RSA Laboratories. -

PKCS#1 v2.0: RSA Cryptography Standard
RSA Laboratories
September 4, 1998

Table of Contents

1. N IR O D10 O I 1O 1 2
I R O 1V = = AV YT 3

2. [N L 17N I 1 3
3. LS N 0 = T 4
3.1 RSA PUBLICKEY itttuuiiiiiiiittitiiieessstessssssesssesssssasssssssessssssseesssessssssstesssessssseeesteesssinseesseessse. 4
3.2 RSA PRIVATE KEY ttttuiiiiiiiittttiiiiiisstiettsssssesssesstsaassessssesssaasstssssessssssstesssesssssseeesseesssinnseesseessne, 5

4, DATA CONVERSION PRIMITIVES. ... ettt 6
AL N208P..... 6
B2 OS2IP.. 7

5. CRYPTOGRAPHIC PRIMITIVES ... 7
5.1 ENCRYPTION AND DECRYPTION PRIMITIVES.....cctttuiiiiieiiietiiiiiiiessiissssssesssesssssseesseesssmeesseessne. 7
BLL RSAEP ... 8

512 ROADPP ... 8

5.2 SIGNATURE AND VERIFICATION PRIMITIVESccttttuiiiieeiiietiiiiiieesisisssssssesssessssssssesssesssssnseesseessses 9
D21 ROASP ... 9

B.22 ROAVPL ..o 10

6. OVERVIEW OF SCHEMES.......cc oo 11
7. ENCRYPTION SCHEMES e 11
0 o T o @ A ! 12
4% T R =10 Tor Y/ o (o g W0 o= L4 o o FO POV RRURRRI 12

7.1.2 DECIYPLION OPEFALION ...ccuveiitieeitteeeiiee et ee ettt etee e stte et este e e be e e saee e sabeesabeesbeeesbeeesneeesaneaans 13

7.2 RSAESPKCSI-VL 5.ttt et e e et e e s a e e e s st ee e e s sat e e e e s nteeeesnneneans 14
425 R =0T Y/ o (o L Mo o= =11 o o HEO PR U SRR 15

7.2.2 DECIYPLION OPEFALION ...ccuveiitiieitieeeiiee st ee ettt stee e stte e s beesbe e e sbe e e sbee e sabeesabeesbeeesbeeesaseesnreans 16

8. SIGNATURE SCHEMESWITH APPENDI Xccooioiieeeeeeeeeee 17
8.1 RSASSA-PKCSL-VL Bttt et e et e e st e e e s s bt e e e e sab e e e e s nteeeeaneneeas 18

Copyright © 1991-1998 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics
Company. License to copy this document is granted provided that it is identified as “RSA Data Security,
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or referencing this
document. The RSA public-key cryptosystem is protected by U.S. Patent #4,405,829.

003-100000- 200- 001- 000

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 2

8.1.1 Signature generation OPEIaLiONccoveieieiiiee et e sieesiee et e e seee et esbe e sbe e sbe e e seeeesareaans 18

8.1.2 Signature verification OPEratioNc.eiiieiiiii ettt 19

9. ENCODING METHODS. ...t 20
9.1 ENCODING METHODS FOR ENCRY PTION ..uuuuuiiiiiitttttiiesssiestssssseesssessssssesssessssseessressseenne 20
911 EME-OAEP.......o 21
0.1.2 EME-PKCSL-VL B ettt ettt ae e e et e e e s enre e e e enneeee s 24

9.2 ENCODING METHODS FOR SIGNATURESWITH APPENDIX ...cvvtvuiiiieiiiietiiiinieeesieesssiseesssrssssneeanes 26
0.2.1 EMSA-PKCSL-VL 5. .ottt et e e s st e e e e s eat e e e e s nre e e e sneeee s 26

10. AUXILIARY FUNCTIONS 27
10.1 HASH FUNGCTIONS .1ttt ietttiie e e e e e et et s s e e s s e ea bbb s e e s e s ee s bbb s e eeesees bbb s eessee s bbb s eeessenbbbaanasaanes 27
10.2 MASK GENERATION FUNCTIONScetttttiiiieeiietttiisseessstessssassesssesssssssseesssssssssnssesssessssnnseeesses 28

0 20t R V[28

11, ASN. L SY NT AX 29
11.1 KKEY REPRESENTATION L..iittttuuiieesieessssaseesseesssssseesssesssssnssessseessssnteesteessssmeesssesssieann 29
12,21 PUBIIC-KEY SYNEAX ..ttt ettt ettt st e sae e e saae e sabe e s b e eees 29
12.0.2 PriVatE-KEY SYNEAXeeeieeeiieeitieeiteeeetee ettt et e sbee e ste e sbee e saee e sabeesbe e sbe e e sbeeesneeesabeesnbeeanees 30

11.2 SCHEME IDENTIFICATION 11ttt iiiiettttisieeesseestsssssesssesssaaassesssesssbaassesssessssansssesssesssssnnsseesseessses 31
11.2.1 Syntax for RSAES OAEP ..ottt ettt sae e e b b 31
11.2.2 Syntax for RSAES PKCSL-VL 5.ttt 32
11.2.3 Syntax for RSASSA-PKCSL-VL 5. ..ottt 33

12. REVISION HISTORY ..o 33
13. REFERENCES.......co oo 34

1. Introduction

This document provides recommendations for the implementation of public-key
cryptography based on the RSA algorithm [18], covering the following aspects:

cryptographic primitives

encryption schemes

signature schemes with appendix

ASN.1 syntax for representing keys and for identifying the schemes

The recommendations are intended for general application within computer and
communications systems, and as such include a fair amount of flexibility. It is expected
that application standards based on these specifications may include additional constraints.
The recommendations are intended to be compatible with draft standards currently being
developed by the ANSI X9F1 [1] and |EEE P1363 working groups [14].

This document supersedes PKCS #1 version 1.5 [20].

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 3

Editor’ s note. It is expected that subsequent versions of PKCS #1 may cover other aspects
of the RSA agorithm such as key size, key generation, key validation, and signature
schemes with message recovery.

11

Overview

The organization of this document is as follows:

Section 1 is an introduction.

Section 2 defines some notation used in this document.

Section 3 defines the RSA public and private key types.

Sections 4 and 5 define several primitives, or basic mathematical operations. Data
conversion primitives are in Section 4, and cryptographic primitives (encryption-
decryption, signature-verification) are in Section 5.

Section 6, 7 and 8 deal with the encryption and signature schemes in this document.
Section 6 gives an overview. Section 7 defines an OAEP-based [2] encryption scheme
along with the method found in PKCS #1 v1.5. Section 8 defines a signature scheme
with appendix; the method isidentical to that of PKCS #1 v1.5.

Section 9 defines the encoding methods for the encryption and signature schemes in
Sections 7 and 8.

Section 10 defines the hash functions and the mask generation function used in this
document.

Section 11 defines the ASN.1 syntax for the keys defined in Section 3 and the schemes
givesin Sections 7 and 8.

Section 12 outlines the revision history of PKCS #1.

Section 13 contains references to other publications and standards.

2. Notation

(n, e RSA public key

C ciphertext representative, an integer between 0 and n-1

C ciphertext, an octet string

d private exponent

dP p’'s exponent, a positive integer such that:
e-dP° 1 (mod (p-1))

dQ g's exponent, a positive integer such that:
e-dQ° 1(mod (g-1))

e public exponent

EM encoded message, an octet string

emLen intended length in octets of an encoded message

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 4

Hash
hLen

X
\xor
I (n)
I
-l

3. Key types

hash value, an output of Hash

hash function

output length in octets of hash function Hash

RSA private key

length in octets of the modulus

intended length of octet string

least common multiple of two nonnegative integers
message representative, an integer between 0 and n-1
message, an octet string

mask generation function

modulus

encoding parameters, an octet string

prime factors of the modulus

CRT coefficient, a positive integer less than p such that:
g-qinv® 1 (mod p)
signature representative, an integer between 0 and n-1

signature, an octet string

anonnegative integer

an octet string corresponding to x
bitwise exclusive-or of two octet strings
lecm(p-1, g-1), where n = px
concatenation operator

octet length operator

Two key types are employed in the primitives and schemes defined in this document: RSA
public key and RSA private key. Together, an RSA public key and an RSA private key

form an RSA key pair.

3.1 RSA public key

For the purposes of this document, an RSA public key consists of two components:

—n, the modulus, a nonnegative integer

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 5

—e, the public exponent, a nonnegative integer

In avalid RSA public key, the modulus n is a product of two odd primes p and g, and the
public exponent e is an integer between 3 and n-1 satisfying ged (e, | (n)) = 1, where | (n)
=lcm (p-1,g-1).

A recommended syntax for interchanging RSA public keys between implementations is
given in Section 11.1.1; an implementation’ s internal representation may differ.

3.2 RSA private key

For the purposes of this document, an RSA private key may have ether of two
representations.

1. The first representation consists of the pair (n, d), where the components have the
following meanings:

—n, the modulus, a nonnegative integer
—d, the private exponent, a nonnegative integer

2. The second representation consists of a quintuple (p, g, dP, dQ, glnv), where the
components have the following meanings.

—p, thefirst factor, a nonnegative integer

—(, the second factor, a nonnegative integer

—dP, the first factor’ s exponent, a nonnegative integer
—dQ, the second factor’ s exponent, a nonnegative integer
—qlnv, the CRT coefficient, a nonnegative integer

In avalid RSA private key with the first representation, the modulus n is the same asin the
corresponding public key and is the product of two odd primes p and g, and the private
exponent d is a positive integer less than n satisfying

e-d° 1(modl (n)
where e is the corresponding public exponent and | (n) is as defined above.

In avalid RSA private key with the second representation, the two factors p and q are the
prime factors of the modulus n, the exponents dP and dQ are positive integers less than p
and q respectively satisfying

Copyright © 1991-1998 RSA Laboratories.

PKCS#1 v2.0: RSA CRYPTOGRAPHY STANDARD 6
e-dP° 1 (mod (p-1))
e-dQ° 1(mod (g-1)),

and the CRT coefficient glnv is a positive integer less than p satisfying
g-qginv® 1 (mod p).

A recommended syntax for interchanging RSA private keys between implementations,
which includes components from both representations, is given in Section 11.1.2; an
implementation’s internal representation may differ.

4. Data conversion primitives
Two data conversion primitives are employed in the schemes defined in this document:
|20SP — Integer-to-Octet-String primitive

OS2I P — Octet-String-to-Integer primitive

For the purposes of this document, and consistent with ASN.1 syntax, an octet string is an
ordered sequence of octets (eight-bit bytes). The sequence is indexed from first
(conventionally, leftmost) to last (rightmost). For purposes of conversion to and from
integers, the first octet is considered the most significant in the following conversion
primitives

4.1 120SP

|20SP converts a nonnegative integer to an octet string of a specified length.

120SP (x, 1)
Input: X nonnegative integer to be converted
I intended length of the resulting octet string
Output: X corresponding octet string of length I; or “integer too large”
Seps.
1. If x3 256, output “integer too large” and stop.

2. Write the integer x in its unique |-digit representation base 256:
X=X 256"+ %2256 + ... + X1 256 + Xg

where 0 £ x < 256 (note that one or more leading digits will be zero if

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 7

X< 256'%).

3. Let the octet X; havethevauex_ for LE£i £1. Output the octet string
X=X Xz ... X,.

4.2 OS2IP

OS2I P converts an octet string to a nonnegative integer.

OS2IP (X)

Input: X octet string to be converted
Output: X corresponding nonnegative integer
Seps.

1. Let Xy X5 ... X; bethe octets of X from first to last, and let x..; have value X, for 1£
iEl

2. Let X=X%_1 256"+ X 2562 + ... + X; 256 + Xo.

3. Output x.

5. Cryptographic primitives

Cryptographic primitives are basic mathematical operations on which cryptographic
schemes can be built. They are intended for implementation in hardware or as software
modules, and are not intended to provide security apart from a scheme.

Four types of primitive are specified in this document, organized in pairs: encryption and
decryption; and signature and verification.

The specifications of the primitives assume that certain conditions are met by the inputs, in
particular that public and private keys are valid.

5.1 Encryption and decryption primitives

An encryption primitive produces a ciphertext representative from a message
representative under the control of a public key, and a decryption primitive recovers the
message representative from the ciphertext representative under the control of the
corresponding private key.

One pair of encryption and decryption primitives is employed in the encryption schemes
defined in this document and is specified here: RSAEP/RSADP. RSAEP and RSADP
involve the same mathematical operation, with different keys as input.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 8

The primitives defined here are the same as in the draft IEEE P1363 and are compatible
with PKCS#1 v1.5.

The main mathematical operation in each primitive is exponentiation.

5.1.1 RSAEP
RSAEP ((n, €), m)
Input: (n,) RSA public key
m message representative, an integer between 0 and n-1

Output: C ciphertext representative, an integer between 0 and n-1; or
“message representative out of range”

Assumptions. public key (n, €) isvalid

Seps.
1. If the message representative m is not between O and n-1, output “message
representative out of range” and stop.
2. Let c =m®mod n.
3. Output c.
5.1.2 RSADP
RSADP (K, c)
Input: K RSA private key, where K has one of the following forms:
—apair (n, d)

—aquintuple (p, g, dP, dQ, ginv)
C ciphertext representative, an integer between 0 and n-1

Output: m message representative, an integer between 0 and n-1; or
“ciphertext representative out of range”

Assumptions: private key K isvalid

Seps.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 9

1. If the ciphertext representative c is not between 0 and n-1, output “ciphertext
representative out of range” and stop.

2. If the first form (n, d) of K is used:
21 Letm=c"modn.
Else, if the second form (p, g, dP, dQ, ginv) of K is used:
22 Letmy=c* modp.
23 Letmpy=c®modaq.
24 Leth=qlnv(m —ny) mod p.
25 Leem=m+haq.

3. Output m.

5.2 Signature and verification primitives

A signature primitive produces a signature representative from a message representative
under the control of a private key, and a verification primitive recovers the message
representative from the signature representative under the control of the corresponding
public key. One pair of signature and verification primitives is employed in the signature
schemes defined in this document and is specified here: RSASP1I/RSAVPL.

The primitives defined here are the same as in the draft IEEE P1363 and are compatible
with PKCS#1 v1.5.

The main mathematical operation in each primitive is exponentiation, as in the encryption
and decryption primitives of Section 5.1. RSASP1 and RSAVPL are the same as RSADP
and RSAEP except for the names of their input and output arguments, they are
distinguished as they are intended for different purposes.
521 RSASP1
RSASP1 (K, m)
Input: K RSA private key, where K has one of the following forms:

—apair (n, d)

—aquintuple (p, g, dP, dQ, ginv)

m message representative, an integer between 0 and n-1

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 10

Output: S signature representative, an integer between 0 and n-1; or
“message representative out of range”

Assumptions: private key K isvalid
Seps.

1. If the message representative m is not between O and n-1, output “message
representative out of range” and stop.

2. If the first form (n, d) of K is used:
21 Lets=m’modn.
Else, if the second form (p, g, dP, dQ, ginv) of K is used:
22 Lets,=m® modp.
23 Lets,=m™modaq.
24 Leth=qlnv(s —%) modp.
25 Lets=s+haq.

3.0utput s.

5.2.2 RSAVP1

RSAVP1 ((n, €), 9

Input: (n,) RSA public key
S signature representative, an integer between 0 and n-1
Output: m message representative, an integer between 0 and n-1; or “invalid”

Assumptions. public key (n, €) isvalid

Seps.

1. If the signature representative s is not between 0 and n-1, output “invalid” and
stop.

2. Let m=s"mod n.

3. Output m.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 11

6. Overview of schemes

A scheme combines cryptographic primitives and other techniques to achieve a particular
security goal. Two types of scheme are specified in this document: encryption schemes
and signature schemes with appendix.

The schemes specified in this document are limited in scope in that their operations consist
only of steps to process data with a key, and do not include steps for obtaining or
validating the key. Thus, in addition to the scheme operations, an application will typically
include key management operations by which parties may select public and private keys
for a scheme operation. The specific additional operations and other details are outside the
scope of this document.

As was the case for the cryptographic primitives (Section 5), the specifications of scheme
operations assume that certain conditions are met by the inputs, in particular that public
and private keys are valid. The behavior of an implementation is thus unspecified when a
key is invalid. The impact of such unspecified behavior depends on the application.
Possible means of addressing key validation include explicit key validation by the
application; key vaidation within the public-key infrastructure; and assignment of liability
for operations performed with an invalid key to the party who generated the key.

7. Encryption schemes

An encryption scheme consists of an encryption operation and a decryption operation,
where the encryption operation produces a ciphertext from a message with a recipient’s
public key, and the decryption operation recovers the message from the ciphertext with
the recipient’ s corresponding private key.

An encryption scheme can be employed in avariety of applications. A typical application is
a key establishment protocol, where the message contains key material to be delivered
confidentially from one party to another. For instance, PKCS #7 [21] employs such a
protocol to deliver a content-encryption key from a sender to a recipient; the encryption
schemes defined here would be suitable key-encryption algorithmsin that context.

Two encryption schemes are specified in this document: RSAES-OAEP and RSAES
PKCS1-vl 5. RSAES-OAEP is recommended for new applications; RSAES-PKCS1-
vl 5isincluded only for compatibility with existing applications, and is not recommended
for new applications.

The encryption schemes given here follow a genera model similar to that employed in
|EEE P1363, by combining encryption and decryption primitives with an encoding method
for encryption. The encryption operations apply a message encoding operation to a
message to produce an encoded message, which is then converted to an integer message
representative. An encryption primitive is applied to the message representative to
produce the ciphertext. Reversing this, the decryption operations apply a decryption

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 12

primitive to the ciphertext to recover a message representative, which is then converted to
an octet string encoded message. A message decoding operation is applied to the encoded
message to recover the message and verify the correctness of the decryption.

7.1 RSAES-OAEP

RSAES-OAEP combines the RSAEP and RSADP primitives (Sections 5.1.1 and 5.1.2)
with the EME-OAEP encoding method (Section 9.1.1) EME-OAEP is based on the
method found in [2]. It is compatible with the IFES scheme defined in the draft P1363
where the encryption and decryption primitives are IFEP-RSA and IFDP-RSA and the
message encoding method is EME-OAEP. RSAES-OAEP can operate on messages of
length up to k-2-2hLen octets, where hLen is the length of the hash function output for
EME-OAEP and k is the length in octets of the recipient’s RSA modulus.

Assuming that the hash function in EME-OAEP has appropriate properties, and the key
sze is sufficiently large, RSAEP-OAEP provides “plaintext-aware encryption,” meaning
that it is computationally infeasible to obtain full or partial information about a message
from a ciphertext, and computationally infeasible to generate a valid ciphertext without
knowing the corresponding message. Therefore, a chosen ciphertext attack is ineffective
against a plaintext-aware encryption scheme such as RSAES-OAEP. We briefly note that
to receive the full security benefit of RSAES-OAEP, it should not be used in a protocol
involving RSAES-PKCS1-v1 5. It is possible that in a protocol in which both encryption
schemes are present, an adaptive chosen ciphertext attack such as [4] would be useful.

Both the encryption and the decryption operations of RSAES-OAEP take the value of the
parameter string P as input. In this version of PKCS #1, P is an octet string that is
specified explicitly. See Section 11.2.1 for the relevant ASN.1 syntax.

7.1.1 Encryption operation

RSAES-OAEP-ENCRYPT ((n, €), M, P)

Input: (n, €) recipient’'s RSA public key

M message to be encrypted, an octet string of length at most k-2-
2hLen, where k is the length in octets of the modulus n and hLen is
the length in octets of the hash function output for EME-OAEP

P encoding parameters, an octet string that may be empty
Output: C ciphertext, an octet string of length k; or “message too long”
Assumptions. public key (n, €) isvalid

Seps.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 13

1. Apply the EME-OAEP encoding operation (Section 9.1.1.2) to the message M and
the encoding parameters P to produce an encoded message EM of length k-1
octets:

EM = EME-OAEP-ENCODE (M, P, k-1)

If the encoding operation outputs “message too long,” then output “message too
long” and stop.

2. Convert the encoded message EM to an integer message representative m:
m= OS2IP (EM)

3. Apply the RSAEP encryption primitive (Section 5.1.1) to the public key (n, €) and
the message representative m to produce an integer ciphertext representative c:

c=RSAEP ((n, &), m)
4. Convert the ciphertext representative c to a ciphertext C of length k octets:

C =120SP (c, K)

o

Output the ciphertext C.

7.1.2 Decryption operation
RSAES-OAEP-DecrYPT (K, C, P)
Input: K recipient’s RSA private key

C ciphertext to be decrypted, an octet string of length k, where k is
the length in octets of the modulus n

P encoding parameters, an octet string that may be empty

Output: M message, an octet string of length at most k-2-2hLen, where hLen is
the length in octets of the hash function output for EME-OAEP; or
“decryption error”

Seps.
1. If the length of the ciphertext C is not k octets, output “decryption error” and stop.
2. Convert the ciphertext C to an integer ciphertext representative c:

c=0S2IP (C)

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 14

3. Apply the RSADP decryption primitive (Section 5.1.2) to the private key K and
the ciphertext representative c to produce an integer message representative m:

m=RSADP (K, ¢

If RSADP outputs “ciphertext out of range,” then output “decryption error” and
stop.

4. Convert the message representative m to an encoded message EM of length k-1
octets:

EM = 120SP (m, k-1)
If 120SP outputs “integer too large,” then output “decryption error” and stop.

5. Apply the EME-OAEP decoding operation to the encoded message EM and the
encoding parameters P to recover a message M:

M = EME-OAEP-DECODE (EM, P)

If the decoding operation outputs “decoding error,” then output “decryption error”
and stop.

6. Output the message M.

Note. It is important that the error messages output in steps 4 and 5 be the same,
otherwise an adversary may be able to extract useful information from the type of error
message received. Error message information is used to mount a chosen ciphertext attack
on PKCS #1 v1.5 encrypted messages in [4].

7.2 RSAES-PKCS1-vl 5

RSAES-PKCS1-vl 5 combines the RSAEP and RSADP primitives with the EME-
PKCS1-v1 5 encoding method. It is the same as the encryption scheme in PKCS #1 v1.5.
RSAES-PKCS1-v1 5 can operate on messages of length up to k-11 octets, although care
should be taken to avoid certain attacks on low-exponent RSA due to Coppersmith, et al.
when long messages are encrypted (see the third bullet in the notes below and [7]).

RSAES-PKCS1-v1 5 does not provide “plaintext aware” encryption. In particular, it is
possible to generate valid ciphertexts without knowing the corresponding plaintexts, with
a reasonable probability of success. This ability can be exploited in a chosen ciphertext
attack as shown in [4]. Therefore, if RSAES-PKCS1-v1l 5 is to be used, certain easily
implemented countermeasures should be taken to thwart the attack found in [4]. The
addition of structure to the data to be encoded, rigorous checking of PKCS #1 v1.5
conformance and other redundancy in decrypted messages, and the consolidation of error
messages in a client-server protocol based on PKCS #1 v1.5 can al be effective

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 15

countermeasures and don’t involve changes to a PKCS #1 v1.5-based protocol. These and
other countermeasures are discussed in [5].

Notes. The following passages describe some security recommendations pertaining to the
use of RSAES-PKCS1-v1l 5. Recommendations from version 1.5 of this document are
included as well as new recommendations motivated by cryptanalytic advances made in
the intervening years.

It is recommended that the pseudorandom octets in EME-PKCS1-v1 5 be generated
independently for each encryption process, especidly if the same data is input to more
than one encryption process. Hastad's results [13] are one motivation for this
recommendation.

The padding string PS in EME-PKCS1-v1 5 is at least eight octets long, which is a
security condition for public-key operations that prevents an attacker from recovering
data by trying al possible encryption blocks.

The pseudorandom octets can also help thwart an attack due to Coppersmith et al. [7]
when the size of the message to be encrypted is kept small. The attack works on low-
exponent RSA when similar messages are encrypted with the same public key. More
specifically, in one flavor of the attack, when two inputs to RSAEP agree on a large
fraction of bits (8/9) and low-exponent RSA (e = 3) is used to encrypt both of them, it
may be possible to recover both inputs with the attack. Another flavor of the attack is
successful in decrypting a single ciphertext when a large fraction (2/3) of the input to
RSAEP is dready known. For typical applications, the message to be encrypted is
short (e.g., a 128-bit symmetric key) so not enough information will be known or
common between two messages to enable the attack. However, if a long message is
encrypted, or if part of a message is known, then the attack may be a concern. In any
case, the RSAEP-OAEP scheme overcomes the attack.

7.2.1 Encryption operation
RSAES-PKCS1-v1 5-ENCRYPT ((n, €), M)

Input: (n, €) recipient’'s RSA public key

M message to be encrypted, an octet string of length at most k-11
octets, where k is the length in octets of the modulus n

Output: C ciphertext, an octet string of length k; or “message too long”
Seps.

1. Apply the EME-PKCS1-v1_5 encoding operation (Section 9.1.2.1) to the message
M to produce an encoded message EM of length k-1 octets:

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 16

EM = EME-PKCS1-v1 5-ENCODE (M, k-1)

If the encoding operation outputs “message too long,” then output “message too
long” and stop.

2. Convert the encoded message EM to an integer message representative m:
m= OS2IP (EM)

3. Apply the RSAEP encryption primitive (Section 5.1.1) to the public key (n, €) and
the message representative m to produce an integer ciphertext representative c:

c=RSAEP ((n, &), m)
4. Convert the ciphertext representative c to a ciphertext C of length k octets:
C=120SP (c, k)

5. Output the ciphertext C.

7.2.2 Decryption operation
RSAES-PKCS1-v1 5-DecryrT (K, C)
Input: K recipient’s RSA private key

C ciphertext to be decrypted, an octet string of length k, where k is
the length in octets of the modulus n

Output: M message, an octet string of length at most k-11; or “decryption
error”
Seps.
1. If the length of the ciphertext C is not k octets, output “decryption error” and stop.
2. Convert the ciphertext C to an integer ciphertext representative c:
c=0S2IP (C)

3. Apply the RSADP decryption primitive to the private key (n, d) and the ciphertext
representative c to produce an integer message representative m:

m = RSADP ((n, d), ¢)

If RSADP outputs “ciphertext out of range,” then output “decryption error” and
stop.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 17

4. Convert the message representative m to an encoded message EM of length k-1
octets:

EM = 120SP (m, k-1)
If 120SP outputs “integer too large,” then output “decryption error” and stop.

5. Apply the EME-PKCS1-v1 5 decoding operation to the encoded message EM to
recover a message M:

M = EME-PKCS1-v1 5-DECODE (EM)

If the decoding operation outputs “decoding error,” then output “decryption error”
and stop.

6. Output the message M.

Note. It is important that only one type of error message is output by EME-PKCS1-v1 5,
as ensured by steps 4 and 5. If this is not done, then an adversary may be able to use
information extracted form the type of error message received to mount a chosen
ciphertext attack such as the one found in [4].

8. Signature schemes with appendix

A signature scheme with appendix consists of a signature generation operation and a
signature verification operation, where the signature generation operation produces a
signature from a message with a signer's private key, and the signature verification
operation verifies the signature on the message with the signer's corresponding public key.
To verify a signature constructed with this type of scheme it is necessary to have the
message itself. In this way, signature schemes with appendix are distinguished from
signature schemes with message recovery, which are not supported in this document.

A signature scheme with appendix can be employed in a variety of applications. For
instance, X.509 [6] employs such a scheme to authenticate the content of a certificate; the
signature scheme with appendix defined here would be a suitable signature agorithm in
that context. A related signature scheme could be employed in PKCS #7 [21], although
for technical reasons, the current version of PKCS #7 separates a hash function from a
signature scheme, which is different than what is done here.

One signature scheme with appendix is specified in this document: RSASSA-PKCS1-
vl 5.

The signature scheme with appendix given here follows a general model similar to that
employed in IEEE P1363, by combining signature and verification primitives with an
encoding method for signatures. The signature generation operations apply a message
encoding operation to a message to produce an encoded message, which is then converted

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 18

to an integer message representative. A signature primitive is then applied to the message
representative to produce the signature. The signature verification operations apply a
signature verification primitive to the signature to recover a message representative, which
is then converted to an octet string. The message encoding operation is again applied to
the message, and the result is compared to the recovered octet string. If there is a match,
the signature is considered valid. (Note that this approach assumes that the signature and
verification primitives have the message-recovery form and the encoding method is
deterministic, as is the case for RSASP1I/RSAVP1 and EMSA-PKCS1-vl 5. The
signature generation and verification operations have a different form in P1363 for other
primitives and encoding methods.)

Editor's note. RSA Laboratories is investigating the possibility of including a scheme
based on the PSS encoding methods specified in [3], which would be recommended for
new applications.

8.1 RSASSA-PKCS1-vl 5

RSASSA-PKCS1-v1 5 combines the RSASP1 and RSAVPL primitives with the EME-
PKCS1-v1l 5 encoding method. It is compatible with the IFSSA scheme defined in the
draft P1363 where the signature and verification primitives are IFSP-RSA1 and IFVP-
RSA1 and the message encoding method is EMSA-PKCS1-v1 5 (which is not defined in
P1363). The length of messages on which RSASSA-PKCS1-v1l 5 can operate is ether
unrestricted or constrained by a very large number, depending on the hash function
underlying the message encoding method.

Assuming that the hash function in EMSA-PKCS1-v1 5 has appropriate properties and
the key size is sufficiently large, RSASSA-PKCSI1-vl 5 provides secure signatures,
meaning that it is computationally infeasible to generate a signature without knowing the
private key, and computationally infeasible to find a message with a given signature or two
messages with the same signature. Also, in the encoding method EMSA-PKCS1-v1 5, a
hash function identifier is embedded in the encoding. Because of this feature, an adversary
must invert or find collisons of the particular hash function being used; attacking a
different hash function than the one selected by the signer is not useful to the adversary.

8.1.1 Signature generation operation
RSASSA-PKCS1-v1 5-SiGN (K, M)
Input: K signer’s RSA private key

M message to be signed, an octet string

Output: S signature, an octet string of length k, where k is the length in octets
of the modulus n; “message too long” or “modulus too short”

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 19

Seps.

Apply the EMSA-PKCS1-v1 5 encoding operation (Section 9.2.1) to the message
M to produce an encoded message EM of length k-1 octets:

EM = EMSA-PKCS1-v1 5-ENCODE (M, k-1)

If the encoding operation outputs “message too long,” then output “message too
long” and stop. If the encoding operation outputs “intended encoded message
length too short” then output “modulus too short”.

Convert the encoded message EM to an integer message representative m:
m= OS2IP (EM)

Apply the RSASP1 signature primitive (Section 5.2.1) to the private key K and the
message representative m to produce an integer signature representative s:

s=RSASP1 (K, m)
Convert the signature representative sto a signature S of length k octets:
S=1208SP (s, k)

Output the signature S

8.1.2 Signature verification operation

RSASSA-PKCS1-v1 5-VERIFY ((n, €), M, S

Input:

Output:

Seps.
1.

2.

(n,) signer’'sRSA public key
M message whose signature is to be verified, an octet string

S signature to be verified, an octet string of length k, where k is the
length in octets of the modulus n

“valid signature,” “invalid signature,” or “message too long”, or “modulus
too short”

If the length of the signature Sis not k octets, output “invalid signature” and stop.
Convert the signature Sto an integer signature representative s.

s=0S2IP (9

Copyright © 1991-1998 RSA Laboratories.

PKCS#1 v2.0: RSA CRYPTOGRAPHY STANDARD 20
3. Apply the RSAVP1 verification primitive (Section 5.2.2) to the public key (n, €)
and the signature representative s to produce an integer message representative m:
m=RSAVP1 ((n, e), 9)
If RSAVP1 outputs “invalid” then output “invalid signature” and stop.

4. Convert the message representative m to an encoded message EM of length k-1
octets:

EM = 120SP (m, k-1)
If I120SP outputs “integer too large,” then output “invalid signature” and stop.

5. Apply the EMSA-PKCS1-v1 5 encoding operation (Section 9.2.1) to the message
M to produce a second encoded message EM’ of length k-1 octets:

EM’ = EMSA-PKCS1-v1 5-ENcODE (M, k-1)

If the encoding operation outputs “message too long,” then output “message too
long” and stop. If the encoding operation outputs “intended encoded message
length too short” then output “modulus too short”.

6. Compare the encoded message EM and the second encoded message EM’. If they
are the same, output “valid signature”; otherwise, output “invalid signature.”

9. Encoding methods

Encoding methods consist of operations that map between octet string messages and
integer message representatives.

Two types of encoding method are considered in this document: encoding methods for
encryption, encoding methods for signatures with appendix.

9.1 Encoding methods for encryption

An encoding method for encryption consists of an encoding operation and a decoding
operation. An encoding operation maps a message M to a message representative EM of a
specified length; the decoding operation maps a message representative EM back to a
message. The encoding and decoding operations are inverses.

The message representative EM will typically have some structure that can be verified by
the decoding operation; the decoding operation will output “decoding error” if the
structure is not present. The encoding operation may also introduce some randomness, so
that different applications of the encoding operation to the same message will produce
different representatives.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 21

Two encoding methods for encryption are employed in the encryption schemes and are
specified here: EME-OAEP and EME-PKCS1-v1 5.
9.1.1 EME-OAEP

This encoding method is parameterized by the choice of hash function and mask
generation function. Suggested hash and mask generation functions are given in Section
10. This encoding method is based on the method found in [2].

Figure 9-1 illustrates the encoding operation.

9.1.1.1 Encoding operation
EME-OAEP-ENCcODE (M, P, emLen)

Options: Hash hash function (hLen denotes the length in octets of the hash
function output)

MGF mask generation function

Input: M message to be encoded, an octet string of length at most emLen-1-
2hLen
P encoding parameters, an octet string

emLen intended length in octets of the encoded message, at least 2hLen+1

Output: EM encoded message, an octet string of length emLen; “message too
long” or “parameter string too long”
Seps.
1. If the length of P is greater than the input limitation for the hash function (2°*-1
octets for SHA-1) then output “parameter string too long” and stop.
2. If |IM|| > emLen-2hLen-1 then output “message too long” and stop.
3. Generate an octet string PS consisting of emLen-||M||-2hLen-1 zero octets. The

length of PSmay be 0.
4. Let pHash = Hash(P), an octet string of length hLen.

5. Concatenate pHash, PS the message M, and other padding to form a data block
DB as

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD

10.
11.

12.

DB = pHash || PS|| 01 || M

Generate a random octet string seed of length hLen.

Let doMask = MGF(seed, emLen-hLen).
Let maskedDB = DB \xor dbMask.

Let seedMask = MGF(maskedDB, hLen).
L et maskedSeed = seed \xor seedMask.
Let EM = maskedSeed || maskedDB.

Output EM.

Copyright © 1991-1998 RSA Laboratories.

22

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 23

Seed I P I M I

Hash

Padding Operation I

\ 4
DB I
> MGF | > \xor I
\ 4
\xor - MGF |<7 maskedDB I
maskedSeedI
v v
EM I
Figure9-1: EME-OAEP
9.1.1.2 Decoding operation
EME-OAEP-DECODE (EM, P)
Options: Hash hash function (hLen denotes the length in octets of the hash

function output)

MGF mask generation function

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 24

Input:

Output:

Seps.

1.

10.

11.

EM encoded message, an octet string of length at least 2hLen+1
P encoding parameters, an octet string

M recovered message, an octet string of length at most ||[EM||-1-
2hLen; or “decoding error”

If the length of P is greater than the input limitation of the hash function (2°*-1
octets for SHA-1) then output “decoding error” and stop.

If |EM|| < 2hLen+1, then output “decoding error” and stop.

L et maskedSeed be the first hLen octets of EM and let maskedDB be the remaining
[[EM]|| - hLen octets.

Let seedMask = MGF(maskedDB, hLen).

Let seed = maskedSeed \xor seedMask.

Let doMask = MGF(seed, ||[EM|| - hLen).

Let DB = maskedDB \xor doMask.

Let pHash = Hash(P), an octet string of length hLen.

Separate DB into an octet string pHash' consisting of the first hLen octets of DB,
a (possibly empty) octet string PS consisting of consecutive zero octets following
pHash', and amessage M as

DB = pHash’ || PS|| 01 || M
If there is no O1 octet to separate PSfrom M, output “decoding error” and stop.
If pHash’ does not equal pHash, output “decoding error” and stop.

Output M.

9.1.2 EME-PKCS1-vl_5

Thisen

coding method is the same as in PKCS #1 v1.5, Section 8: Encryption Process.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 25

9.1.2.1 Encoding operation
EME-PKCS1-v1 5-ENCODE (M, emLen)
Input: M message to be encoded, an octet string of length at most emLen-10

emLen intended length in octets of the encoded message

Output: EM encoded message, an octet string of length emLen; or “message too
long”

Seps.

1. If the length of the message M is greater than emLen — 10 octets, output “ message

too long” and stop.

2. Generate an octet string PS of length emLen-||M||-2 consisting of pseudorandomly
generated nonzero octets. The length of PSwill be at least 8 octets.

3. Concatenate PS the message M, and other padding to form the encoded message
EM as

EM =02 PS||00 || M

4. Output EM.

9.1.2.2 Decoding operation

EME-PKCS1-v1 5-DECODE (EM)

Input: EM encoded message, an octet string of length at least 10
Output: M recovered message, an octet string of length at most ||EM||-10; or
“decoding error”
Seps.
1. If ghe length of the encoded message EM s less than 10, output “decoding error”
and stop.

2. Separate the encoded message EM into an octet string PS consisting of nonzero
octets and a message M as

EM = 02| PS|| 00 || M.

If the first octet of EM is not 02, or if there is no 00 octet to separate PS from M,
output “decoding error” and stop.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 26

3. If the length of PSis less than 8 octets, output “decoding error” and stop.

4. Output M.

9.2 Encoding methods for signatureswith appendix

An encoding method for signatures with appendix, for the purposes of this document,
consists of an encoding operation. An encoding operation maps a message M to a message
representative EM of a specified length. (In future versions of this document, encoding
methods may be added that also include a decoding operation.)

One encoding method for signatures with appendix is employed in the encryption schemes
and is specified here: EMSA-PKCS1-v1 5.

9.21 EMSA-PKCS1-vl 5

This encoding method only has an encoding operation.

EMSA-PKCS1-v1l 5-ENCODE (M, emLen)

Option: Hash hash function (hLen denotes the length in octets of the hash
function output)

Input: M message to be encoded

emLen intended length in octets of the encoded message, at least ||T|| +
10, where T is the DER encoding of a certain value computed
during the encoding operation

Output: EM encoded message, an octet string of length emLen; or “message too
long” or “intended encoded message length too short”

Seps.

1. Apply the hash function to the message M to produce a hash value H:
H = Hash(M).
If the hash function outputs “message too long,” then output “message too long”.

2. Encode the algorithm ID for the hash function and the hash value into an ASN.1
value of type Di gest | nf o (see Section 11) with the Distinguished Encoding
Rules (DER), where thetype Di gest | nf o has the syntax

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 27

Di gestinfo ::= SEQUENCE {
di gest Al gorithm Al gorithm dentifier,
di gest OCTET STRI NG }

The first field identifies the hash function and the second contains the hash value.
Let T be the DER encoding.

3. If emLen isless than ||T|| + 10 then output “intended encoded message length too
short”.

4. Generate an octet string PS consisting of emLen-||T||-2 octets with value FF
(hexadecimal). The length of PSwill be at |east 8 octets.

5. Concatenate PS the DER encoding T, and other padding to form the encoded
message EM as

EM=01||PS||00| T

6. Output EM.

10. Auxiliary functions

This section specifies the hash functions and the mask generation functions that are
mentioned in the encoding methods (Section 9).

10.1 Hash functions

Hash functions are used in the operations contained in Sections 7, 8 and 9. Hash functions
are deterministic, meaning that the output is completely determined by the input. Hash
functions take octet strings of variable length, and generate fixed length octet strings. The
hash functions used in the operations contained in Sections 7, 8 and 9 should be collision
resistant. This means that it is infeasible to find two distinct inputs to the hash function
that produce the same output. A collision resistant hash function aso has the desirable
property of being one-way; this means that given an output, it is infeasible to find an input
whose hash is the specified output. The property of collison resistance is especialy
desirable for RSASSA-PKCS1-vl 5, as it makes it infeasible to forge signatures. In
addition to the requirements, the hash function should yield a mask generation function
(Section 10.2) with pseudorandom output.

Three hash functions are recommended for the encoding methods in this document: MD2
[15], MD5 [17], and SHA-1 [16]. For the EME-OAEP encoding method, only SHA-1 is
recommended. For the EMSA-PKCS1-v1 5 encoding method, SHA-1 is recommended
for new applications. MD2 and MD5 are recommended only for compatibility with
existing applications based on PKCS #1 v1.5.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 28

The hash functions themselves are not defined here; readers are referred to the appropriate
references ([15], [17] and [16]).

Note. Version 1.5 of this document also allowed for the use of MD4 in signature schemes.
The cryptanalysis of MD4 has progressed significantly in the intervening years. For
example, Dobbertin [10] demonstrated how to find collisions for MD4 and that the first
two rounds of MD4 are not one-way [11]. Because of these results and others (e.g. [9]),
MD4 is no longer recommended. There have also been advances in the cryptanaysis of
MD2 and MD5, athough not enough to warrant remova from existing applications.
Rogier and Chauvaud [19] demonstrated how to find collisions in a modified version of
MD2. No one has demonstrated how to find collisions for the full MD5 algorithm,
although partia results have been found (e.g. [8]). For new applications, to address these
concerns, SHA-1 is preferred.

10.2 Mask generation functions

A mask generation function takes an octet string of variable length and a desired output
length as input, and outputs an octet string of the desired length. There may be restrictions
on the length of the input and output octet strings, but such bounds are generdly very
large. Mask generation functions are deterministic; the octet string output is completely
determined by the input octet string. The output of a mask generation function should be
pseudorandom, that is, if the seed to the function is unknown, it should be infeasible to
distinguish the output from a truly random string. The plaintext-awareness of RSAES-
OAERP relies on the random nature of the output of the mask generation function, which in
turn relies on the random nature of the underlying hash.

One mask generation function is recommended for the encoding methods in this
document, and is defined here: MGF1, which is based on a hash function. Future versions
of this document may define other mask generation functions.

10.2.1 MGF1

MGF1 is a Mask Generation Function based on a hash function.

MGF1 (Z, 1)
Options: Hash hash function (hLen denotes the length in octets of the hash
function output)
Input: Z seed from which mask is generated, an octet string
I intended length in octets of the mask, at most 2°2 hLen
Output: mask mask, an octet string of length I; or “mask too long”

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 29

Seps.
1. If | > 2% hLen, output “mask too long” and stop.
2. Let T bethe empty octet string.
3. For counter from O to é1 / hLen t+1, do the following:

a Convert counter to an octet string C of length 4 with the primitive 120SP:

C = 120SP (counter, 4)
b. Concatenate the hash of the seed Z and C to the octet string T:
T=T| Hash(Z]||C)

4, Output the leading | octets of T as the octet string mask.

11. ASN.1 syntax

11.1 Key representation

This section defines ASN.1 object identifiers for RSA public and private keys, and defines
the types RSAPubl i cKey and RSAPri vat eKey. The intended application of these
definitions includes X.509 certificates, PKCS #8 [22], and PKCS #12 [23].

The object identifier r saEncr ypt i on identifies RSA public and private keys as defined
in Sections 11.1.1 and 11.1.2. The par anet er s field associated with this OID in an
Al gorithm dentifier shall havetype NULL.

rsaEncryption OBJECT | DENTIFIER ::= {pkcs-1 1}

All of the definitions in this section are the same asin PKCS #1 v1.5.

11.1.1 Public-key syntax
An RSA public key should be represented with the ASN.1 type RSAPubl i cKey:
RSAPubl i cKey ::= SEQUENCE ({
nmodul us | NTEGER, -- n
publ i cExponent | NTEGER -- e }
(Thistype is specified in X.509 and is retained here for compatibility.)

The fields of type RSAPubl i cKey have the following meanings:

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 30

modul us isthe modulus n.

publ i cExponent isthe public exponent e.

11.1.2 Private-key syntax

An RSA private key should be represented with ASN.1 type RSAPr i vat eKey:

RSAPr i vat eKey ::= SEQUENCE {
ver sion Version,
nmodul us | NTEGER, -- n
publ i cExponent | NTEGER, -- e
privat eExponent | NTEGER, -- d
prinmel I NTEGER, -- p
prime2 |INTEGER, -- (q
exponent1l INTEGER, -- d nod (p-1)
exponent 2 I NTEGER, -- d nod (g-1)

coefficient INTEGER -- (inverse of) nod p }
Version ::= | NTEGER

Thefields of type RSAPr i vat eKey have the following meanings:

ver si on is the verson number, for compatibility with future revisions of
this document. It shall be O for this version of the document.

nmodul us isthe modulusn.

publ i cExponent isthe public exponent e.
pri vat eExponent isthe private exponent d.
pri mel isthe prime factor p of n.

pri me2 isthe prime factor q of n.

exponent 1 isd mod (p- 1).

exponent 2 isd mod (g- 1).

coef fi ci ent isthe Chinese Remainder Theorem coefficient g~ mod p.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 31

11.2 Schemeidentification

This section defines object identifiers for the encryption and signature schemes. The
schemes compatible with PKCS #1 v1.5 have the same definitions as in PKCS #1 v1.5.
The intended application of these definitions includes X.509 certificates and PKCS #7.

11.2.1 Syntax for RSAES-OAEP
The object identifier i d- RSAES- QAEP identifies the RSAES-OAEP encryption scheme.
i d- RSAES- OAEP OBJECT | DENTI FI ER :: = {pkcs-1 7}

The par anet er s field associated with thisOID inan Al gori t hm denti fi er sndl
have type RSAEP- QAEP- par ans:

RSAES- OAEP- parans ::= SEQUENCE {

hashFunc [0] Algorithm dentifier {{oaepD gestAl gorithns}}
DEFAULT shall dentifier,

maskGenFunc [1] Algorithmdentifier {{pkcs1M3-Al gorithns}}
DEFAULT ngf 1SHALll dentifier,

pSourceFunc [2] Algorithmdentifier
{{ pkcslpSourceAl gorithns}}
DEFAULT pSpecifiedEnptyldentifier }

Thefields of type RSAES- QAEP- par ans have the following meanings:

hashFunc identifies the hash function. It shall be an algorithm ID with an OID in the
set oaepDi gest Al gori t hns, which for this verson shall consist of i d- shal,
identifying the SHA-1 hash function. The par anet er s field for i d- shal shal
have type NULL.

oaepDi gest Al gorithms ALGORI THM | DENTI FI ER :: = {
{NULL | DENTI FI ED BY id-shal} }

i d-shal OBJECT I DENTIFIER :: =
{iso(l) identified-organization(3) oiw14) secsig(3)
al gorithns(2) 26}
The default hash function is SHA-1:

shalldentifier ::= Algorithmdentifier {id-shal, NULL}

maskGenFunc identifies the mask generation function. It shall be an algorithm 1D
with an OID in the set pkcs1MGFAI gor i t hns, which for this version shall consist
of i d- ngf 1, identifying the MGF1 mask generation function (see Section 10.2.1).
The par anet er s field for i d- ngf 1 shal have type Al gori t hm dentifier,

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 32

identifying the hash function on which MGF1 is based, where the OID for the hash
function shall bein the set oaepDi gest Al gori t hns.

pkcs1MGFAI gorithnms ALGORI THM | DENTI FI ER :: = {
{Algorithm dentifier {{oaepD gestAl gorithns}} |DENTIFI ED
BY id-ngfl} }

i d- mgf 1 OBJECT | DENTI FI ER ::= {pkcs-1 8}

The default mask generation function is MGF1 with SHA-1:

ngf 1SHAll dentifier ::= Algorithmdentifier {
id-ngfl, shalldentifier }

pSour ceFunc identifies the source (and possibly the value) of the encoding
parameters P. It shal be an agorithm ID with an OID in the set
pkcslpSour ceAl gorithms, which for this verson shall consist of id-
pSpeci fi ed, indicating that the encoding parameters are specified explicitly. The
paraneters fied for i d- pSpecified shal have type OCTET STRI NG
containing the encoding parameters.

pkcslpSour ceAl gorithnms ALGORI THM I DENTI FI ER :: = {
{ OCTET STRI NG | DENTI FI ED BY i d- pSpecified} }

i d-pSpecified OBJECT I DENTIFIER ::= {pkcs-1 9}

The default encoding parameters is an empty string (so that pHash in EME-OAEP will
contain the hash of the empty string):

pSpeci fi edEnptyldentifier ::= Algorithmdentifier {
i d- pSpeci fied, OCTET STRING SI ZE (0) }

If al of the default values of the fields in RSAES- QAEP- par ans are used, then the
algorithm identifier will have the following value:

RSAES- OAEP- Def aul t -1 dentifier ::= Algorithmdentifier {
i d- RSAES- QAEP,
{shall dentifier,
nmgf 1SHALl dentifi er,
pSpeci fi edEnptyldentifier } }

11.2.2 Syntax for RSAES-PKCS1-vl 5

The object identifier r saEncr ypti on (Section 11.1) identifies the RSAES-PKCS1-
vl 5 encryption scheme. The paranet ers field associated with this OID in an
Al gorithm dentifier shal havetype NULL. Thisisthe sameasin PKCS#1 v1.5.

rsaEncrypti onOBJECT | DENTI FI ER :: = {pkcs-1 1}

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 33

11.2.3 Syntax for RSASSA-PKCS1-vl 5

The object identifier for RSASSA-PKCS1-v1 5 shall be one of the following. The choice
of OID depends on the choice of hash agorithm: MD2, MD5 or SHA-1. Note that if
either MD2 or MD5 is used then the OID is just as in PKCS #1 v1.5. For each OID, the
par anet er s field associated with thisOID inan Al gori t hm dent i fi er shal have
type NULL.

If the hash function to be used is MD2, then the OID should be:
md2W t hRSAEncryption :: = {pkcs-1 2}

If the hash function to be used is MD5, then the OID should be:
md5W t hRSAEncryption ::= {pkcs-1 4}

If the hash function to be used is SHA-1, then the OID should be:
shalW t hRSAEncryption ::= {pkcs-1 5}

In the di gest | nf o type mentioned in Section 9.2.1 the OIDS for the digest algorithm
are the following:

i d-SHA1 OBJECT I DENTIFIER :: =

{iso(1) i denti fied-organi zati on(3) oi W(14) secsi g(3)
algorithnms(2) 26 }

nd2 OBJECT | DENTIFIER :: =

{iso(1) menber - body(2) US(840) rsadsi (113549)
di gest Al gorithn(2) 2}

md5 OBJECT | DENTIFIER :: =

{iso(1) menber - body(2) US(840) rsadsi (113549)
di gest Al gorithn(2) 5}

The parameters field of the digest algorithm has ASN.1 type NULL for these OIDs.

12. Revision history
Versions 1.0-1.3

Versions 1.0-1.3 were distributed to participants in RSA Data Security, Inc.'s Public-Key
Cryptography Standards meetings in February and March 1991.

Version 1.4

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 34

Version 1.4 was part of the June 3, 1991 initial public release of PKCS. Version 1.4 was
published as NIST/OSI Implementors Workshop document SEC-SIG-91-18.

Version 1.5

Version 1.5 incorporates several editorial changes, including updates to the references and
the addition of arevision history. The following substantive changes were made:

Section 10: “MD4 with RSA” signature and verification processes were
added.

-Section 11: nd4W t hRSAENncr ypt i on object identifier was added.
Version 2.0 [DRAFT]

Version 2.0 incorporates major editorial changes in terms of the document structure, and
introduces the RSAEP-OAEP encryption scheme. This version continues to support the
encryption and signature processes in version 1.5, athough the hash algorithm MD4 is no
longer alowed due to cryptanaytic advances in the intervening years.

13. References

[1] ANSI, ANS X9.44: Key Management Using Reversible Public Key Cryptography
for the Financial Services Industry. Working Draft.

[2] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption-How to Encrypt with
RSA. In Advancesin Cryptology-Eurocrypt ‘94, pp. 92-111, Springer-Verlag, 1994.

[3] M. Bellare and P. Rogaway. The Exact Security of Digital Sgnatures-How to Sgn
with RSA and Rabin. In Advances in Cryptology-Eurocrypt ‘96, pp. 399-416,
Springer-Verlag, 1996.

[4] D. Bleichenbacher. Chosen Ciphertext Attacks against Protocols Based on the RSA
Encryption Sandard PKCS#1. To appear in Advances in Cryptology-Crypto ‘ 98.

[5] D. Bleichenbacher, B. Kaliski and J. Staddon. Recent Results on PKCS #1: RSA
Encryption Sandard. RSA Laboratories’ Bulletin, Number 7, June 24, 1998.

[6] CCITT. Recommendation X.509: The Directory-Authentication Framework. 1988.

[7] D. Coppersmith, M. Franklin, J. Patarin and M. Reiter. Low-Exponent RSA with
Related Messages. In Advances in Cryptology-Eurocrypt "96, pp. 1-9, Springer-
Verlag, 1996.

[8] B. den Boer and Bossdlaers. Collisions for the Compression Function of MD5.
Advances in Cryptology-Eurocrypt “93, pp. 293-304, Springer-Verlag, 1994.

Copyright © 1991-1998 RSA Laboratories.

PKCS #1 v2.0: RSA CRYPTOGRAPHY STANDARD 35

[9] B. den Boer, and A. Bosselaers. An Attack on the Last Two Rounds of MD4. In
Advances in Cryptology-Crypto "91, pp.194-203, Springer-Verlag, 1992.

[10] H. Dobbertin. Cryptanalysis of MD4. Fast Software Encryption. Lecture Notes in
Computer Science, Springer-Verlag 1996, pp. 55-72.

[11] H. Dobbertin. Cryptanalysis of MD5 Compress. Presented at the rump session of
Eurocrypt "96, May 14, 1996

[12] H. Dobbertin.The First Two Rounds of MD4 are Not One-Way. Fast Software
Encryption. Lecture Notes in Computer Science, Springer-Verlag 1998, pp. 284-292.

[13] J. Hastad. Solving Smultaneous Modular Equations of Low Degree. SIAM Journdl
of Computing, 17, 1988, pp. 336-341.

[14] |EEE. IEEE P1363: Sandard Specifications for Public Key Cryptography. Draft
Version 4.

[15] B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. Internet Activities
Board, April 1992.

[16] Nationa Institute of Standards and Technology (NIST). FIPS Publication 180-1:
Secure Hash Standard. April 1994.

[17] R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities
Board, April 1992.

[18] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Sgnatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2), pp. 120-126,
February 1978.

[19] N. Rogier and P. Chauvaud. The Compression Function of MD2 is not Collision
Free. Presented at Selected Areas of Cryptography "95. Carleton University, Ottawa,
Canada. May 18-19, 1995.

[20] RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 1.5, November
1993.

[21] RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version
1.5, November 1993.

[22] RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version
1.2, November 1993.

[23] RSA Laboratories. PKCS #12: Personal Information Exchange Syntax Standard.
Version 1.0, DRAFT, April 1997.

Copyright © 1991-1998 RSA Laboratories.

