject (&dsaPrivateKey);
C h a p t e r  6   P u b l i c - K e y  O p e r a t i o n s 2 1 3



Performing DSA Operations
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one Crypto-C choice for computing DSA digital signatures, 
AI_DSAWithSHA1 (or its BER counterpart). The Library Reference Manual Chapter 2 entry 
for this AI states that the format of info supplied to B_SetAlgorithmInfo is NULL_PTR.

Step 3: Init
Associate a key and algorithm method with the algorithm object through B_SignInit. 
The Chapter 4 Library Reference Manual entry on this function shows that it takes four 
arguments: the algorithm object, a key object, an algorithm chooser and a surrender 
context. The algorithm object in this example is dsaSigner. For a key object you want 
to use a DSA private key. See the previous section on generating a DSA key pair.

Build an algorithm chooser, the elements being the AMs listed in the Library Reference 
Manual Chapter 2 entry for the AI in use. B_SignInit is fast, so it is reasonable to pass 
a properly cast NULL_PTR for the surrender context:

B_ALGORITHM_OBJ dsaSigner = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dsaSigner)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (dsaSigner, AI_DSAWithSHA1, NULL_PTR)) != 0)
  break;

B_ALGORITHM_METHOD *DSA_SIGN_CHOOSER[] = {
  &AM_SHA,
  &AM_DSA_SIGN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
if ((status = B_SignInit
     (dsaSigner, dsaPrivateKey, DSA_SIGN_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 4: Update
Digest the data to sign with B_SignUpdate, the prototype of which is in Chapter 4 of 
the Library Reference Manual. Unless there is an extraordinarily large amount of data 
(for example, a megabyte or more), this function is quick and a NULL_PTR for the 
surrender context should be no problem. Assuming you have some input data and 
you know its length, your call is the following:

Step 5: Final
B_SignUpdate digested the data. Create the signature and send the result to a 
signature buffer with B_SignFinal. The signature will be as many as 48 bytes long, so 
make sure the output buffer is big enough. The Library Reference Manual Chapter 2 
entry on AI_DSAWithSHA1 states:

This function does not return immediately, so a surrender context can be helpful. For 
this example, use the surrender context described in “The Surrender Context” on 
page 120:

if ((status = B_SignUpdate
     (dsaSigner, inputData, inputDataLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

 You must pass a random algorithm in B_SignFinal, but may pass 
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.

#define MAX_SIG_LEN 48

unsigned char signature[MAX_SIG_LEN];
unsigned int signatureLen;
 
/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_SignFinal
     (dsaSigner, signature, &signatureLen, MAX_SIG_LEN,
      randomAlgorithm,
      &generalSurrenderContext)) != 0)
  break;
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Step 6: Destroy
When you are done with all objects, remember to destroy them:

Verifying a Digital Signature
The Crypto-C sequence B_VerifyInit, B_VerifyUpdate, and B_VerifyFinal digests 
the original data and checks the signature. If the signature is valid, B_VerifyFinal 
returns a zero; if the signature is not valid, it returns an error code.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject: 

Step 2: Setting The Algorithm Object
To verify the signature created above, use the same AI:

Step 3: Init
Associate a key and algorithm method with the algorithm object through 
B_VerifyInit. The Chapter 4 Library Reference Manual entry on this function shows 
that it takes four arguments: the algorithm object, a key object, an algorithm chooser, 
and a surrender context. The algorithm object in this example is dsaVerifier. For a key 
object, you want to use a DSA public key, presumably the partner to the DSA private 
key used to sign. Build an algorithm chooser, the elements being the AMs listed in the 

B_DestroyAlgorithmObject (&dsaSigner);
B_DestroyKeyObject (&dsaPrivateKey);

B_ALGORITHM_OBJ dsaVerifier = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dsaVerifier)) != 0)
  break;

if ((status = B_SetAlgorithmInfo
     (dsaVerifier, AI_DSAWithSHA1, NULL_PTR)) != 0)
  break;
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Library Reference Manual Chapter 2 entry for the AI in use. B_VerifyInit is fast, so it is 
reasonable to pass a properly cast NULL_PTR for the surrender context:

Step 4: Update
Digest the data that was signed with B_VerifyUpdate, the prototype of which is in 
Chapter 4 of the Library Reference Manual. Unless there is an extraordinarily large 
amount of data (for example, a megabyte or more), this function is quick and a 
NULL_PTR for the surrender context will probably be no problem. Assuming you have 
the same input data and you know its length, your call is the following:

Step 5: Final
B_VerifyUpdate digested the data. Check the signature with B_VerifyFinal. The 
Library Reference Manual Chapter 2 entry on AI_DSAWithSHA1 states:

B_ALGORITHM_METHOD *DSA_VERIFY_CHOOSER[] = {
  &AM_SHA1,
  &AM_DSA_VERIFY,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_VerifyInit
     (dsaVerifier, dsaPublicKey, DSA_VERIFY_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

if ((status = B_VerifyUpdate
     (dsaVerifier, inputData, inputDataLen,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

 You must pass a random algorithm in B_SignFinal, but may pass 
(B_ALGORITHM_OBJ)NULL_PTR for all other randomAlgorithm arguments.
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This function does not return immediately, so use a surrender context:

The return value will be zero if the signature verifies, nonzero if it does not. Of course, 
a nonzero return value may indicate some other error, so check any error return 
against the Crypto-C Error Types, Appendix A of the Library Reference Manual.

Step 6: Destroy
When you are done with all objects, remember to destroy them:

/* generalFlag is for the surrender function. */
generalFlag = 0;
if ((status = B_VerifyFinal
     (dsaVerifier, signature, signatureLen,
      (B_ALGORITHM_OBJ)NULL_PTR,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&dsaVerifier);
B_DestroyKeyObject (&dsaPublicKey);
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Performing Diffie-Hellman Key Agreement
The Diffie-Hellman Key Agreement is a method for two parties to obtain the same 
symmetric key. In this procedure, a central authority generates parameters and gives 
them to the two individuals seeking to generate a secret key. In Phase 1, each 
individual uses these parameters to produce a public value and a private value. In 
Phase 2, they trade public values and each uses the other’s public value with their 
own private value to generate the same secret value.

Note: One of the individuals could act as the central authority and generate the 
parameters. Security does not depend on a third party’s independently 
producing the parameters.

The section “Diffie-Hellman Public Key Agreement” on page 61 gives a detailed 
description of the Diffie-Hellman algorithm.

Generating Diffie-Hellman Parameters
The parameters are a prime, a base, and, optionally, the length in bits of the private 
value. The parties will generate their own private values in Phase 1, although the 
central authority has the option of declaring how long these values will be.

Note: You may have noticed that the Diffie-Hellman algorithm is very similar to the 
RSA algorithm. The Diffie-Hellman prime is analogous to the RSA modulus, 
and the Diffie-Hellman base is analogous to the RSA data to encrypt. The 
Diffie-Hellman private value is analogous to the RSA private exponent 
(private key) in private-key encryption.

The example in this section corresponds to the file dhparam.c. There is no Step 4, 
Update, in generating Diffie-Hellman parameters.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

B_ALGORITHM_OBJ dhParamGenerator = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dhParamGenerator)) != 0)
  break;
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Step 2: Setting The Algorithm Object
There is only one AI for generating Diffie-Hellman parameters: AI_DHParamGen. The 
format of info supplied to B_SetAlgorithmInfo is a pointer to the following struct:

Crypto-C will generate the prime, but you must decide how big that prime will be. As 
with the RSA modulus, the number of prime bits can be anywhere from 256 to 2048. 
Larger numbers provide greater security, but operations with larger numbers are 
much slower. RSA Data Security recommends 768. To save time, because this is for 
illustrative purposes only, this example will use 512.

The exponent is the private value, generated randomly by each party during Phase 1. 
The value exponentBits is the length of that private value. The Diffie-Hellman 
algorithm allows the parameter generator (the central authority) to optionally 
determine the length of the private value. Crypto-C exercises that option and requires 
the length. 

The exponent length should be at least twice the general security level of the system. 
For instance, if 80-bit security against brute-force attack is desired, the exponent 
should be 160 bits long. (This is how DSS does it.) The prime length should be chosen 
to have a comparable level of difficulty against the best discrete logarithm algorithms. 
The relationship between the sizes changes from time to time; a 1024-bit prime would 
not be too far off from the 80-bit level.

The closer the exponent length is to the prime length, the longer it takes to generate 
the Diffie-Hellman parameters, because Crypto-C generates a prime p and a prime q 
where p-1 is a multiple of q, and the length of q is the same as the desired length of the 
exponent. If the lengths are very close it will take a long time to find an appropriately 
related pair of primes, because for a given q there won't be all that many possible p’s. 
For example: for a one-bit difference between the prime and exponent lengths, p must 
equal 2q+1, and it's unlikely that q and 2q+1 are simultaneously prime.

The Chapter 2 entry for AI_DHParamGen notes that the “exponentBits must be less than 

typedef struct {
  unsigned int primeBits;                 /* size of prime modulus in bits */
  unsigned int exponentBits;            /* size of random exponent in bits */
} A_DH_PARAM_GEN_PARAMS;
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primeBits.” For this example, choose 512 prime bits and 504 exponent bits:

Step 3: Init
Initialize the generation process with B_GenerateInit. Build an algorithm chooser. 
Because this function is quick, it is reasonable to pass NULL_PTR as the surrender 
context. Generating the parameters in Step 5 is time-consuming, though, so you will 
use a surrender context there:

Step 4: Update
There is no Step 4 in generating Diffie-Hellman parameters.

Step 5: Generate
To generate Diffie-Hellman parameters, call the Crypto-C function 
B_GenerateParameters. The Library Reference Manual Chapter 4 entry for this call 
indicates there are four arguments. The first is the algorithm object that generates the 
parameters; in this example, that is dhParamGenerator. The second is a result algorithm 
object. Crypto-C will generate some values and will need to place them somewhere. 
So you might as well place them into an algorithm object now. (This is similar to 
generating an RSA key pair, where the results were placed into key objects.) Create an 

A_DH_PARAM_GEN_PARAMS dhParams;
 
dhParams.primeBits = 512;
dhParams.exponentBits = 504;
if ((status = B_SetAlgorithmInfo
     (dhParamGenerator, AI_DHParamGen,
      (POINTER)&dhParams)) != 0)
  break;

B_ALGORITHM_METHOD *DH_SAMPLE_CHOOSER[] = {
  &AM_SHA_RANDOM,
  &AM_DH_PARAM_GEN,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_GenerateInit
     (dhParamGenerator, DH_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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algorithm object, but do not set it; B_GenerateParameters will do that.

The third argument is a random algorithm. Complete Steps 1 through 4 of 
“Generating Random Numbers” on page 147. You do not need random bytes, only an 
algorithm that can generate them. The algorithm chooser you are using contains the 
AM for SHA random number generation.

The last argument is a surrender context. Generating Diffie-Hellman parameters is 
time-consuming; it can take up to two minutes. On slower machines, generating 
parameters over 800-bits can take more than an hour. Use the surrender context 
mentioned above. It will print out a dot every second to let you know that Crypto-C is 
computing and the machine has not crashed:

Step 6: Destroy
Remember to destroy your objects. Do not destroy the dhParametersObj object until 
you have passed it on to the parties executing the agreement. The next section 
discusses that point:

Distributing Diffie-Hellman Parameters
The central authority, after computing the parameters, must send this information to 
the parties seeking agree on a secret key. This can be done using Crypto-C format or 
BER-encoded format.

B_ALGORITHM_OBJ dhParametersObj = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dhParametersObj)) != 0)
  break;
 
/* generalFlag is for this tutorial’s surrender function. */
generalFlag = 0;
if ((status = B_GenerateParameters
     (dhParamGenerator, dhParametersObj, randomAlgorithm,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&randomAlgorithm);
B_DestroyAlgorithmObject (&dhParamGenerator);
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Note: It is not necessary to generate parameters each time two parties wish to agree 
on a secret key. Any number of key agreements can use the same parameters. 
Of course, for greater security, it is a good idea to generate new parameters 
every so often.

Crypto-C Format
To send the information in Crypto-C format, you can send a copy of the algorithm 
object to the participants. Actually, you do not send the object itself, but rather the 
“info supplied to B_SetAlgorithmInfo.”

Recall that you did not set the algorithm object dhParametersObj; the Crypto-C 
function B_GenerateParameters did. It is set to the AI AI_DHKeyAgree. In the Library 
Reference Manual Chapter 2 entry on AI_DHKeyAgree, the topic “Format of info 
returned by B_GetAlgorithmInfo” states that it returns a pointer to an 
A_DH_KEY_AGREE_PARAMS structure:

where ITEM is:

Declare a variable to be a pointer to such a structure and pass its address as the 
argument.

Using the Library Reference Manual Chapter 4 prototype for B_GetAlgorithmInfo as a 
guide, you can write the following:

typedef struct {
  ITEM         prime;                                     /* prime modulus */
  ITEM         base;                                     /* base generator */
  unsigned int exponentBits;            /* size of random exponent in bits */
} A_DH_KEY_AGREE_PARAMS;

typedef struct {
  unsigned char *data;
  unsigned int   len;
} ITEM;

A_DH_KEY_AGREE_PARAMS *dhKeyAgreeParams =
     (A_DH_KEY_AGREE_PARAMS *)NULL_PTR;
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If you look at the elements of the struct:

dhKeyAgreeParams->prime.data
dhKeyAgreeParams->prime.len
dhKeyAgreeParams->base.data
dhKeyAgreeParams->base.len
dhKeyAgreeParams->exponentBits

you will see the parameters Crypto-C generated. This is the information the central 
authority sends to the participants in the key agreement. Copy this information to a 
file or diskette, for instance, and pass it on.

If you want to email the information, you will not be able to send the information over 
most email systems because the data is in binary form, not ASCII. Crypto-C offers 
encoding and decoding functions to convert between binary and ASCII. See 
“Converting Data Between Binary and ASCII” on page 154 for more information.

BER Format
There is a problem with distributing the parameters in the above structure. The 
struct is not standard; it is unique to Crypto-C. If one or both of the parties are not 
using Crypto-C, how do you give them the information? The standard is ASN.1, 
which defines Basic Encoding Rules (BER) and Distinguished Encoding Rules (DER). 
See “BER/DER Encoding” on page 125 for a description of this topic.

The central authority puts the parameters into DER format, encodes them, and emails 
the encoding. The parties decode the DER string and convert that information into the 
parameters in the format of their choice.

This sounds difficult, but Crypto-C offers a means of doing it simply. Above, in order 
to obtain the parameters, you used B_GetAlgorithmInfo with AI_DHKeyAgree. 
Chapter 2 of the Library Reference Manual lists AI_DHKeyAgreeBER, which states:

Crypto-C returns a pointer to where that information resides, not the information. As 

if ((status = B_GetAlgorithmInfo
     ((POINTER *)&dhKeyAgreeParams, dhParametersObj,
      AI_DHKeyAgree)) != 0)
  break;

Format of info returned by B_GetAlgorithmInfo:
pointer to an ITEM structure which gives the address and length of the DER-encoded 
algorithm identifier.
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soon as the object that contains that information is destroyed, the information will no 
longer be accessible. Therefore, once you get the pointer to that information, copy it 
into your own buffer:

In summary, generate the parameters, get the algorithm info in BER format with 
B_GetAlgorithmInfo and AI_DHKeyAgreeBER, encode the BER data into ASCII format 
and send it to the Diffie-Hellman key agreement participants.

Note: The conversion into BER or DER is known as BER-encoding or DER-
encoding, and the conversion between binary to ASCII is known as encoding 
and decoding. This may get confusing, but the word encoding without a BER 
in front of it generally means binary to ASCII. If the encoding is BER- or DER-
encoding, the BER or DER should be explicitly stated.

Diffie-Hellman Key Agreement
If you are one of the parties involved in the key agreement, perform the following 
steps. Note that instead of Update and Final, you use B_KeyAgreePhase1 and 
B_KeyAgreePhase2. Also, if you are writing an application that executes the Diffie-
Hellman key agreement, the application must be interactive.

This process will produce an agreed-upon secret value. That value may be larger than 
necessary. For instance, the agreement may produce a 64-byte agreed upon secret 
value, yet the parties may need only 8 bytes. The application must determine which 
bytes from the agreed upon secret value to use.

ITEM *cryptocDHParametersBER;
ITEM myDHParametersBER;
 
myDHParametersBER.data = NULL_PTR;
 
if ((status = B_GetAlgorithmInfo
     ((POINTER *)&cryptocDHParametersBER, myDHParametersObj,
      AI_DHKeyAgreeBER)) != 0)
  break;
 
myDHParametersBER.len = cryptocDHParametersBER->len;
myDHParametersBER.data = T_malloc (myDHParametersBER.len);
if ((status = (myDHParametersBER.data == NULL_PTR)) != 0)
  break;
T_memcpy (myDHParametersBER.data, cryptocDHParametersBER->data,
          myDHParametersBER.len);
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The example in this section corresponds to the file dhagree.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There are two possible AIs to use in setting a Diffie-Hellman key agreement algorithm 
object: AI_DHKeyAgree and AI_DHKeyAgreeBER. Recall that in generating the Diffie-
Hellman parameters, the central authority set an algorithm object and then retrieved 
its info using B_GetAlgorithmInfo. The central authority then distributed that info to 
you, telling you which AI to use. For this example, use AI_DHKeyAgreeBER to match 
the usage in “Distributing Diffie-Hellman Parameters” on page 222:

Step 3: Init
Initialize the algorithm object with B_KeyAgreeInit. The Library Reference Manual 
Chapter 4 entry on this function indicates it takes four arguments. The first is the 
algorithm object, dhKeyAgreeAlg. The second is a key object. The Diffie-Hellman key 
agreement algorithm does not require a key, so use a properly cast NULL_PTR for this 
argument. The third argument is an algorithm chooser, and the last is a surrender 
context. This function is fast, so it is reasonable to pass a properly cast NULL_PTR for 

B_ALGORITHM_OBJ dhKeyAgreeAlg = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&dhKeyAgreeAlg)) != 0)
  break;

/* Assume you received the BER-encoded DH parameters from the
     central authority in the ITEM dhParametersBER. */
ITEM dhParametersBER;

if ((status = B_SetAlgorithmInfo
     (dhKeyAgreeAlg, AI_DHKeyAgreeBER,
      (POINTER)&dhParametersBER)) != 0)
  break;
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the surrender context.

Step 4: Phase 1
In Phase 1, you generate a random private value and compute a public value from 
that private value and the parameters. The Library Reference Manual Chapter 4 entry 
on B_KeyAgreePhase1 describes the format of its six arguments.

The first is the algorithm object. The second is output. This output is the public value, 
which will be the same size as the prime. You are responsible for allocating the 
memory for the buffer to contain the public value. In this example, you do not know 
how big the prime is; just set the algorithm with the BER-encoded info. That info does 
contain the size of the prime, but you would have to know exactly where to look. An 
easier way to find the prime size is by getting the algorithm info as AI_DHKeyAgree.

The third argument for the Phase 1 call is the address of an unsigned int. Crypto-C 
will place the length in bytes of the public value at that address. The fourth is the size 
of the buffer you allocated; if the buffer is not big enough to hold the output, Crypto-
C will generate an error. The fifth argument is a random algorithm object. For this, 
complete Steps 1 through 4 of “Generating Random Numbers” on page 147. You do 
not need random bytes, only an algorithm that can generate them. The last argument 
is a surrender context. This function does not return immediately, so a surrender 
context is helpful. Use the one outlined in “The Surrender Context” on page 120:

B_ALGORITHM_METHOD *DH_AGREE_SAMPLE_CHOOSER[] = {
  &AM_DH_KEY_AGREE,
  (B_ALGORITHM_METHOD *)NULL_PTR
};
 
if ((status = B_KeyAgreeInit
     (dhKeyAgreeAlg, (B_KEY_OBJ)NULL_PTR, DH_AGREE_SAMPLE_CHOOSER,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

unsigned char *myPublicValue = NULL_PTR;
unsigned int myPublicValueLen;
A_DH_KEY_AGREE_PARAMS *getParams;
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Step 5: Phase 2
After you have computed your public value, you must send it off to the other party 
and receive their public value. You need the same algorithm object from Phase 1 to 
complete Phase 2. This is why the process must be interactive. You cannot save your 
private value and stop the program after sending off your public value while you 
wait for the other party’s public value.

The input of B_KeyAgreePhase2 is the other party’s public value; the output is the 
agreed-upon secret value. The output will be the same size as the prime; you must 
allocate the space to hold this output. Although the output will be at least 32 bytes, the 
parties might only need eight bytes for a session key. If that is the case, it is the 
application’s responsibility to specify which bytes of the agreed-upon secret value 
will be used. This function does not return immediately, so a surrender context is 

/* Find out how big the prime is so we know how many bytes to
   allocate for the public value buffer.  */ 

if ((status = B_GetAlgorithmInfo
     ((POINTER *)&getParams, dhKeyAgreeAlg, AI_DHKeyAgree)) != 0)
  break;

myPublicValue = T_malloc (getParams->prime.len);
if ((status = (myPublicValue == NULL_PTR)) != 0)
  break;
 
/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_KeyAgreePhase1
     (dhKeyAgreeAlg, myPublicValue, &myPublicValueLen,
      getParams->prime.len, randomAlgorithm,
      &generalSurrenderContext)) != 0)
  break;
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useful:

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory:

/* The other party should send their public value and its length.  */

unsigned char *otherPublicValue;
unsigned int otherPublicValueLen;
unsigned char *agreedUponSecretValue = NULL_PTR;
unsigned int agreedUponSecretValueLen;
 
agreedUponSecretValue = T_malloc (getParams->prime.len);
if ((status = (agreedUponSecretValue == NULL_PTR)) != 0)
  break;
 
/* generalFlag is for the surrender function.*/
generalFlag = 0;
if ((status = B_KeyAgreePhase2
     (dhKeyAgreeAlg, agreedUponSecretValue,
      &agreedUponSecretValueLen, getParams->prime.len,
      otherPublicValue, otherPublicValueLen,
      &generalSurrenderContext)) != 0)
  break;

B_DestroyAlgorithmObject (&dhKeyAgreeAlg);
B_DestroyAlgorithmObject (&randomAlgorithm);
T_free (myPublicValue);
T_free (agreedUponSecretValue);
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Performing Elliptic Curve Operations
Elliptic curve cryptosystems can be used for a number of public-key operations. 
Crypto-C supports the following elliptic curve features:

• Generation of elliptic curve parameters

• Elliptic curve key pair generation

• Elliptic Curve Signature Schemes (ECDSA)

• Elliptic Curve Authenticated Encryption Scheme (ECAES)

• Elliptic Curve Diffie-Hellman key agreement (ECDH)

Crypto-C also allows you to generate precomputed acceleration tables to speed up 
certain elliptic curve operations.

For a description of elliptic curve parameters and algorithms, see “Elliptic Curve 
Cryptography” on page 64.

Generating Elliptic Curve Parameters
Before you can perform any elliptic curve operations, you must create the parameters 
for the curve that you will be using. Once you have generated elliptic curve 
parameters, you can use the parameters to: generate a key pair, to create an 
acceleration table, or to perform Elliptic Curve Diffie-Hellman (ECDH) key 
agreement. The same elliptic curve parameters can be used for multiple operations. 
See “Elliptic Curve Parameters” on page 65 for more information.

You need to make some choices about the kind of elliptic curve you want to use. You 
need to choose what to use for a base field: an odd prime finite field or a field of even 
characteristic. If you choose a field of even characteristic, you also have to choose 
what type of basis you want to use. You also have to choose the number of bits that 
you want for the length of an element in the field.

For this example, you will use an odd prime field for the base field. The example in 
this section corresponds to the file ecparam.c.

Step 1: Creating an Algorithm Object
You need to create two algorithm objects. The first, paramGenObj, is initialized by the 
programmer prior to the parameter generation operation; it is used to hold 
information necessary to generate parameters. The second, ecParamsObj, is set and 
initialized by B_GenerateParameters; it will hold the newly-generated elliptic curve 
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parameters.

Step 2: Setting the Algorithm Object
You need to set the algorithm object that will be used to generate the elliptic curve 
parameters. The only AI that can be used to generate elliptic curve parameters is 
AI_ECParamGen. Chapter 2 in the Library Reference Manual gives the following: 

To supply the necessary information, pass a pointer to a B_EC_PARAM_GEN_PARAMS 
structure as the third argument to B_SetAlgorithmInfo. The B_EC_PARAM_GEN_PARAMS 
structure is defined in the Chapter 2 entry in the Library Reference Manual for 
AI_ECParamGen:

You must choose the field type and the length of the field element. The field type can 
be either: a prime field of odd characteristic, that is, Fp; or a field of even characteristic, 
F2m. 

For this example, set the arguments as shown below. The first argument specifies the 

B_ALGORITHM_OBJ paramGenObj = (B_ALGORITHM_OBJ)NULL_PTR;
B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

if ((status = B_CreateAlgorithmObject(&paramGenObj)) != 0)
  break;
if ((status = B_CreateAlgorithmObject(&ecParamsObj)) != 0)
  break;

Format of info supplied to B_SetAlgorithmInfo:
pointer to a B_EC_PARAM_GEN_PARAMS structure.

typedef struct { 
  unsigned int version;                          /* implementation version */
  unsigned int fieldType;             /* base field for the elliptic curve */
  unsigned int fieldElementBits;        /* length of field element in bits */
  unsigned int compressIndicator; /* controls field element representation */
  unsigned int minOrderBits;    /* minimum size of group generated by base */
                            /* input of 0 defaults to fieldElementBits - 7 */
  unsigned int trialDivBound;      /* maximum size of second largest prime */
                                  /*  subgroup of group generated by base  */
                                            /*  input of 0 defaults to 255 */
  unsigned int tableLookup;           /* characteristic 2 only. Set if the */
                                  /*  use of precomputed params is desired */
} B_EC_PARAM_GEN_PARAMS;
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version number; in Crypto-C, the only version available is 0. The second argument 
specifies that you want your base field to be of the form Fp (p is an odd prime).

The third argument sets the length of a field element in bits; in this example, set it to 
be 160. For the prime field case, the size of a field element can be anywhere from 64 to 
384 bits. The length of a field element, along with minOrderBits, strongly affects the 
security of the system; the greater the length, the greater the security. However, the 
greater the length, the longer it takes to generate key pairs and encrypt and decrypt. 
Currently, RSA Data Security recommends a size of 160 to 170 bits for minOrderBits 
for prototyping and evaluation; because minOrderBits defaults to 7 bits smaller than 
fieldElementBits, fieldElementBits should be set to 167–177 bits.

For the legal values for fieldElementBits in the even characteristic case, see the entry 
for AI_ECParamGen in Chapter 2 of the Library Reference Manual.

Note: Generating an elliptic curve for even characteristic without table lookup 
(fieldtype = FT_F2_ONB or FT_F2_POLYNOMIAL and tableLookup = 0) can be 
extremely time-consuming, taking several hours in some cases. In general, 
larger values for minOrderBits means longer times for curve generation. 
Therefore, if you wish to generate curves for even characteristic, but do not 
want to use table lookup, you can speed curve generation by setting a smaller 
value for minOrderBits. Remember, however, that the size of minOrderBits is 
directly tied to the security of your elliptic curve cryptosystem. Setting 
minOrderBits allows you to make a trade-off between the time it takes to 
generate curves and the security of your system.

The fourth argument specifies whether you will express the base and public key in 
uncompressed or hybrid form; pass CI_NO_COMPRESS to indicate that your application 
will not use compression. For the fifth and six arguments, pass 0; this tells Crypto-C to 
use its internal algorithms to generate its own values:

  B_EC_PARAM_GEN_PARAMS paramGenInfo;
  paramGenInfo.version = 0;
  paramGenInfo.fieldType = FT_FP;  
  paramGenInfo.fieldElementBits = 160; 
  paramGenInfo.compressIndicator = CI_NO_COMPRESS;
  paramGenInfo.minOrderBits = 0;
  paramGenInfo.trialDivBound = 0;

if ((status = B_SetAlgorithmInfo(paramGenObj, AI_ECParamGen,
                                   (POINTER)&paramGenInfo)) != 0)
    break;
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Step 3: Init
You can pass a NULL_PTR for the surrender context, because B_GenerateInit is a 
speedy function. For AI_ECParamGen, Chapter 2 of the Library Reference Manual 
indicates which algorithm methods you need to include in your chooser, 
paramGenChooser:

Because you are using an odd prime, use AM_ECFP_PARAM_GEN:

Step 4: Update
No Update step is necessary for parameter generation.

Step 5: Generate 
This function may take a while, so you should use a surrender function. See “The 
Surrender Context” on page 120. B_GenerateParameters places the newly-generated 
elliptic curve parameters in ecParamsObj:

Algorithm methods to include in application’s algorithm chooser: 
AM_ECFP_PARAM_GEN for odd prime fields and AM_ECF2POLY_PARAM_GEN for even 
characteristic.

B_ALGORITHM_METHOD *paramGenChooser[] = {
    &AM_ECFP_PARAM_GEN,
    &AM_ECF2POLY_PARAM_GEN,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };  

  if ((status = B_GenerateInit(paramGenObj, paramGenChooser,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  generalSurrenderContext.Surrender = GeneralSurrenderFunction;
  generalSurrenderContext.handle = (POINTER)&generalFlag;
  generalSurrenderContext.reserved = NULL_PTR;
  generalFlag = 0;

if ((status = B_GenerateParameters(paramGenObj, ecParamsObj,
                                     randomAlgorithm,
                                     &generalSurrenderContext)) != 0)
    break;
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Step 6: Destroy
Destroy all algorithm objects that are no longer necessary. However, do not destroy 
ecParamsObj until you have retrieved and stored the parameters. See “Retrieving 
Elliptic Curve Parameters” on page 234 for more information. Do destroy ecParamsObj 
when it is no longer needed:

Retrieving Elliptic Curve Parameters
Once you have your elliptic curve parameters in an algorithm object, you need to be 
able to retrieve those parameters in an accessible form. Once you have retrieved your 
parameters, you can store the information or print it out. You also need to retrieve the 
elliptic curve parameters from the algorithm object when you generate acceleration 
tables.

This section outlines two application-specific procedures, AllocAndCopyECParamInfo 
and FreeECParamInfo, that are used to retrieve and store information. These 
procedures are referred to in subsequent sections.

To retrieve information from an algorithm object, it is necessary to call 
B_GetAlgorithmInfo with an appropriate AI. The only AI listed in the Library 
Reference Manual that allows you to set or retrieve the parameters is AI_ECParameters:

The Library Reference Manual Chapter 2 entry for AI_ECParameters also states that the 
format of the information returned by B_GetAlgorithmInfo is a pointer to an 

B_DestroyAlgorithmObject (&paramGenObj);
B_DestroyAlgorithmObject (&randomAlgorithm);

Type of information this allows you to use:
the parameters generated by executing AI_ECParamGen for either generating keys or 
executing key agreements.
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A_EC_PARAMS structure:

Assume that the elliptic curve parameters are placed in the algorithm object 
ecParamsObj (see “Generating Elliptic Curve Parameters” on page 230). Make the 
appropriate call to B_GetAlgorithmInfo:

Note that cryptocECParamInfo is a pointer to the information, not the information itself. 
The memory that cryptocECParamInfo points to belongs to Crypto-C; another call to 
Crypto-C may alter or destroy it. Therefore, once you get the pointer to the 
information, you must copy it to your own buffer.

The following procedure, AllocAndCopyECParamInfo, is an example of an application-
specific procedure that allocates space to store the parameters. You can also write 
your own procedure to satisfy the needs of your application:

typedef struct {
  unsigned int version;                          /* implementation version */
  unsigned int fieldType;                  /* indicates type of base field */
  ITEM         fieldInfo;                       /*  It is the prime number */
                                        /* in case that fieldType = FT_FP; */
                  /* the basis polynomial if fieldType = FT_F2_POLYNOMIAL; */
                   /* and the degree of the field if fieldType = FT_F2_ONB */
  ITEM         coeffA;                       /* elliptic curve coefficient */
  ITEM         coeffB;                       /* elliptic curve coefficient */
  ITEM         base;                     /* elliptic curve group generator */
  ITEM         order;            /* order of subgroup’s generating element */
  ITEM         cofactor;                   /* the cofactor of the subgroup */
  unsigned int compressIndicator; /* controls field element representation */
  unsigned int fieldElementBits;             /* field element size in bits */
} A_EC_PARAMS;

  A_EC_PARAMS *cryptocECParamInfo;

  if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParamInfo,
                                   ecParamsObj, AI_ECParameters)) != 0)
    break;

int AllocAndCopyECParamInfo(output, input)
A_EC_PARAMS *output;
A_EC_PARAMS *input;
{
  int status;
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  do {
    output->version = input->version;
    
    output->fieldType = input->fieldType;
 
    output->fieldInfo.len = input->fieldInfo.len;
    output->fieldInfo.data = T_malloc(output->fieldInfo.len);
    if ((status = (output->fieldInfo.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->fieldInfo.data, input->fieldInfo.data,
             output->fieldInfo.len);

    output->coeffA.len = input->coeffA.len;
    output->coeffA.data = T_malloc(output->coeffA.len);
    if ((status = (output->coeffA.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->coeffA.data, input->coeffA.data,
             output->coeffA.len);

    output->coeffB.len = input->coeffB.len;
    output->coeffB.data = T_malloc(output->coeffB.len);
    if ((status = (output->coeffB.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->coeffB.data, input->coeffB.data,
             output->coeffB.len);

    output->base.len = input->base.len;
    output->base.data = T_malloc(output->base.len);
    if ((status = (output->base.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->base.data, input->base.data,
             output->base.len);

    output->order.len = input->order.len;
    output->order.data = T_malloc(output->order.len);
    if ((status = (output->order.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->order.data, input->order.data,
             output->order.len);
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For this example application, use AllocAndCopyECParamInfo() to make a copy of the 
information that cryptocECParamInfo points to and place that in your own buffer, 
ecParamInfo:

When the information in ecParamInfo is no longer needed, you must remember to free 
any memory that you allocated:

where FreeECParamInfo is a procedure that performs this operation. In the sample 

    output->cofactor.len = input->cofactor.len;
    output->cofactor.data = T_malloc(output->cofactor.len);
    if ((status = (output->cofactor.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->cofactor.data, input->cofactor.data,
             output->cofactor.len);

    output->compressIndicator = input->compressIndicator;
    
    output->fieldElementBits = input->fieldElementBits;
  } while(0);

  if (status != 0)
    printf("AllocAndCopyECParamInfo failed with status %i\n", status);
  
  return status;
}

  A_EC_PARAMS ecParamInfo;
 
  if ((status = AllocAndCopyECParamInfo(&ecParamInfo,
                                        cryptocECParamInfo)) != 0)
    break;

  FreeECParamInfo(&ecParamInfo);
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code, FreeECParamInfo is implemented as follows:

Generating an Elliptic Curve Key Pair
In this section, you will generate a key pair suitable for use with Elliptic Curve DSA 
(ECDSA) and the Elliptic Curve Authenticated Encryption Scheme (ECAES). 

You can optionally use an acceleration table to speed up the key generation operation. 
This is useful if you will be doing key generation with the same elliptic curve several 
times. If you will be using an acceleration table with this example, assume that you 
have gone through the steps of generating an acceleration table and that you have the 
table in the ITEM structure accelTableItem.

Step 1: Create
Create the algorithm object that you will use to generate the key pair:

Also create the key objects to hold the keys after they have been generated:

void FreeECParamInfo(ecParams)
A_EC_PARAMS *ecParams;
{
  T_free(ecParams->fieldInfo.data);
  T_free(ecParams->coeffA.data);
  T_free(ecParams->coeffB.data);
  T_free(ecParams->base.data);
  T_free(ecParams->order.data);
  T_free(ecParams->cofactor.data);
}

  B_ALGORITHM_OBJ ecKeyGen = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject (&ecKeyGen)) != 0)
    break;

  B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
  B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;
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Step 2: Set
The Library Reference Manual indicates that the appropriate AI to use for generating an 
elliptic curve key pair is AI_ECKeyGen. You must set the algorithm object with the 
parameter information for the elliptic curve that you are using to generate the key. 
You do this by providing B_SetAlgorithmInfo with a pointer to a B_EC_PARAMS 
structure. 

Place the elliptic curve parameters in the A_EC_PARAMS structure ecParamInfo. You can 
do this either by setting ecParamInfo with the appropriate values, or by following the 
steps outlined in “Retrieving Elliptic Curve Parameters” on page 234 to retrieve the 
parameters from an algorithm object and place them into an A_EC_PARAMS structure. 

The AI that describes data in this format is AI_ECParameters:

You can also optionally use the acceleration table to speed up key generation. See 
“Generating Acceleration Tables” on page 243 for more information. Assume that you 
have the acceleration table corresponding to your elliptic curve in the ITEM structure 
accelTableItem. The appropriate AI to use with B_SetAlgorithmInfo in this case is 
AI_ECAcceleratorTable. Pass in a pointer to the ITEM structure holding the 
acceleration table as the third argument to B_SetAlgorithmInfo. Now set your key-

  if ((status = B_CreateKeyObject (&publicKey)) != 0)
    break;
  if ((status = B_CreateKeyObject (&privateKey)) != 0)
    break;

typedef struct {
  B_INFO_TYPE parameterInfoType;
  POINTER parameterInfoValue;
} B_EC_PARAMS;

  B_EC_PARAMS paramInfo;

  paramInfo.parameterInfoType = AI_ECParameters;
  paramInfo.parameterInfoValue = (POINTER)&ecParamInfo;

  if ((status = B_SetAlgorithmInfo (ecKeyGen, AI_ECKeyGen,
                                    (POINTER)&paramInfo)) != 0)
    break;
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generation algorithm object with the acceleration table information:

Step 3: Initialize
Here you can pass a NULL_PTR for the surrender context, because B_GenerateInit is a 
speedy function. The Library Reference Manual entry on AI_ECKeyGen indicates which 
algorithm methods you need to include in your chooser, keyGenChooser:

Step 4: Update
There is no Update step for key generation.

Step 5: Generate
Now you can complete the key-generation operation. Note that you must pass in a 
properly-initialized random algorithm as the fourth argument:

Step 6: Destroy
Remember to destroy all key objects and algorithm objects once they are no longer 

  if ((status = B_SetAlgorithmInfo (ecKeyGen, AI_ECAcceleratorTable,
                                    (POINTER)&accelTableItem)) != 0)
    break;

  B_ALGORITHM_METHOD *keyGenChooser[] = {
    &AM_ECFP_KEY_GEN,
    &AM_ECF2POLY_KEY_GEN,    
    (B_ALGORITHM_METHOD *)NULL_PTR
  };

  if ((status = B_GenerateInit (ecKeyGen, keyGenChooser,
                                (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  if ((status = B_GenerateKeypair
                (ecKeyGen, publicKey, privateKey, randomAlgorithm,
                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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needed:

Retrieving an Elliptic Curve Key
If you need to store or transport information about your elliptic curve keys, you need 
to be able to retrieve the key information from an algorithm object. This section 
outlines the steps needed to retrieve information for a public key. The steps for 
retrieving a private key are similar.

You need to call B_GetKeyInfo with the appropriate KI. The Library Reference Manual 
describes two KIs for use with elliptic curve public keys: KI_ECPublic and 
KI_ECPublicComponent. However, KI_ECPublicComponent does not supply the elliptic 
curve parameters, which must be associated with any elliptic curve key. Therefore, 
you can only use KI_ECPublicComponent if you only need the public component, for 
example, if you have already retrieved the appropriate EC parameters. Therefore, for 
this example, you’ll use KI_ECPublic.

KI_ECPublic gives a pointer to an A_EC_PUBLIC_KEY structure:

After you have your public key information in the key object publicKey, make a call to 
B_GetKeyInfo. See “Generating an Elliptic Curve Key Pair” on page 238 for more 
information:

B_GetKeyInfo gives a pointer to memory, but this memory is owned by Crypto-C. If 
you want to store this information, you need to make your own copy of the 

  B_DestroyAlgorithmObject(&ecKeyGen);
  B_DestroyAlgorithmObject(&randomAlgorithm);
  B_DestroyKeyObject(&publicKey);
  B_DestroyKeyObject(&privateKey);

typedef struct {
  ITEM        publicKey;                               /* public component */
  A_EC_PARAMS curveParams;     /* the underlying elliptic curve parameters */
} A_EC_PUBLIC_KEY;

  A_EC_PUBLIC_KEY *cryptocPublicKeyInfo;
 
  if ((status = B_GetKeyInfo((POINTER *)&cryptocPublicKeyInfo,
                             *publicKey, KI_ECPublic)) != 0)
    break;
C h a p t e r  6   P u b l i c - K e y  O p e r a t i o n s 2 4 1



Performing Elliptic Curve Operations
information because another call to Crypto-C may modify the memory owned by 
Crypto-C. The routines AllocAndCopyECPubKeyInfo and FreeECPubKeyInfo given below 
retrieve and store the key information. These routines are used in the sample code for 
building public-key acceleration tables.

AllocAndCopyECPubKeyInfo takes as input a pointer to an A_EC_PUBLIC_KEY structure 
containing memory belonging to Crypto-C. It copies the information from the 
structure owned by Crypto-C to an A_EC_PUBLIC_KEY structure created by the 
application and outputs a pointer to the structure just created. The memory allocated 
with AllocAndCopyECPubKeyInfo should be freed using FreeECPubKeyInfo when 
appropriate:

FreeECPubKeyInfo takes a pointer to an A_EC_PUBLIC_KEY structure that contains space 
that was allocated by AllocAndCopyECPubKeyInfo and calls T_malloc to free all allocated 

int AllocAndCopyECPubKeyInfo(output, input)
A_EC_PUBLIC_KEY *output;
A_EC_PUBLIC_KEY *input;

{
  int status;

  do {
    output->publicKey.len = input->publicKey.len;
    output->publicKey.data = T_malloc(output->publicKey.len);
    if ((status = (output->publicKey.data == NULL_PTR)) != 0)
      break;
    T_memcpy(output->publicKey.data, input->publicKey.data,
             output->publicKey.len);

    if ((status = AllocAndCopyECParamInfo(&(output->curveParams),
                                          &(input->curveParams))) != 0)
      break;
  } while(0);

  if (status != 0)
    printf("AllocAndCopyECPubKeyInfo failed with status %i\n", status);
 
  return status;
}    /*  end AllocAndCopyECPubKeyInfo  */
2 4 2 R S A  B S A F E  C r y p t o - C  U s e r ’s  M a n u a l



Performing Elliptic Curve Operations
data:

Generating Acceleration Tables
An acceleration table stores precomputed versions of certain values that are 
frequently used during some elliptic curve operations. Acceleration tables can speed 
up certain elliptic curve operations. However, this increase in speed comes at the cost 
of space, as these tables tend to be very large. 

There are two types of acceleration tables in Crypto-C:

• Generic acceleration table: stores values that are commonly used in many elliptic-
curve operations, including key-pair generation, Elliptic Curve Diffie-Hellman 
key agreement, and ECDSA signing and verifying. 

• Public-key acceleration table: stores all the values stored by the generic acceleration 
table, as well as additional values commonly used only in ECDSA verification.

The examples in this section are in the file eparam.c.

Generating a Generic Acceleration Table
This acceleration table can be used to speed up key-pair generation, public-key 
encryption, Elliptic Curve Diffie-Hellman key agreement, and ECDSA signing and 
verifying. This table is most useful if these operations are performed repeatedly with 
the same elliptic curve. The function BuildAccelTable, used in the sample code and 
defined in the file ecparam.c, demonstrates the following steps in creating the 
acceleration table.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 

/*  This procedure takes a pointer to an A_EC_PUBLIC_KEY structure containing
 *  space allocated by AllocAndCopyECPubKeyInfo and frees all data allocated
 *  with T_malloc.  */

void FreeECPubKeyInfo(pubKey)
A_EC_PUBLIC_KEY *pubKey;
{
  T_free(pubKey->publicKey.data);
  FreeECParamInfo(&(pubKey->curveParams));
}    /*  end FreeECPubKeyInfo  */
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Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Set 

Step 2a: Retrieve the elliptic curve parameters
Because you are generating an acceleration table corresponding to a particular elliptic 
curve, you need to retrieve the elliptic curve parameters and place them in the 
algorithm object. Assume that you have gone through the steps to generate an elliptic 
curve and you have stored the parameters in the algorithm object ecParamsObj. See 
“Retrieving Elliptic Curve Parameters” on page 234 for more details:

Step 2b: Format the information
You must put the information you retrieved into the proper format. The Library 
Reference Manual Chapter 2 entry for AI_ECBuildAcceleratorTable says that you 
must supply a pointer to a B_EC_PARAMS structure to B_SetAlgorithmInfo:

The first field in this structure, parameterInfoType, is used to interpret the elliptic 
curve parameter information you supply in the second field, parameterInfoValue. The 

    B_ALGORITHM_OBJ buildTable = (B_ALGORITHM_OBJ)NULL_PTR;

    if ((status = B_CreateAlgorithmObject(&buildTable)) != 0)
      break;

  A_EC_PARAMS *cryptocECParamInfo;
  A_EC_PARAMS ecParamInfo;

  if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParamInfo,
                                     ecParamsObj, AI_ECParameters)) != 0)
    break;

   if ((status = AllocAndCopyECParamInfo(&ecParamInfo, 
                                        cryptocECParamInfo)) != 0)
     break;

typedef struct {
  B_INFO_TYPE parameterInfoType;
  POINTER     parameterInfoValue;
} B_EC_PARAMS;
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EC parameter information you have is an A_EC_PARAMS structure containing the data 
that describes the EC parameters. The B_INFO_TYPE that is used to properly interpret 
that information is AI_ECParameters. 

Set the parameterInfoType field to AI_ECParameters and give the parameterInfoValue 
field a pointer to the location of the A_EC_PARAMS structure:

Step 3: Init
In this step, you must supply the appropriate algorithm methods through the 
algorithm chooser. The Library Reference Manual Chapter 2 entry for 
AI_ECBuildAcceleratorTable indicates which AMs you must include in your 
chooser. This step doesn’t take much time to complete, so you can pass in a NULL_PTR 
for your surrender context:

Step 4: Update
There is no Update step for building acceleration tables.

Step 5: Final

Step 5a: Allocate memory
You must allocate sufficient memory to hold the acceleration table. According to the 

   B_EC_PARAMS paramInfo;
   paramInfo.parameterInfoType = AI_ECParameters;
   paramInfo.parameterInfoValue = (POINTER)&ecParamInfo;
    
    if ((status = B_SetAlgorithmInfo
      (buildTable, AI_ECBuildAcceleratorTable,(POINTER)&paramInfo)) != 0)
     break;

    B_ALGORITHM_METHOD *ecAccelChooser[] = {
      &AM_ECFP_BLD_ACCEL_TABLE,                     /* for odd prime field */
      &AM_ECF2POLY_BLD_ACCEL_TABLE,          /* for characteristic 2 field */
      (B_ALGORITHM_METHOD *)NULL_PTR
    };

    if ((status = B_BuildTableInit(buildTable, ecAccelChooser,
                                   (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;
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Library Reference Manual, you can use B_BuildTableGetBufSize to tell how much 
space will be required to store the acceleration table:

Step 5b: Build the acceleration table
Finally, build the acceleration table and store it in an ITEM structure. You store it this 
way for convenience—when you actually use the acceleration table, you will have to 
provide it in an ITEM structure to B_SetAlgorithmInfo. Building an acceleration table 
can take a lot of time, so use a surrender context. See “The Surrender Context” on 
page 120 for more information:

Step 6: Destroy
You must free all allocated memory and destroy all objects when they are no longer 
needed so that all sensitive information is zeroized and freed:

    ITEM accelTableItem;
    unsigned int maxTableLen;

    if ((status = B_BuildTableGetBufSize(buildTable, &maxTableLen)) != 0)
      break;

    accelTableItem.data = T_malloc(maxTableLen);

    if ((status = (accelTableItem.data == NULL_PTR)) != 0)
      break;

    ITEM accelTableItem;

    generalSurrenderContext.Surrender = GeneralSurrenderFunction;
    generalSurrenderContext.handle = (POINTER)&generalFlag;
    generalSurrenderContext.reserved = NULL_PTR;
    generalFlag = 0;

    if ((status = B_BuildTableFinal(buildTable, accelTableItem.data,
                                    &(accelTableItem.len), maxTableLen,
                                    &generalSurrenderContext)) != 0)
      break;

  T_memset(accelTableItem.data, 0, accelTableItem.len);
  T_free(accelTableItem.data);
  B_DestroyAlgorithmObject(&buildTable);
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Public-Key Acceleration Table
This special-purpose acceleration table can be used to speed up ECDSA verification. 
Again, the cost in time to generate the table and space to store it must be weighed 
against the speedup in verification that it will provide. This table is most useful if 
ECDSA verification will be performed repeatedly with the same public key. The 
function BuildPubKeyAccelTable, used in the sample code and defined in the file 
ecparam.c, demonstrates the steps in creating the public-key acceleration table. 

Step 1: Create
Create the algorithm object that will be used in building the public-key acceleration 
table. Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype 
in Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Set
Retrieve the public-key information and place it in the algorithm object used to build 
the acceleration table for that public key.

Step 2a: Retrieve the public key information
Because B_GetKeyInfo returns a pointer to memory that belongs to Crypto-C, you 
must make a copy of this information. See “Retrieving an Elliptic Curve Key” on 
page 241 for the definitions of  AllocAndCopyECPubKeyInfo and FreeECPubKeyInfo. Of 
course, you can write your own versions of these procedures to satisfy the needs of 
your application: 

    B_ALGORITHM_OBJ buildTable = (B_ALGORITHM_OBJ)NULL_PTR;

    if ((status = B_CreateAlgorithmObject(&buildTable)) != 0)
      break;

    A_EC_PUBLIC_KEY *cryptocPublicKeyInfo;
    A_EC_PUBLIC_KEY publicKeyInfo;

    if ((status = B_GetKeyInfo((POINTER *)&cryptocPublicKeyInfo,
                               *publicKey, KI_ECPublic)) != 0)
      break;
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When the information is no longer needed, don’t forget to free the allocated memory:

Step 2b: Put the information retrieved in the proper format
To build the public-key acceleration table, use AI_ECBuildPubKeyAccelTable. The 
Library Reference Chapter 2 entry for AI_ECBuildPubKeyAccelTable states that you 
must supply a pointer to a B_EC_PARAMS structure. The procedure you use to fill this 
structure in is the same as the one you used to build the generic acceleration table. 
However, because you are building an acceleration table based on the public key, you 
must also pass in information about the public key. 

You have an A_EC_PUBLIC_KEY struct containing the public key information, so the 
appropriate B_INFO_TYPE to use is AI_ECPubKey. According to the Library Reference 
Manual entry on AI_ECPubKey, you should pass B_SetAlgorithmInfo a pointer to 
A_EC_PUBLIC_KEY structure. Set the parameterInfoType to AI_ECPubKey and give 
parameterInfoValue the pointer to your A_EC_PUBLIC_KEY structure publicKeyInfo.

Step 3: Init
In order to initialize the proper algorithms, you must supply an algorithm chooser 
with the appropriate algorithm methods. See the Library Reference Manual Chapter 2 
entry for AI_BuildPubKeyAccelTable for a list of the appropriate AMs to include in 

    if ((status = AllocAndCopyECPubKeyInfo(&publicKeyInfo,
                                         cryptocPublicKeyInfo)) != 0)
      break;

  FreeECPubKeyInfo(&publicKeyInfo);

    B_EC_PARAMS paramInfo;

    paramInfo.parameterInfoType = AI_ECPubKey;
    paramInfo.parameterInfoValue = (POINTER)&publicKeyInfo;
    
    if ((status = B_SetAlgorithmInfo(buildTable, AI_ECBuildPubKeyAccelTable,
                                     (POINTER)&paramInfo)) != 0)
      break;
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the chooser:

Step 4: Update
There is no Update step for building acceleration tables.

Step 5: Final

Step 5a: Allocate memory
You must allocate sufficient memory to hold the acceleration table. Use 
B_BuildTableGetBufSize to obtain the maximum size of the public key acceleration 
table. Then allocate enough space to hold the table:

Step 5b: Build the public-key acceleration table
It can take a while to generate the table, so use a surrender function. See “The 

    B_ALGORITHM_METHOD *ecAccelChooser[] = {
      &AM_ECFP_BLD_PUB_KEY_ACC_TAB,
      &AM_ECF2POLY_BLD_PUB_KEY_ACC_TAB,
      (B_ALGORITHM_METHOD *)NULL_PTR
    };

    if ((status = B_BuildTableInit(buildTable, ecAccelChooser,
                                   (A_SURRENDER_CTX *)NULL_PTR)) != 0)
      break;

    ITEM pubKeyAccelTableItem;
    unsigned int maxTableLen;

    if ((status = B_BuildTableGetBufSize(buildTable, &maxTableLen)) != 0)
      break;

    pubKeyAccelTableItem.data = T_malloc(maxTableLen);

    if ((status = (pubKeyAccelTableItem.data == NULL_PTR)) != 0)
      break;
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Surrender Context” on page 120 for more information:

Step 6: Destroy
Zeroize and free all sensitive information when it is no longer needed:

Performing EC Diffie-Hellman Key Agreement
Performing elliptic curve key agreement is similar to the ordinary Diffie-Hellman key 
agreement scheme, which allows two parties to obtain the same symmetric key. First, 
the two parties seeking to generate a secret key need to agree on the elliptic curve 
parameters. The parameters can be generated by a central authority or by the parties 
themselves. 

The example in this section corresponds to the file ecdh.c. In this example, the two 
parties who wish to derive the same secret key are Alice and Bob. Both parties need to 
be provided with the same parameters:

In order to initialize ecParamsObj with a set of parameters describing an elliptic curve, 
follow the steps in the section “Generating Elliptic Curve Parameters” on page 230. 
Assume that these steps have been successfully completed and ecParamsObj contains 

    ITEM pubKeyAccelTableItem;

    generalSurrenderContext.Surrender = GeneralSurrenderFunction;
    generalSurrenderContext.handle = (POINTER)&generalFlag;
    generalSurrenderContext.reserved = NULL_PTR;
    generalFlag = 0;    

    if ((status = B_BuildTableFinal
                    (buildTable, pubKeyAccelTableItem.data,
                    &(pubKeyAccelTableItem.len), maxTableLen,
                    &generalSurrenderContext)) != 0)
      break;

  T_memset(pubKeyAccelTableItem.data, 0, pubKeyAccelTableItem.len);
  T_free(pubKeyAccelTableItem.data);
  B_DestroyAlgorithmObject(&buildTable);

  B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;
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the common parameters for Alice and Bob. Put the elliptic curve parameters in the 
A_EC_PARAMS structure, ecParams. For an implementation of an application-specific 
procedure, AllocAndCopyECParamInfo, which retrieves and stores the parameters, see 
“Retrieving Elliptic Curve Parameters” on page 234: 

You will walk through the steps that Alice goes through, keeping in mind that Bob, 
perhaps in another application, is performing the same steps. 

Note: If this key agreement operation is performed several times with the same 
parameters, you may wish to use the acceleration table. See “Generating 
Acceleration Tables” on page 243 for more information.

Step 1: Create
Create the algorithm object which you will use to perform the key agreement:

Step 2: Set
Set the algorithm object with the information necessary to perform the operation. 
AI_EC_DHKeyAgree, when used as the second argument to B_SetAlgorithmInfo, takes 
as the third argument a pointer to a B_EC_PARAMS structure:

  A_EC_PARAMS ecParams;  
  A_EC_PARAMS *cryptocECParams;

  if ((status = B_GetAlgorithmInfo((POINTER *)&cryptocECParams, alice,
                                   AI_ECParameters)) != 0)
    break;

  if ((status = AllocAndCopyECParamInfo(&ecParams, cryptocECParams)) != 0)
    break;

  B_ALGORITHM_OBJ alice = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject(&alice)) != 0)
    break;

typedef struct {
  B_INFO_TYPE parameterInfoType;
  POINTER     parameterInfoValue;
} B_EC_PARAMS;
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Because you have the EC parameters in the A_EC_PARAMS structure ecParams, the 
appropriate AI that describes the data is AI_ECParameters:

Step 2b (optional): Set Acceleration Table Info
If you are using an acceleration table, you need to set the algorithm object with the 
appropriate acceleration table. Once you have gone through the steps in “Generating 
Acceleration Tables” on page 243 and have an ITEM structure containing the 
acceleration table, you can pass a pointer to the ITEM structure as the third argument 
to B_SetAlgorithmInfo:

Step 3: Initialize
Initialize the algorithm object to perform the key agreement protocol. The Library 
Reference Manual Chapter 2 entry for AI_EC_DHKeyAgree states which algorithm 
methods to include in your chooser:

You must allocate space to hold the results of Phase 1 and Phase 2. The largest size of 
Phase 1 output you can get is one byte larger than twice the field element size. For 

  B_EC_PARAMS commonECParams;
  commonECParams.parameterInfoType = AI_ECParameters;
  commonECParams.parameterInfoValue = (POINTER)&ecParams;

  if ((status = B_SetAlgorithmInfo(alice, AI_EC_DHKeyAgree,
                                   (POINTER)&commonECParams)) != 0)
    break;

  if ((status = B_SetAlgorithmInfo (alice, AI_ECAcceleratorTable,
                                    (POINTER)&aTableItem)) != 0)
    break;

  B_ALGORITHM_METHOD *EC_DH_CHOOSER[] = {
    &AM_ECFP_DH_KEY_AGREE,
    &AM_ECF2POLY_DH_KEY_AGREE,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };

  if ((status = B_KeyAgreeInit(alice, (B_KEY_OBJ)NULL_PTR, EC_DH_CHOOSER,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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Phase 2, the size of the output should be the same as the field element size. (See the 
Library Reference Manual Chapter 2 entry for AI_EC_DHKeyAgree for details.) 

You can get the field element size using Alice’s elliptic curve parameters. Since you 
have the parameters in the A_EC_PARAMS structure ecParams, look at the 
fieldElementBits field, which gives you the required information. A simple 
manipulation gives you the field element length in bytes:

Step 4: Phase 1
During this phase, each party computes a private value and a public value. The 
private value is secret and currently cannot be accessed though the Crypto-C API. The 
public value should be transported to the other party. Note that you will have to 
supply a properly initialized random algorithm as the fifth argument to 
B_KeyAgreePhase1:

Step 5:  Phase 2
By the time you have reached this step, Alice and Bob have exchanged public values. 
Assume that the pointer bobPublicValue points to Bob’s public value and 

  unsigned int fieldElementLen, maxPhase1Len, maxPhase2Len;

  fieldElementLen = (ecParams->fieldElementBits + 7) / 8;
  maxPhase1Len = (fieldElementLen * 2);
  maxPhase2Len = fieldElementLen;

  unsigned char *alicePublicValue = NULL_PTR;
  unsigned int alicePublicValueLen;
  alicePublicValue = T_malloc(maxPhase1Len);

  if ((status = (alicePublicValue == NULL_PTR)) != 0)
    break;

  if ((status = B_KeyAgreePhase1(alice, alicePublicValue,
                                 &alicePublicValueLen, maxPhase1Len,
                                 randomAlgorithm,
                                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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bobPublicValueLen gives the length of Bob's public value:

Using Bob’s public value, Alice can compute the secret key that she and Bob will use 
to communicate with each other:

Step 6: Destroy
Always destroy key objects and algorithm objects once they are no longer needed:

Performing ECDSA
The Elliptic Curve Digital Signature Agreement (ECDSA) is an elliptic curve analogue 
of DSA. To sign an arbitrarily long message with the elliptic curve version of DSA, 
you can use AI_EC_DSAWithDigest. First, you need to generate parameters for an 
elliptic curve and a key pair from that curve. Then, you will specify a digest algorithm 
for use with ECDSA in signing the message. Currently, the only digest algorithm 
supported for this operation is SHA1. 

The example in this section corresponds to the file ecdsadig.c.

  unsigned char *bobPublicValue;
  unsigned int bobPublicValueLen;

  unsigned char *aliceSecretValue = NULL_PTR;
  unsigned int aliceSecretValueLen;
  aliceSecretValue = T_malloc(maxPhase2Len);

  if ((status = (aliceSecretValue == NULL_PTR)) != 0)
    break;

  if ((status = B_KeyAgreePhase2(alice, aliceSecretValue,
                                 &aliceSecretValueLen, maxPhase2Len,
                                 bobPublicValue, bobPublicValueLen,
                                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  T_free (alicePublicValue);
  T_free (aliceSecretValue);
  B_DestroyAlgorithmObject(&randomAlgorithm);
  B_DestroyAlgorithmObject(&alice);
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Generating EC Parameters
See the section “Generating Elliptic Curve Parameters” on page 230 for the steps you 
must complete to generate a new curve. You will need a properly initialized pseudo-
random number generator. Assume that the function InitializeRandomAlgorithm goes 
through Steps 1-4 in “Generating Random Numbers” on page 147. Also, assume that 
the function InitializeECParamsObj goes through the steps in “Generating Elliptic 
Curve Parameters” on page 230 to generate new parameters and place them in 
ecParamsObj:

Now you have a properly initialized random algorithm object, randomAlgorithm, and 
an algorithm object, ecParamsObj, containing the parameters that describe the elliptic 
curve that you are going to use. 

Generating an EC Key Pair
You also need to generate a public and private key. See “Generating an Elliptic Curve 
Key Pair” on page 238 for the required steps. To complete those steps, you will need a 
properly initialized random algorithm, the parameters describing an elliptic curve, 
and optionally the acceleration table corresponding to that curve:

Assume that the steps in “Generating an Elliptic Curve Key Pair” on page 238 have 
been completed and that publicKey and privateKey are ready to be used.

  B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
  B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = InitializeRandomAlgorithm (&randomAlgorithm)) != 0)
    break;

  if ((status = InitializeECParamsObj (&ecParamsObj,
                                       &randomAlgorithm)) != 0)
    break;

  B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
  B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;

  if ((status = GenerateECKeys (&publicKey, &privateKey,
                               &ecParamsObj, &randomAlgorithm) != 0)
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Computing a Digital Signature

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Set
The appropriate AI to use is AI_EC_DSAWithDigest. According to the entry in the 
Library Reference Manual, you have to provide a pointer to a B_DIGEST_SPECIFIER 
structure to B_SetAlgorithmInfo:

Currently, the only digest algorithm supported is SHA1. This does not require any 
parameters, so specify NULL_PTR for digestInfoParams:

Step 2b (optional): Set Acceleration Table Info

Go through the steps in the section “Generating Acceleration Tables” on page 243 to 

  B_ALGORITHM_OBJ ecDSASign = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject (&ecDSASign)) != 0)
    break;

typedef struct {
  B_INFO_TYPE digestInfoType;
  POINTER     digestInfoParams;
} B_DIGEST_SPECIFIER;

  B_DIGEST_SPECIFIER digestInfo;
  digestInfo.digestInfoType = AI_SHA1;
  digestInfo.digestInfoParams = NULL_PTR;

  if ((status = B_SetAlgorithmInfo (ecDSASign, AI_EC_DSAWithDigest,
                                    (POINTER)&digestInfo)) != 0)
    break;

  ITEM aTableItem;
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create an acceleration table, placing the table information in aTableItem:

Step 3: Init
Build an algorithm chooser with the appropriate AMs:

Now you can associate your private key and your algorithm chooser with the 
algorithm object:

Step 4: Update
Now, using B_SignUpdate, pass in the data to be signed:

Step 5: Final
First you must allocate space to store the signature. The output of the ECDSA 

  if ((status = B_SetAlgorithmInfo (ecDSASign, AI_ECAcceleratorTable,
                                    (POINTER)&aTableItem)) != 0)
    break;

  B_ALGORITHM_METHOD *EC_DSA_CHOOSER[] = {
    &AM_SHA,
    &AM_ECFP_DSA_SIGN,
    &AM_ECF2POLY_DSA_SIGN,
    &AM_ECFP_DSA_VERIFY,
    &AM_ECF2POLY_DSA_VERIFY,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };

  if ((status = B_SignInit (ecDSASign, privateKey, EC_DSA_CHOOSER,
                            (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  unsigned char *dataToSign = "Some arbitrarily long piece of data to 
sign...";
  unsigned int dataToSignLen = strlen(dataToSign) + 1; 
  if ((status = B_SignUpdate (ecDSASign, dataToSign, dataToSignLen,
                              (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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signature is the BER encoding of a sequence of two integers, (r,s). At most, the size of 
the output will be six bytes more than twice the length of the order. Retrieve the field 
element length from ecParamsObj and do a simple manipulation to find the field 
element length in bytes.

Now, finalize the process and retrieve the signature. Note that the Library Reference 
Manual entry for AI_EC_DSAWithDigest indicates that you will have to pass in a 
properly initialized random algorithm in B_SignFinal:

Step 6: Destroy
Destroy all objects that are no longer needed:

Verifying a Digital Signature
To verify the signature, you must go through a similar procedure. At the end, if the 
signature is valid, B_VerifyFinal returns 0. If it is not valid, B_VerifyFinal will 

  A_EC_PARAMS *ecParamInfo;
  unsigned int order, maxSignatureLen;  
  unsigned char *signature;

  if ((status = B_GetAlgorithmInfo ((POINTER *)&ecParamInfo, ecParamsObj,
                                    AI_ECParameters)) != 0)
    break;

  order = (ecParamInfo->order.len + 7) / 8;
  maxSignatureLen = (2 * order) + 6;
  signature = T_malloc(maxSignatureLen);
  if ((status = (signature == NULL_PTR)) != 0)
    break;

  unsigned int signatureLen;

  if ((status = B_SignFinal (ecDSASign, signature, &signatureLen,
                             maxSignatureLen, randomAlgorithm,
                             (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  B_DestroyAlgorithmObject(&ecDSASign);
  B_DestroyKeyObject(&privateKey);
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return an error.

Step 1: Create
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Set
Use the same AI and digestInfo as you did for signing:

Step 2b (Optional): Set Public Key Acceleration Table Info
You can use either the public key acceleration table or the generic acceleration table to 
accelerate ECDSA verification. Verification using the public key acceleration table is 
faster than verification using only the generic acceleration table. 

Go through the steps in the section “Generating Acceleration Tables” to create a 
generic acceleration table, placing the table information in aTableItem:

Step 3:  Init
Associate a key with the algorithm object and provide a chooser that contains the 

  B_ALGORITHM_OBJ ecDSAVerify = (B_ALGORITHM_OBJ)NULL_PTR;
 
  if ((status = B_CreateAlgorithmObject (&ecDSAVerify)) != 0)
    break;

  if ((status = B_SetAlgorithmInfo (ecDSAVerify, AI_EC_DSAWithDigest,
                                    (POINTER)&digestInfo)) != 0)
    break;

  ITEM pubKeyAccelTableItem;    

  if ((status = B_SetAlgorithmInfo (ecDSAVerify, AI_ECAcceleratorTable,
                                    (POINTER)&pubKeyAccelTableItem)) != 0)
    break;
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necessary algorithm methods:

Step 4: Update
Pass in the original message. It will be internally digested to make a new signature 
that can be compared with the signature received by B_VerifyFinal:

Step 5: Final
Pass in the signature that was received with the message. B_VerifyFinal returns 0 if 
the signature verifies, or an error if it is an invalid signature:

Step 6: Destroy
Destroy all objects that are no longer needed:

Using ECAES
You can use the Elliptic Curve Authenticated Encryption System (ECAES) to perform 
public-key encryption. The example in this section corresponds to the file eces.c.

  if ((status = B_VerifyInit (ecDSAVerify, publicKey, EC_DSA_CHOOSER,
                              (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  if ((status = B_VerifyUpdate (ecDSAVerify, dataToSign, dataToSignLen,
                                (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  if ((status = B_VerifyFinal (ecDSAVerify, signature, signatureLen,
                               (B_ALGORITHM_OBJ)NULL_PTR,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  T_free(signature);
  B_DestroyAlgorithmObject(&ecParamsObj);
  B_DestroyAlgorithmObject(&ecDSAVerify);
  B_DestroyKeyObject(&publicKey);
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You will encrypt the following: 

Using Elliptic Curve Parameters
See the section “Generating Elliptic Curve Parameters” on page 230 for the steps you 
must complete to generate a new curve. You need a properly initialized pseudo-
random number generator. Assume that the function InitializeRandomAlgorithm goes 
through Steps 1 through 4 in the section “Generating Random Numbers” on page 147. 
Also assume that the function InitializeECParamsObj generates new parameters and 
places them in ecParamsObj, following the steps in “Using Elliptic Curve Parameters” 
on page 261:

You now have a properly initialized random algorithm object, randomAlgorithm, and 
an algorithm object, ecParamsObj, containing the parameters that describe the elliptic 
curve that you will use. 

Using an EC Key Pair
Before you can encrypt, you need to generate a public/private key pair. As described 
in “Using an EC Key Pair” on page 261, key generation requires a properly initialized 
random algorithm and the parameters describing an elliptic curve, both of which you 
have created in the previous step:

  unsigned char *dataToEncrypt = “Encrypt this arbitrarily long sentence 
using ECAES!”;

  unsigned int dataToEncryptLen = sizeof(dataToEncrypt) + 1;

  B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
  B_ALGORITHM_OBJ ecParamsObj = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = InitializeRandomAlgorithm (&randomAlgorithm)) != 0)
    break;
  if ((status = InitializeECParamsObj (&ecParamsObj,
                                       &randomAlgorithm)) != 0)
    break;

  B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
  B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;
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Assume that the steps in “Using an EC Key Pair” have been completed and that 
publicKey and privateKey are ready to be used.

ECAES Public-Key Encryption
Once you have gone through the preliminary steps of generating your elliptic curve 
parameters and creating your public/private key pair, you are ready to encrypt your 
message.

Step 1: Create
First, create the algorithm object that will hold the information necessary to perform 
the encryption operation:

Step 2: Set
Associate the elliptic curve encryption AI, AI_EC_ES, with the algorithm object. 
According to the Library Reference Manual Chapter 2 entry for AI_EC_ES, you should 
pass NULL_PTR as the third argument to B_SetAlgorithmInfo:

Step 2b (optional)  Acceleration Table
You can use an acceleration table containing precomputed values to speed up 
encryption. Because users frequently perform encryption, it is worth while to use the 
acceleration table whenever the required memory is available.

To use the acceleration table, assume you have gone through the steps in “Generating 
a Generic Acceleration Table” on page 243 and placed the information in 
accelerationTableItem:

  B_ALGORITHM_OBJ ecESEncrypt = (B_ALGORITHM_OBJ)NULL_PTR;

  if ((status = B_CreateAlgorithmObject (&ecESEncrypt)) != 0)
    break;

  if ((status = B_SetAlgorithmInfo
                (ecESEncrypt, AI_EC_ES, NULL_PTR)) != 0)
    break;

  ITEM accelerationTableItem;
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Now, pass this information into your algorithm object:

Step 3:  Init
You must initialize the algorithm object to perform encryption. You also need to 
provide the key that will be used for encryption. The algorithm chooser should 
contain the encryption algorithm methods listed in the Library Reference Manual for 
AI_EC_ES:

Step 4: Update
To update, first find the field element length in bytes. Remember that earlier, in 
“Using Elliptic Curve Parameters” on page 261, you placed the elliptic curve 
parameters in your algorithm object, ecParamsObj. You can use this object to retrieve 
the field element length:

Next, you must allocate space to hold the encrypted data. According to the Library 

  if ((status = B_SetAlgorithmInfo
                (ecESEncrypt, AI_ECAcceleratorTable,
                 (POINTER)&accelerationTableItem)) != 0)
    break;

  B_ALGORITHM_METHOD *EC_CHOOSER[] = {
    &AM_ECFP_ENCRYPT,
    &AM_ECF2POLY_ENCRYPT,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };  

  if ((status = B_EncryptInit (ecESEncrypt, publicKey, EC_CHOOSER,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  A_EC_PARAMS *ecParamInfo;
  unsigned int fieldElementLen;
 
  if ((status = B_GetAlgorithmInfo ((POINTER *)&ecParamInfo, ecParamsObj,
                                    AI_ECParameters)) != 0)
    break;

  fieldElementLen = (ecParamInfo->fieldElementBits + 7) / 8;
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Reference Manual Chapter 2 entry for AI_EC_ES, the length of the encrypted data will 
be as much as (21 + 2 · (the size of a field element in bytes) + (length of input in bytes)) 
bytes. 

Step 5: Final

Step 6: Destroy
Destroy all objects that are no longer needed. Also, be sure to zeroize and free any 
allocated memory when it is no longer needed. 

  unsigned int maxEncryptedDataLen;
  unsigned int outputLenUpdate;
 
  maxEncryptedDataLen = 21 + (2 * fieldElementLen) = dataToEncryptLen;
  encryptedData = T_malloc(maxEncryptedDataLen);
  if ((status = (encryptedData == NULL_PTR)) != 0)
    break;

  if ((status = B_EncryptUpdate
                (ecESEncrypt, encryptedData, &outputLenUpdate,
                 maxEncryptedDataLen, dataToEncrypt, dataToEncryptLen,
                 (B_ALGORITHM_OBJ)NULL_PTR, 
                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  unsigned int outputLenFinal, outputLenTotal;
 
  if ((status = B_EncryptFinal
                (ecESEncrypt, encryptedData + outputLenUpdate,
                 &outputLenFinal, maxEncryptedDataLen - outputLenUpdate,
                 randomAlgorithm, (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
 
  outputLenTotal = outputLenUpdate + outputLenFinal;

  B_DestroyAlgorithmObject (&ecESEncrypt);
  B_DestroyKeyObject (&publicKey);
  T_free (encryptedData);
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ECAES Private-Key Decryption
The steps for decryption are similar to those for encryption.

Step 1: Create
Create an algorithm object:

Step 2: Set
Associate the algorithm object with AI_EC_ES and pass NULL_PTR as the third 
argument:

Step 3: Init
At this point, commit your algorithm object to perform decryption with a particular 
private key. Be sure that EC_CHOOSER contains the appropriate algorithm methods:

Step 4:  Update
Since you know that the length of the plaintext can’t be larger than the length of the 

  B_ALGORITHM_OBJ ecESDecrypt = (B_ALGORITHM_OBJ)NULL_PTR;
 
  if ((status = B_CreateAlgorithmObject (&ecESDecrypt)) != 0)
    break;

  if ((status = B_SetAlgorithmInfo
                (ecESDecrypt, AI_EC_ES, NULL_PTR)) != 0)
    break;

  B_ALGORITHM_METHOD *EC_CHOOSER[] = {
    &AM_ECFP_DECRYPT,
    &AM_ECF2POLY_DECRYPT,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };  

   if ((status = B_DecryptInit (ecESDecrypt, privateKey, EC_CHOOSER,
                               (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
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ciphertext, you’ll use this approximation to allocate space for the decrypted data: 

Step 5: Final

Step 6: Destroy
Destroy any objects that are no longer needed. Also, be sure to zeroize and free any 
allocated memory when it is no longer needed. 

  unsigned char *decryptedData;
  unsigned int maxDecryptedDataLen;
  unsigned int outputLenUpdate;

  maxDecryptedDataLen = outputLenTotal;     /* Use the outputLenTotal from */
                                             /* Step 5 of ECAES encryption */
  decryptedData = T_malloc(maxDecryptedDataLen);
  if ((status = (decryptedData == NULL_PTR)) != 0)
    break;

  if ((status = B_DecryptUpdate
                (ecESDecrypt, decryptedData, &outputLenUpdate,
                 maxDecryptedDataLen, encryptedData, outputLenTotal,
                 (B_ALGORITHM_OBJ)NULL_PTR,
                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;

  unsigned int outputLenFinal, outputLenTotal;
 
  if ((status = B_DecryptFinal
                (ecESDecrypt, decryptedData + outputLenUpdate,
                 &outputLenFinal, maxDecryptedDataLen - outputLenUpdate,
                 (B_ALGORITHM_OBJ)NULL_PTR,
                 (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
 
  outputLenTotal = outputLenUpdate + outputLenFinal;

  B_DestroyAlgorithmObject (&ecESDecrypt);
  B_DestroyKeyObject (&privateKey);
  T_free (decryptedData);
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Chapter 7

Secret Sharing Operations
Secret Sharing
Secret sharing allows a system to require a certain number of “shares” to retrieve a 
secret. The process encrypts information and then creates a number of shares of the 
encrypted information. The information can be recovered by collecting a declared 
number (called the threshold) of shares. Note that the threshold must be less than or 
equal to the total number of shares.

Typically, the secret is a key used for encrypting sensitive data. For example, you 
might protect an RC2 key with a secret-sharing algorithm, creating four shares, and 
set the threshold to two. Then any two of the four shares can reconstruct the RC2 key. 

Generating Shares
Crypto-C offers the Bloom-Shamir secret sharing method. For this implementation, 
the minimum total number of shares is two and the maximum is 255; the threshold 
must be less than or equal to the total number of shares. The 255 limit is not part of the 
Bloom-Shamir algorithm, but a constraint of the Crypto-C implementation. See Step 4 
for details. 

The following example will encrypt 16 bytes (for example, an RC2 key), splitting the 
secret into four shares, and set the threshold to two. 
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The example in this section corresponds to the file scrtshar.c.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
There is only one AI that implements the Bloom-Shamir secret sharing algorithm: 
AI_BSSecretSharing. The Library Reference Manual Chapter 2 entry on this AI reports 
that the format of info supplied to B_SetAlgorithmInfo is the following struct:

Because you want to set the threshold to two, set your algorithm object as follows:

Step 3: Init
Initialize the algorithm with B_EncryptInit. No key is necessary, so pass a properly 
cast NULL_PTR for the key object. This algorithm object does not need an algorithm 
chooser, so pass a properly cast NULL_PTR for that argument as well. This function is 

B_ALGORITHM_OBJ secretSplitter = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject (&secretSplitter)) != 0)
  break;

typedef struct {
  unsigned int threshold;                               /* share threshold */
} B_SECRET_SHARING_PARAMS;

B_SECRET_SHARING_PARAMS secretSharingParams;
 
secretSharingParams.threshold = 2;
 
if ((status = B_SetAlgorithmInfo
     (secretSplitter, AI_BSSecretSharing,
      (POINTER)&secretSharingParams)) != 0)
  break;
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very quick, so it is reasonable to pass a NULL_PTR for the surrender context:

Step 4: Update
Call B_EncryptUpdate once for each of the total number of shares. Each call to 
B_EncryptUpdate produces a share. For each share, you must allocate a space that is 
one byte larger than the secret. A share is actually the same size as the secret, but 
Crypto-C also appends one byte containing the number of the share. (This is why 
Crypto-C limits the shares to 255; it is the largest integer one byte can represent.) 
Make sure you do not overwrite a previous share.

The input for each call to B_EncryptUpdate is the secret itself. You also need a random 
algorithm for the first call to B_EncryptUpdate. You can pass a random algorithm each 
time, however; Crypto-C simply ignores it on each successive call. Complete Steps 1 
through 4 of “Generating Random Numbers” on page 147. You do not need random 
bytes, only an algorithm that can generate them. This function is not too time-
consuming, so it is reasonable to pass a properly cast NULL_PTR for the surrender 
context.

To create four shares, you could use the following:

if ((status = B_EncryptInit
     (secretSplitter, (B_KEY_OBJ)NULL_PTR,
      (B_ALGORITHM_CHOOSER)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;

#define SECRET_SIZE   16
#define TOTAL_SHARES   4
 
static unsigned char secretKey[SECRET_SIZE] = {
  0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
  0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10
};
unsigned char *secretShare[TOTAL_SHARES];
unsigned int secretShareLen[TOTAL_SHARES];
int count;

for (count = 0; count < TOTAL_SHARES; ++count)
  secretShare[count] = NULL_PTR;
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Step 5: Final
Finalize the process with B_EncryptFinal. This function does not need a random 
algorithm, so pass a NULL_PTR. It is a quick call, so it is reasonable to pass a NULL_PTR 
for the surrender context:

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory when you are 
done. Save the shares to files or disks before freeing the memory:

Reconstructing The Secret
To reconstruct the secret, call B_DecryptUpdate for each share you are entering. You 

for (count = 0; count < TOTAL_SHARES; ++count) {
  secretShare[count] = T_malloc (SECRET_SIZE + 1);
  if ((status = (secretShare[count] == NULL_PTR)) != 0)
    break;

  if ((status = B_EncryptUpdate
       (secretSplitter, secretShare[count],
        &(secretShareLen[count]), SECRET_SIZE + 1,
        secretKey, SECRET_SIZE, randomAlgorithm,
        (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
}
if (status != 0)
  break;

unsigned int outputLenFinal;

if ((status = B_EncryptFinal
     (secretSplitter, NULL_PTR, &outputLenFinal, 0,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)

B_DestroyAlgorithmObject (&secretSplitter);
B_DestroyAlgorithmObject (&randomAlgorithm);
for (count = 0; count < TOTAL_SHARES; ++count)
  T_free (secretShare[count]);
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need at least threshold number of shares; if you enter fewer, B_DecryptFinal will 
return an error. Any combination of threshold shares will work.

Step 1: Creating An Algorithm Object
Declare a variable to be B_ALGORITHM_OBJ. As defined in the function prototype in 
Chapter 4 of the Library Reference Manual, its address is the argument for 
B_CreateAlgorithmObject:

Step 2: Setting The Algorithm Object
Use the same AI, AI_BSSecretSharing:

Step 3: Init
Initialize the algorithm with B_DecryptInit. Once again no key or algorithm chooser 
is necessary. This function is very quick, so it is reasonable to pass a NULL_PTR for the 
surrender context:

B_ALGORITHM_OBJ secretReconstructer = (B_ALGORITHM_OBJ)NULL_PTR;
 
if ((status = B_CreateAlgorithmObject
     (&secretReconstructer)) != 0)
  break;

B_SECRET_SHARING_PARAMS secretSharingParams;
 
secretSharingParams.threshold = 2;
 
if ((status = B_SetAlgorithmInfo
     (secretReconstructer, AI_BSSecretSharing,
      (POINTER)&secretSharingParams)) != 0)
  break;

if ((status = B_DecryptInit
     (secretReconstructer, (B_KEY_OBJ)NULL_PTR,
      (B_ALGORITHM_CHOOSER)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
  break;
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Step 4: Update
Call B_DecryptUpdate once for each of the shares you are using to reconstruct the 
secret. You can use any number of shares from the threshold number to the total 
number of shares.

Each call to B_DecryptUpdate produces no output, so pass NULL_PTRs. The input is a 
share. This call does not need a random algorithm, so pass a NULL_PTR. It is also quick, 
so it is reasonable to pass a properly cast NULL_PTR for the surrender context:

Step 5: Final
Finalize the process with B_DecryptFinal. There will be output now. This function 
does not need a random algorithm, so pass a NULL_PTR there. It is a quick call, so it is 
reasonable to pass a NULL_PTR for the surrender context:

Step 6: Destroy
Remember to destroy all objects and free up any allocated memory when you are 

unsigned int outputLenUpdate;

for (count = 0; count < (int)secretSharingParams.threshold; ++count) {
  if ((status = B_DecryptUpdate
       (secretReconstructer, NULL_PTR, &outputLenUpdate,
        0, secretShare[count], secretShareLen[count],
        (B_ALGORITHM_OBJ)NULL_PTR,
        (A_SURRENDER_CTX *)NULL_PTR)) != 0)
    break;
}
if (status != 0)
  break;

unsigned char getSecret[SECRET_SIZE]
unsigned int getSecretLen;
 
if ((status = B_DecryptFinal
     (secretReconstructer, getSecret, &getSecretLen, SECRET_SIZE,
      (B_ALGORITHM_OBJ)NULL_PTR,
      (A_SURRENDER_CTX *)NULL_PTR)) != 0)
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done:

B_DestroyAlgorithmObject (&secretReconstructer);
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Chapter 8

Cryptographic Hardware
Crypto-C is designed to interface with cryptographic hardware devices. If you are 
using such a device and the manufacturer has built an interface to Crypto-C using 
BSAFE Hardware Application Programming Interface (BHAPI), you can write an 
application that will use the hardware. 
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Using Hardware Registration
This section describes a typical scenario for modifying an application to use hardware 
registration.

An application can define this algorithm method in chooser.c:

To modify the application to use hardware registration, execute the following steps:

1. Modify chooser.c and rename CHOOSER to FIXED_CHOOSER.
2. Add two declarations in main:

3. Add a call in main to B_CreateSessionChooser that precedes all calls to the 
Crypto-C initialization calls:

4. Add a call in main to B_FreeSessionChooser after all the Crypto-C calls. 

B_ALGORITHM_METHOD CHOOSER[] = {&AM_CBC_DES_ENCRYPT, ...,NULL_PTR};

B_Chooser CHOOSER = (B_Chooser)NULL_PTR;
unsigned char **listOfOEMTags = (unsigned  char**)NULL_PTR;

B_CreateSessionChooser
 (
 FIXED_CHOOSER, 
 &CHOOSER, 
 FIXED_HARDWARE_LIST,                           /* defined in hrdwrsmp.c */
                                                      /* in btest/source */
 NULL_PTR,           /* reserved for use with dynamic hardware libraries */
 NULL_PTR,           /* reserved for use with dynamic hardware libraries */
 &listOfOEMTags                 /* Used to identify supplier of given AM */
                               /* for purposes of selecting a given OEM. */
 );

 B_FreeSessionChooser
   (
    &CHOOSER,
    &listOfOEMTags
   );
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Retrieving Random Numbers
This demonstration program shows how you can use the AM_HW_RANDOM algorithm 
method to glean true random numbers from a cryptographically secure random 
number generator on a hardware co-processor. The use of AM_HW_RANDOM is almost 
totally transparent; it may be used in place of AM_MD5_RANDOM, AM_MD2_RANDOM, or 
AM_SHA_RANDOM.

Using a hardware device that implements the BHAPI interface is similar to using 
Crypto-C software function calls. The differences are mentioned below.

Step 0: Include Files
As with any Crypto-C program, begin by including the appropriate files:

Step 1: Creating an Algorithm Object
Just as in any Crypto-C program, you create an algorithm object by declaring a 
variable to be an algorithm object and calling B_CreateAlgorithmObject:

Step 1a: Create the session chooser
When accessing a hardware device, Crypto-C uses what is called a session chooser. This 
chooser combines the hardware-based algorithm methods indicated in the hardware 
chooser list and a standard algorithm chooser to create a hardware-based chooser. For 
this example, assume you already have a hardware chooser list containing a 
hardware implementation of AM_HW_Random and a software chooser. Let 
FIXED_HARDWARE_LIST be the hardware list constructed from the set of available 
hardware-based methods and SOFTWARE_CHOOSER be a standard software algorithm 
chooser. 

#include "aglobal.h"
#include "bsafe.h"
 
#include "bhapi.h"  

  B_ALGORITHM_OBJ randomAlgorithm = (B_ALGORITHM_OBJ)NULL_PTR;
 
  if ((status = B_CreateAlgorithmObject (&randomAlgorithm)) != 0) 
    break;
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Note: Consult the documentation for your hardware to the list of available 
hardware-based methods. See “Algorithm Choosers” on page 118 for more 
information on software choosers.

To create the session chooser for use with your hardware, call 
B_CreateSessionChooser. As defined in the Library Reference Manual, Chapter 4, this 
function takes 6 arguments:

For the first argument, pass in your software chooser, SOFTWARE_CHOOSER. The second 
argument is a pointer to a location in memory where the session chooser will be 
placed. The third argument is the fixed hardware list, FIXED_HARDWARE_LIST. The fourth 
argument is the passPhrase, which is used to control access to the hardware. At 
registration time, the hardware-method interface can check whether the passphrase 
contains the access code to enable access to a hardware instantiation of a particular 
method. In this example, pass NULL_PTR, since AM_HW_Random does not require a 
passPhrase. The fifth argument is amTagList, which supports the dynamic linking of 
DLL version of hardware libraries into the session chooser. According to the Library 
Reference Manual Chapter 4 entry for B_CreateSessionChooser, you pass a properly-
cast NULL_PTR for amTagList. The final argument is a char *. A list of OEM tags will be 
placed here by Crypto-C. 

int B_CreateSessionChooser (
B_Chooser         fixedChooser,    /* Chooser consisting of software-based */
                                                     /* algorithm methods. */
B_Chooser        *sessionChooser,  /* Runtime chooser dynamically bound to */
                                      /* available hardware based methods. */
HW_TABLE_ENTRY   *staticHardwareList[ ],     /* List of statically defined */
                                       /* hardware methods terminated by a */
                                               /*  properly cast NULL_PTR. */
ITEM             *passPhrase,                       /* hardware passphrase */
POINTER          *amTagList,                   /* For now pass (*)NULL_PTR */
unsigned char  ***listOfOEMTags                /* Returns list of OEM tags */
                                          /* for methods in sessionChooser */
);
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Now you can create the call to B_CreateSessionChooser:

Step 2: Setting the Algorithm Object
Setting the algorithm object for a hardware implementation is the same as for a 
software implementation. Just pass in the correct AI; in this case, it is AI_HW_Random:

Step 3: Init
Now you need to call B_RandomInit. This call is the same as any other call to 
B_RandomInit, except that you must pass in the chooser, SESSION_CHOOSER, created by 
the call to B_CreateSessionChooser:

Step 4: Update
No Update step is needed for AI_HW_Random. In a software implementation, you 
would call B_RandomUpdate during the Update step to seed the pseudo-random 

  B_ALGORITHM_CHOOSER SESSION_CHOOSER = (B_ALGORITHM_CHOOSER)NULL_PTR;
  HW_TABLE_ENTRY *FIXED_HARDWARE_LIST[] = {
    & HW_XYZ_RANDOM, (HW_TABLE_ENTRY *)NULL_PTR
  };
  B_ALGORITHM_METHOD *SOFTWARE_CHOOSER[] = {
    &AM_HW_RANDOM,
    (B_ALGORITHM_METHOD *)NULL_PTR
  };

  if ((status = B_CreateSessionChooser 
       (SOFTWARE_CHOOSER, &SESSION_CHOOSER, 
       (POINTER *)FIXED_HARDWARE_LIST, (ITEM*)NULL_PTR,
       (POINTER*)NULL_PTR, &oemTagList)) != 0)
    break;

  if ((status = B_SetAlgorithmInfo
      (randomAlgorithm, AI_HW_Random, NULL_PTR)) !=0 ) 
    break;

    if ((status = B_RandomInit 
                (randomAlgorithm, SESSION_CHOOSER,
                (A_SURRENDER_CTX *)NULL_PTR)) != 0) 
      break;
C h a p t e r  8   C r y p t o g r a p h i c  H a r d w a r e 2 7 9



Retrieving Random Numbers
number generator. In this case, since you’re dealing with a hardware source of 
randomness, you don’t need to worry about setting the seed, because the hardware 
should take care of seeding the generator, if necessary.

Step 5: Generate
After you have initialized the random number generator, generate your random 
bytes:

Step 6: Destroy
Be sure to destroy the session chooser, the random algorithm object, and any memory 
that you allocated:

    randomData = T_malloc (randomDataLen);
    if ((status = (randomData == NULL_PTR)) != 0)
      break;

     if ((B_GenerateRandomBytes 
                (randomAlgorithm, randomData, randomDataLen, 
                (A_SURRENDER_CTX *)NULL_PTR)) != 0) 
      break;

  B_FreeSessionChooser (&SESSION_CHOOSER, &oemTagList);
  B_DestroyAlgorithmObject (&randomAlgorithm);
  T_free(randomData);
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Appendix A

Command-Line Demos
Overview of the Demos
In addition to the sample programs included on the CD, there are three Crypto-C 
command-line demo applications: BDEMO, BDEMODSA, and BDEMOEC. These are 
actual applications that demonstrate some of the aspects of building cryptographic 
applications using Crypto-C. They use the Crypto-C library routines and are 
provided to all Crypto-C customers in source form.

The BDEMO application is found in bdemo.c with supporting files fileio.c, 
filebsl.c, tstdlib.c, a chooser, choosc.c, and include files fileio.h, filebsl.h 
and demochos.h. Because BDEMO utilizes BSLite, bslite.c must be linked in and the 
bslite.h file must be included. See “BSLite” on page 292 for more information about 
BSLite.

The command-line demos provide the following functionality:

• BDEMO can create and verify an RSA digital signature for a DES-encrypted file. It 
can also seal and open an RSA digital envelope, placing the encrypted output in 
another file. The signature and envelope methods used by Crypto-C are 
compatible with the Public-Key Cryptography Standards (PKCS).

• BDEMODSA demonstrates the use of DSA to digitally sign and verify the 
integrity of data files. 
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• BDEMOEC can use ECDSA to create and verify digital signatures for a file, and it 
can use the Elliptic Curve Authenticated Encryption Scheme (ECAES) to seal and 
open a digital envelope, placing the output in another file. These demo programs 
support input files of arbitrary length. As with BDEMO, the file to be sealed with 
the digital envelope is encrypted using the DES algorithm; however, in 
BDEMOEC, the DES key is encrypted using ECAES instead of RSA.

This appendix has three sections. “Command-Line Demo User’s Guide” on page 283 
shows how to use the BDEMO, BDEMODSA, and BDEMOEC Command-Line 
Demos. “File Reference” on page 290 explains the files used in these applications. 
“BSLite” on page 292 describes the BSLite routines.
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Command-Line Demo User’s Guide
The three command-line demos are menu-driven application that demonstrates basic 
cryptographic operations. Each demo prompts you for commands; you type the 
responses. The various commands and expected responses are explained in the 
sections for the individual demos.

BDEMO

Starting BDEMO

Command Line mode
To start BDEMO, enter the following after the system prompt:

> bdemo

Input Redirection mode
You may also run BDEMO in input redirection mode where your responses to the 
menu prompts are read from a file. For example, to read commands from a file named 
testin, enter the following after the system prompt:

> bdemo -s < testin

Notice that this uses ‘<’ to redirect testin as the input to BDEMO. The -s option to 
BDEMO eliminates the menu prompts when BDEMO is taking input from a file.

Any line that is blank or begins with  ’#’ is ignored. This means that the file used in 
response file mode may contain blank lines and comment lines that begin with  ’#’.

Specifying User Keys
BDEMO comes pre-loaded with RSA key pairs for two test users: User 1 and User 2. 
You can also use BDEMO to generate a new RSA key pair; if you do so, this becomes 
the key pair for User 3. See “Generate a Key Pair” on page 285 for key pair generation.

Note: Key pair generation in BDEMO is for demonstration purposes only and is not 
cryptographically secure.

When you sign, verify, seal, or open a file, BDEMO asks which user’s key to use. You 
can specify either 1 or 2. If you have generated a new RSA key, you can specify 3.
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Using BDEMO
When you type “bdemo” at the system prompt, the following top-level menu is 
displayed:

S - Sign a file
E - Envelope a file
V - Verify a signed file
O - Open an enveloped file
G - Generate a keypair (may take a long time)
Q - Quit
  Enter choice:

Commands may be entered in either upper or lower case, and all but the initial letter 
of a command is ignored. So, for example, to sign a file you may either type “s” or 
“sign”. 

Each of the commands on this top-level menu is described below.

Sign a File
To sign a file:

1. Enter “s” at the top-level menu. 
2. You will be prompted in succession for:

• the name and location of the file to be signed

• the name of the file you want to create to hold the signature

• the private key used for signing

3. Once this information is supplied, BDEMO uses the private key to create a 
signature.

Envelope a File
To create an envelope for a file: 

1. Enter “e” at the top-level menu. 
2. You will be prompted in succession for: 

• the name and location of the file to be signed and enveloped

• the names of the files for storing the encrypted DES key, the initialization 
vector (IV), and the encrypted data

• a seed for generating the random DES key and the IV
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3. Once this information is supplied, BDEMO encrypts the DES key using the 
recipient’s public key, saving the IV, encrypted DES key, and the encrypted 
content in the previously specified files.

Verify a Signed File
To verify the signature for a file:

1. Enter “v” at the top-level menu. 
2. You will be prompted in succession for:

• the name and location of the file to be verified

• the digital signature file

• the signer’s user number (1 or 2; you may also choose 3 if you have 
generated a key pair)

3.  BDEMO uses the signer’s public key to verify the signature. If the signature is 
valid, BDEMO prints “Signature verified.”; otherwise, BDEMO prints 
“ERROR: Invalid signature while verifying file.”

Open an Enveloped File
To open an enveloped file:

1. Enter “o” at the top-level menu. 
2. You will be prompted in succession for:

• the name and location of the file that contains the encrypted data 

• the name and location of the of the file that contains the encrypted DES key

• the name and location of the of the file that contains the IV

• the name of the file where the decrypted content should be stored. To print 
the content to the screen instead, use a hyphen (-) as the file name 

• the recipient’s user number

3. BDEMO uses the recipient’s private key to recover the DES key. It then uses the 
DES key to decrypt the data and saves it to the specified file. If a hyphen was 
entered as the output file name, it prints the decrypted data to the screen instead 
of saving it to a file.

Generate a Key Pair
You can use BDEMO to generate a new RSA key pair. However, this is only for 
demonstration purposes, and does not generate cryptographically secure RSA keys. BDEMO 
will generate an RSA public/private key pair, but the keys are lost when you exit 
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BDEMO. 

To generate a key pair:

1. Enter “g” at the top-level menu. 
2. You will be prompted in succession for:

• the key size in bits

• some seed information

3. BDEMO generates the key pair and keeps it as the key pair for User 3. Once a 
keypair has been generated, you may not generate another during the same 
BDEMO session. 

Depending on the key size and the speed of the computer, key pair generation may 
take from a few seconds to several minutes.

BDEMODSA

Running BDEMODSA 

Command Line mode
To start BDEMODSA, enter the following after the system prompt:

> bdemodsa

Input Redirection mode
You may also run BDEMODSA in input redirection mode where your responses to 
the menu prompts are read from a file. For example, to read commands from a file 
named testsgn, enter the following after the system prompt:

> bdemodsa -s < testsgn

Notice that this uses ’<’ to redirect testsgn as the input to BDEMODSA. 
BDEMODSA’s -s  option is used to omit the menu prompts when input is taken from 
a file.

Any line that is blank or begins with  ’#’ is ignored. This means that the file used in 
response file mode may contain blank lines and comment lines that begin with  ’#’.
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Using BDEMODSA
When you use BDEMODSA in command-line mode, you will be prompted to 
generate a DSA key pair for your BDEMODSA session. To do this:

1. Start BDEMODSA by typing “bdemodsa” at the system prompt
The request “Enter seed to generate DSA keypair (blank to cancel):” is 
displayed. 

2. Enter any arbitrary string of printable characters. 
The message “Generating DSA Keypair,  please wait...” is displayed. 
Depending on the computer and level of code optimization, key generation will 
take from several seconds to several minutes. 
When the key pair has been generated, the message “DSA public key and 
private key are now ready to use” is displayed.

Once a key pair has been generated, the following top-level menu is displayed:

S - Sign a file using DSA/SHA
V - Verify a DSA signed file
Q - Quit
  Enter choice:

Commands may be entered in either upper or lower case, and all but the initial letter 
of a command is ignored. So, for example, to sign a file you may either type “s” or 
“sign”.

The commands on this top-level menu are described below.

Sign a File
To sign a file:

1. Enter “s”
2. You will be prompted in succession for:

• the name and location of the file to be signed

• the name of the file that will hold the signature

3. BDEMODSA uses the private key generated at the beginning of the session to 
create a signature and places the result in the specified file. 

Verify a Signed File
To verify the signature for a file:

1. Enter “v”
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2. You will be prompted in succession for:

• the name and location of the file that was signed

• the name and location of the file containing the digital signature

3. BDEMODSA uses the public key generated at the beginning of the session to 
verify the signature. If the signature is valid, BDEMODSA prints “Signature 
verified.”; otherwise, BDEMODSA prints “ERROR: Invalid signature 
while verifying file”. 

Note: If the signature was generated during a previous execution of BDEMODSA, it 
is necessary to re-use the seed from signature signing, otherwise verification 
will fail.

BDEMOEC
BDEMOEC provides the same functionality as BDEMO, but uses elliptic curve for its 
algorithms. The algorithm used for sealing and opening digital envelopes is ECAES to 
encrypt the DES symmetric key. Digital signatures are created and verified using 
ECDSA with SHA1. 

A set of elliptic curve parameters are hard-coded in the demo along with two key 
pairs generated with that curve. A new key pair can be generated, but since the size of 
the key pair is dependent on the elliptic curve parameters used, the user cannot 
specify the desired key size. 

Running BDEMOEC

Command Line mode
To start BDEMOEC, enter the following after the system prompt:

> bdemoec

Input Redirection mode
You may also run BDEMOEC in input redirection mode where your responses to the 
menu prompts are read from a file. For example, to read commands from a file named 
testin, enter the following after the system prompt:

> bdemoec -s < testec

Notice that this uses ’<’ to redirect testin as the input to BDEMOEC.  The -s option 
to BDEMOEC eliminates the menu prompts when BDEMOEC is taking input from a 
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file.

Any line that is blank or begins with  ’#’ is ignored. This means that the file used in 
response file mode may contain blank lines and comment lines that begin with  ’#’.

Using BDEMOEC
The menu options and procedures for BDEMOEC are identical for those for BDEMO. 
See “Using BDEMO” on page 284 for a description of the menu commands.
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File Reference
The C source code files for the demo programs provide a convenient means to learn 
Crypto-C by example and are a good starting point for your own Crypto-C 
applications. 

The source files for the demo programs are described in Table A-1:

Table A-1 Demo Program Source Files

File(s) Description

bdemo.c This file contains BDEMO’s main function, menu interpreter, and drivers for 
each of the menu commands. This file uses the standard C library functions 
such as printf, fopen, etc.

bdemodss.c This file contains BDEMODSA’s main function. It is entirely analogous to 
bdemo.c.

bdemoec.c This file contains BDEMOEC’s main function. It is entirely analogous to 
bdemo.c. The elliptic curve parameters used for this demonstration, along with 
two key pairs, are hard-coded in the beginning of this file.

bslite.c and 
bslite.h

bslite.c contains a collection of routines that enable BDEMO to interface to 
the Crypto-C cryptographic library. The routines are written in straightforward, 
easy-to-read portable C code. These routines also illustrate the coding of 
interfaces to a number of common Crypto-C library functions. A developer may 
wish use this module as a starting point for developing an application. Refer to 
“blreadme” (in the demosrc directory) for extended descriptions of routines 
contained in bslite.c. 

bsliteds.c and 
bsliteds.h

bsliteds.c contains routines used by BDEMODSA to interface to the Crypto-
C library. These routines illustrate how to code portable interfaces to Crypto-C’s 
implementation of the Digital Signature Algorithm.

bslec.c and 
bslec.h

bslec.c contains routines used by BDEMOEC to interface to the Crypto-C 
library. These routines are analogous to bslite.c and bslite.h. However, 
not all functions in bslite.c have a counterpart in bslec.c. 

choosc.c and 
demochos.h

These files define the DEMO_ALGORITHM_CHOOSER which may be used as a 
default for the algorithmChooser argument to Crypto-C routines. 
DEMO_ALGORITHM_CHOOSER is externally declared in demochos.h for 
inclusion by applications that need access to the DEMO_ALGORITHM_CHOOSER.

filebsl.c, 
filebsl.h, 
fileio.c and 
fileio.h

These files call on the BSLite routines in bslite.c and handle the file I/O for 
each operation. These files use the standard C library functions such as 
printf, fopen, etc.
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fbslec.c, 
fbslec.h, 
fileio.c and 
fileio.h

These files are used by BDEMOEC. These files call on the routines in bslec.c 
and handle the file I/O for each operation. These files use the standard C library 
functions such as printf, fopen, etc. The files fbslec.c and fbslec.h are 
analogous to filebsl.c and filebsl.h used by BDEMO.

tstdlib.c This file contains memory, I/O, and buffer manipulation routines needed by 
Crypto-C, such as T_malloc and T_memcmp. This file illustrates how these 
routines can be implemented on most platforms.   However, some of these 
routines may need alteration for different platforms. For example, Crypto-C 
requires that T_free perform no function if it is passed NULL_PTR, but some 
library implementations of free may not satisfy this convention. Therefore, an 
explicit check for NULL_PTR may be needed in T_free.

tstdlib.c uses the constant MEMMOVE_PRESENT. If the platform’s C library 
provides memmove, MEMMOVE_PRESENT should be defined as 1; otherwise, it 
should be defined as 0. In tstdlib.c, default values are given for these 
constants, but they may be overridden by a compiler flag. For example:

-DMEMMOVE_PRESENT=0

Table A-1 Demo Program Source Files

File(s) Description
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BSLite
BSLite
BSLite is a collection of routines that interface with the Crypto-C library. BSLite 
demonstrates how to call Crypto-C to execute various cryptographic procedures. The 
routines are written in straightforward, easy-to-read portable C and is provided to all 
Crypto-C customers in source form. BSLite includes a number of the most popular 
functions the Crypto-C library supports:

• symmetric key generation

• symmetric block and stream encryption

• Diffie-Hellman parameter generation

• Diffie-Hellman key agreement

• message digest computation

• RSA key generation

• RSA digital signature creation and verification

• RSA digital envelope sealing and opening

• password-based private key protection/encryption

A single C source file, bslite.c, with a single header file, bslite.h, contains the 
entire BSLite Code. For more information on BSLite, see the file blreadme.
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Appendix B

References and Reading Material
1. The Public-Key Cryptography Standards (PKCS), RSA Laboratories. 
(http://www.rsa.com/rsalabs/pubs/PKCS/)

2. Frequently Asked Questions (FAQ) About Today’s Cryptography, available from RSA 
Data Security, Inc. See RSA’s web site at http://www.rsa.com.

3. The following Internet Standard documents:
• RFCs 1421, 1422, 1423, 1424 on Privacy Enhancement for Internet 

Electronic Mail

• RFCs 1319 (MD2), 1321 (MD5).

4. The following CCITT Recommendation documents:
• X.690: Specifications for the Basic Encoding Rules (BER) for Abstract 

Notation One (ASN.1).

• X.509: The Directory — Authentication Framework. 

5. Rivest, Shamir, and Adleman, A method for obtaining digital signatures and 
public-key cryptosystems. Communications of the ACM, 21(2):120-126, February 
1978.

6. A. Shamir, How to share a secret. Communications of the ACM, 22(11):
612-613, November 1979.

7. W. Diffie and M. E. Hellman, New directions in cryptography. IEEE Transactions 
on Information Theory, IT-22:644-654, 1976.
A p p e n d i x  B   R e f e r e n c e s  a n d  R e a d i n g  M a t e r i a l 2 9 3



8. Data Encryption Standard, FIPS Pub 46-2, National Institute of Standards and 
Technology. Available from http://www.nist.gov.itl/div897/pubs/index.htm.

9. DES Modes of Operations, FIPS Pub 81, National Institute of Standards and 
Technology, 1980. 

10. Digital Signature Standard and Secure Hashing Algorithm (DSS and SHA)
• FIPS Pub 180-1

• X9.30 Part III

11. The following reports from RSA Laboratories (http://www.rsa.com/rsalabs):
• Stream Ciphers

• MD2, MD4, MD5, SHA and Other Hash Functions

• On Pseudo-collisions in MD5

• Results from the RSA Factoring Challenge

• Recommendations on Elliptic Curve Cryptosystems

• Recent Results for MD2, MD4, and MD5

12. The following OAEP specifications:
• SET Secure Electronic Transaction Specification. Book 3: Formal Protocol 

Definition, version 1.0. SETCo, 1997. (http://www.setco.org/)

• PKCS #1: RSA Cryptography Specifications. Version 2.0. RSA Data Security, 
Inc., 1998. (http://www.rsa.com/rsalabs/pubs/PKCS/)

13. The following ANSI Financial Services Industry documents:
• X9.31 (RSA signatures, reversible DSA)

• X9.52 Draft (Triple DES)

• X9.62 Draft and X9.63 Draft (Elliptic Curves)

14. IEEE Standard Specifications for Public-Key Cryptography on 
http://stdsbbs.ieee.org/groups/1363/index.html.

15. B. Schneier, Applied Cryptography, John Wiley & Sons, Inc., New York, 1994.
16. G. Simmons, Contemporary Cryptography, IEEE Press.
17. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of 

Applied Cryptography. CRC Press, 1996. Chapter 2 of this book, which covers all 
aspects of modern cryptography, provides mathematical background on finite 
fields.

18. A. Menezes, I. Blake, X. Gao, R. Mullin, S. Vanstone, and T. Yaghoobian. 
Applications of Finite Fields. Kluwer Academic Publishers, 1993. Provides further 
reference material on finite fields, including techniques for representing elements.
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19. A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 
1993.

20. Joseph H. Silverman and John Tate, Rational Points on Elliptic Curves, Springer-
Verlag New York, Inc., 1992.
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Index
A
acceleration table 243
Adelman, Leonard 50
AI See algorithm info type
algorithm chooser 15, 118–120

hardware 276
hardware chooser 133
RC4 sample chooser 119
RSA algorithm chooser 119

algorithm info type 11, 103
ASCII-encoding types 106
BHAPI 114, 134
message authentication types 106
message digest types 106
public-key types 110–113
random number types 107
secret-sharing types 113
symmetric-key types 107–109

algorithm method 15, 118
listing in chooser 15

algorithm object 9, 10, 11, 103
hardware and 133

applications of cryptography 83–86
ASCII encoding 82, 127

algorithm info types 106
example 154–158
output considerations 155, 157

asymmetric key cryptography See public-key 
cryptography

attacks 179
dictionary 48
man-in-the-middle 84
timing 96

authentication 55, 83

B
base

Diffie-Hellman key agreement 62
Digital Signature Algorithm 58
elliptic curve 70

basis See elliptic curve cryptography
BER encoding 125–127

algorithm info types 104
examples

Diffie-Hellman key agreement 224–
225

RC4 125–127
RSA key pair 190–192
SHA1 141–142

BHAPI 133–135, 276–280
algorithm chooser 276
algorithm info types 114
example 277–280
key token 133

binary data
encoding to ASCII 154–158
memory management and 125
output considerations 157
printing 24

blinding 96, 195
block cipher 36

algorithm info types 107–109
examples 160–178
initialization vector 40
input constraints 127
key info types 115
key management 87
modes of operation 40
output considerations 36, 128
padding 36
selecting 88
See also DES, DESX, RC2, RC5, Triple DES

Bloom-Shamir secret sharing See secret 
sharing

BSAFE 2.x 9
BSAFE Hardware API See BHAPI, hardware
BSLite 292

C
CBC See modes of operation
certificate authority 60
certificate See digital certificate
CFB See modes of operation
characteristic See elliptic curve cryptography
chooser See algorithm chooser
Cipher Block Chaining See modes of 

operation
Cipher Feedback See modes of operation
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collision 47
collision-free 47
communicating with other packages See BER 

encoding
compatibility

BSAFE 2.x 9

D
database applications 85
decoding

BER vs. ASCII 127
DEMO_ALGORITHM_CHOOSER 15, 118
DER See BER encoding
DES 37, 88

communication with other algorithms 87
example 160–165
key 97, 130
parity bits 130
weak and semi-weak keys 94

DESX 38, 88
Developer Support 5
dictionary attack 48
Diffie, Whitfield 61
Diffie-Hellman key agreement 64, 98

algorithm info types 112
applications 84, 85
base 62
discrete logarithm problem and 64
examples

key agreement 225–229
parameter distribution 222–225
parameter generation 219–222

key 99
parameters 62, 220
private value 62, 225
public value 62
timing attacks and blinding 96

digest See message digest
digital certificate 60, 85, 86
Digital Encryption Standard See DES
digital envelope 54, 86, 193

key agreement vs. 88
digital signature 55–58, 72, 185, 193

applications 86
examples

Digital Signature Algorithm 209–218
RSA algorithm 198–204

signing 56
verifying 56
See also Digital Signature Algorithm, 

ECDSA
Digital Signature Algorithm 56, 58–60

algorithm info types 112
base 58

examples
key pair generation 211–213
parameter generation 209–211
signing 213–216
verifying 216–218

key 98, 99, 209
generating 58

key info types 116
parameters 59, 209
subprime 58
timing attacks and blinding 96

Digital Signature Standard (DSS) 58
discrete logarithm problem 64
DSA See Digital Signature Algorithm
DSS See Digital Signature Standard

E
ECAES See Elliptic Curve Authenticated 

Encryption Scheme
ECB See modes of operation
ECDSA 72–75

example 254–260
output considerations 257
signing 72
verfiying 73

EDE 37
effective key 38, 167, 168
Electronic Codebook (ECB) See modes of 

operation
Elliptic Curve Authenticated Encryption 

Scheme 75–77
example 260–266
output considerations 263

elliptic curve cryptography 64–78
algorithm info types 112
curve generation 232
examples

acceleration table 243–250
key pair generation 238–240
key retrieval 241–242
parameter generation 230–234
parameter retrieval 234–237

interoperability 90
key 72, 100, 232
key info types 116
output considerations 245
recommendations 90
RSA algorithm vs. 90
scalar multiplication 69
See also ECDSA, Elliptic Curve 

Authenticated Encryption Scheme, 
Elliptic Curve Diffie-Hellman key 
agreement, elliptic curve parameters

Elliptic Curve Diffie-Hellman key 
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agreement 77–79
example 250–254
output considerations 252
private value 77, 253
public value 77

elliptic curve discrete logarithm problem 64
elliptic curve parameters 65–70

base point 70
characteristic 66, 67, 90
coefficients 67–68
cofactor 70
even characteristic 66–67

optimal normal basis 71
polynomial basis 71
representation 71

example 230–234
field 66
odd prime 66
order 69, 100
point 69
point at infinity 68, 69
summary 70

emergency access See key escrow, secret 
sharing 89

encoding
BER vs. ASCII 127

entropy 93
envelope See digital envelope
error code 10, 129
examples

ASCII encoding 154–158
BER encoding 125–127
BHAPI 277–280
DES with CBC 160–165
Diffie-Hellman key agreement 219–229
Digital Signature Algorithm 209–218
ECDSA 254–260
Elliptic Curve Authenticated Encryption 

Scheme 260–266
Elliptic Curve Diffie-Hellman 250–254
HMAC 143–146
message digest (SHA1) 138–142
password-based encryption 178–183
random numbers 147–153
RC2 with CBC 165–172
RC4 9
RC5 with CBC 172–178
RSA algorithm 186–208
secret sharing 267–272
surrender function 121

F
factoring 53, 99
FAQ, cryptography 5

feedback mode 40

H
hardware 114, 276–280

See also BHAPI
hash function See message digest
hash-based message authentication code 

(HMAC) 47
example 143–146

Hellman, Martin 61
HMAC See hash-based message 

authentication code

I
include files

choos_c.c 118
tstdlib.c 17, 291

initialization vector 40, 161
uniqueness 94

input constraints 127
RSA algorithm 205

K
key 98

DES 97
DSA 58
elliptic curve 72, 100
RC2 38, 99
RC4 87, 100
RC5 100, 172
recovery 89
registering 60
RSA 51, 53, 98, 99
size 98, 129
token (hardware) 114, 133
Triple DES 100
weak and semi-weak DES keys 94
See also public-key cryptography, 

symmetric-key cryptography
key agreement 77

applications 85
digital envelopes vs. 88
See also Diffie-Hellman key agreement, 

Elliptic Curve Diffie-Hellman Key 
Agreement

key derivation function (KDF) 75
key escrow 81

secret sharing vs. 89
key info type 14, 115

block cipher types 115
DSA types 116
elliptic curve types 116
generic key types 115
RSA algorithm types 116
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key management 81, 87
key object 13, 115
KI See key info type
Koblitz, Neal 64

L
local file encryption 83

M
MAC See message authentication code
man-in-the-middle 84
MD 47
MD2 47
MD5 47
memory management 122, 123

security considerations 92
T_free 21
T_malloc 17
tstdlib.c and 123

message authentication code 46
algorithm info types 106
HMAC 47, 143
password-based encryption 48
RC4 and 46

message digest 46–47
algorithm info types 106
BER encoding 141
collision 47
digital signature 56, 199
example 138–142
See also MD, MD2, MD5, SHA1

Miller, Victor 64
modes of operation 40

Cipher Block Chaining (CBC) 41
examples 160–165, 165–172

Cipher Feedback (CFB) 42
Electronic Codebook 40
Output Feedback (OFB) 44

modular math 51
modulus See RSA algorithm

O
OFB (Output Feedback mode) See modes of 

operation
one-way hash function See message digest
optimal normal basis (ONB) See elliptic curve 

parameters
output considerations 127

ASCII to binary 155, 157
block cipher 36
ECDSA 257
elliptic curve 245
Elliptic Curve Authenticated Encryption 

Scheme 263

Elliptic Curve Diffie-Hellman key 
agreement 252

Output Feedback mode (OFB) See modes of 
operation

P
padding 36, 128, 162

RSA algorithm 193
parameters

Diffie-Hellman key agreement 62, 99, 219
Digital Signature Algorithm 59, 209
surrender context and 120
See also elliptic curve parameters

parity bits 130
password 93
password-based encryption 48

algorithm info types 109
dictionary attack 48
example 178–183
key 180
salt 179

PBE See password-based encryption
PEM encoding 104
point See elliptic curve parameters
point-to-point applications 83, 84
polynomial basis See elliptic curve 

parameters
prime 51, 58
privacy 83
Privacy Enhanced Mail See PEM encoding
public exponent 51
public-key cryptography 49–79

algorithm info types 110–113
digital certificate 60
digital signature 56
security 92
signing 185
symmetric-key vs. 50, 87
See also Diffie-Hellman key agreement, 

Digital Signature Algorithm, elliptic 
curve cryptography, RSA algorithm

R
random number

algorithm info types 107
entropy 93
example 147–153
examples

hardware generation 277–280
generating 47
hardware 114

random numbers
multiple streams of randomness 152

random seed 47, 92, 149
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generating 93
RC2 38, 88

effective key 38, 99, 167, 168
examples 165–172, 179–183

RC4 45
algorithm chooser 119
applications 84
BER example 125
example 9
key 95
key size 100
MAC with 46

RC5 39, 88
block size 172
example 172–178
key 100, 172
rounds 39, 100, 172
version number 173
word size 39, 172

Rivest, Ronald 38, 39, 45, 50
rounds 39, 100, 172
RSA algorithm 50–54

algorithm info types 110–111
applications 85
digital envelope 193
digital signature 56, 58, 193, 199
elliptic curve cryptography vs. 90
examples

ANSI X9.31 digital signature 204–208
decryption 195–197
digital signature 198–204
distributing a key pair 189–192
encryption 192–195
generating a key pair 186–189
raw RSA 197–??

factoring and 53, 99
input constraints 128, 193, 197–??, 199, 205
key 51, 53, 98, 99, 130, 187
key escrow 81
key info types 116
modulus 51, 99, 130, 187
output considerations 193, 196
raw RSA 193
sample algorithm chooser 119
security 53
timing attacks and blinding 96, 195
See also public-key cryptography

RSA Data Security, Inc.
FAQ 54
web site 47

S
salt 48, 94

iterations 179

sample program files
berder.c 125
descbc.c 160
dhagree.c 226
dhparam.c 219
dintorex.c 25
dsasign.c 209
ecdh.c 250
ecdsadig.c 254
eces.c 260
ecparam.c 230, 243
encdec.c 154
hmac.c 143
introex.c 9
mdber.c 141
mdigest.c 138
pbe.c 178
rc2.c 166
rsapkcs.c 186
rsasign.c 199
scrtshar.c 267
signver.c 205

secret key
See symmetric-key cryptography

secret sharing 79, 267
algorithm info types 113
example 267–272
key escrow vs. 89

Secure Hash Algorithm
See SHA1

security 92–100
DES weak keys 94
key size 97
passwords and 93
random seed and 92

seed 47, 92, 93, 149
entropy 93
zeroizing 152

sensitive data 124
zeroizing 20, 30, 92, 152, 181

SHA1 47
DSA and 58
ECAES and 76
examples 138–142

random numbers 147–153
hash-based message authentication 

and 47, 143
Shamir, Adi 50
signature See digital signature 56
six-step sequence 8, 32
stream cipher 45–46

algorithm info types 107
attacks 95
key 87
See also RC4
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subprime 58
surrender context 16, 120–122

example 121
parameter generation 120

symmetric-key cryptography 35–46
algorithm info types 107–109
examples 159–178
password-based encryption 48
public-key vs. 87
See also block cipher, stream cipher

T
T_free 123
T_malloc 123
TDES See Triple DES
threshold scheme 79, 267
timing attack 96, 195
token key See BHAPI
Triple DES 37

key 37, 100

V
verifying See digital signature

W
Web Site 5
word size 39, 172

Y
Year 2000 4

Z
zeroizing sensitive data 20, 30, 92, 181

random seed 152
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